1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
//===-- tsan_shadow_test.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"
namespace __tsan {
struct Region {
uptr start;
uptr end;
};
void CheckShadow(const Shadow *s, Sid sid, Epoch epoch, uptr addr, uptr size,
AccessType typ) {
uptr addr1 = 0;
uptr size1 = 0;
AccessType typ1 = 0;
s->GetAccess(&addr1, &size1, &typ1);
CHECK_EQ(s->sid(), sid);
CHECK_EQ(s->epoch(), epoch);
CHECK_EQ(addr1, addr);
CHECK_EQ(size1, size);
CHECK_EQ(typ1, typ);
}
TEST(Shadow, Shadow) {
Sid sid = static_cast<Sid>(11);
Epoch epoch = static_cast<Epoch>(22);
FastState fs;
fs.SetSid(sid);
fs.SetEpoch(epoch);
CHECK_EQ(fs.sid(), sid);
CHECK_EQ(fs.epoch(), epoch);
CHECK_EQ(fs.GetIgnoreBit(), false);
fs.SetIgnoreBit();
CHECK_EQ(fs.GetIgnoreBit(), true);
fs.ClearIgnoreBit();
CHECK_EQ(fs.GetIgnoreBit(), false);
Shadow s0(fs, 1, 2, kAccessWrite);
CheckShadow(&s0, sid, epoch, 1, 2, kAccessWrite);
Shadow s1(fs, 2, 3, kAccessRead);
CheckShadow(&s1, sid, epoch, 2, 3, kAccessRead);
Shadow s2(fs, 0xfffff8 + 4, 1, kAccessWrite | kAccessAtomic);
CheckShadow(&s2, sid, epoch, 4, 1, kAccessWrite | kAccessAtomic);
Shadow s3(fs, 0xfffff8 + 0, 8, kAccessRead | kAccessAtomic);
CheckShadow(&s3, sid, epoch, 0, 8, kAccessRead | kAccessAtomic);
CHECK(!s0.IsBothReadsOrAtomic(kAccessRead | kAccessAtomic));
CHECK(!s1.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s1.IsBothReadsOrAtomic(kAccessWrite));
CHECK(s1.IsBothReadsOrAtomic(kAccessRead));
CHECK(s2.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s2.IsBothReadsOrAtomic(kAccessWrite));
CHECK(!s2.IsBothReadsOrAtomic(kAccessRead));
CHECK(s3.IsBothReadsOrAtomic(kAccessAtomic));
CHECK(!s3.IsBothReadsOrAtomic(kAccessWrite));
CHECK(s3.IsBothReadsOrAtomic(kAccessRead));
CHECK(!s0.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s1.IsRWWeakerOrEqual(kAccessWrite));
CHECK(s1.IsRWWeakerOrEqual(kAccessRead));
CHECK(!s1.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(!s2.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s2.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(s2.IsRWWeakerOrEqual(kAccessRead));
CHECK(s2.IsRWWeakerOrEqual(kAccessWrite));
CHECK(s3.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
CHECK(s3.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
CHECK(s3.IsRWWeakerOrEqual(kAccessRead));
CHECK(s3.IsRWWeakerOrEqual(kAccessWrite));
Shadow sro(Shadow::kRodata);
CheckShadow(&sro, static_cast<Sid>(0), kEpochZero, 0, 0, kAccessRead);
}
TEST(Shadow, Mapping) {
static int global;
int stack;
void *heap = malloc(0);
free(heap);
CHECK(IsAppMem((uptr)&global));
CHECK(IsAppMem((uptr)&stack));
CHECK(IsAppMem((uptr)heap));
CHECK(IsShadowMem(MemToShadow((uptr)&global)));
CHECK(IsShadowMem(MemToShadow((uptr)&stack)));
CHECK(IsShadowMem(MemToShadow((uptr)heap)));
}
TEST(Shadow, Celling) {
u64 aligned_data[4];
char *data = (char*)aligned_data;
CHECK(IsAligned(reinterpret_cast<uptr>(data), kShadowSize));
RawShadow *s0 = MemToShadow((uptr)&data[0]);
CHECK(IsAligned(reinterpret_cast<uptr>(s0), kShadowSize));
for (unsigned i = 1; i < kShadowCell; i++)
CHECK_EQ(s0, MemToShadow((uptr)&data[i]));
for (unsigned i = kShadowCell; i < 2*kShadowCell; i++)
CHECK_EQ(s0 + kShadowCnt, MemToShadow((uptr)&data[i]));
for (unsigned i = 2*kShadowCell; i < 3*kShadowCell; i++)
CHECK_EQ(s0 + 2 * kShadowCnt, MemToShadow((uptr)&data[i]));
}
// Detect is the Mapping has kBroken field.
template <uptr>
struct Has {
typedef bool Result;
};
template <typename Mapping>
bool broken(...) {
return false;
}
template <typename Mapping>
bool broken(uptr what, typename Has<Mapping::kBroken>::Result = false) {
return Mapping::kBroken & what;
}
static int CompareRegion(const void *region_a, const void *region_b) {
uptr start_a = ((const struct Region *)region_a)->start;
uptr start_b = ((const struct Region *)region_b)->start;
if (start_a < start_b) {
return -1;
} else if (start_a > start_b) {
return 1;
} else {
return 0;
}
}
template <typename Mapping>
static void AddMetaRegion(struct Region *shadows, int *num_regions, uptr start,
uptr end) {
// If the app region is not empty, add its meta to the array.
if (start != end) {
shadows[*num_regions].start = (uptr)MemToMetaImpl::Apply<Mapping>(start);
shadows[*num_regions].end = (uptr)MemToMetaImpl::Apply<Mapping>(end - 1);
*num_regions = (*num_regions) + 1;
}
}
struct MappingTest {
template <typename Mapping>
static void Apply() {
// Easy (but ugly) way to print the mapping name.
Printf("%s\n", __PRETTY_FUNCTION__);
TestRegion<Mapping>(Mapping::kLoAppMemBeg, Mapping::kLoAppMemEnd);
TestRegion<Mapping>(Mapping::kMidAppMemBeg, Mapping::kMidAppMemEnd);
TestRegion<Mapping>(Mapping::kHiAppMemBeg, Mapping::kHiAppMemEnd);
TestRegion<Mapping>(Mapping::kHeapMemBeg, Mapping::kHeapMemEnd);
TestDisjointMetas<Mapping>();
// Not tested: the ordering of regions (low app vs. shadow vs. mid app
// etc.). That is enforced at runtime by CheckAndProtect.
}
template <typename Mapping>
static void TestRegion(uptr beg, uptr end) {
if (beg == end)
return;
Printf("checking region [0x%zx-0x%zx)\n", beg, end);
uptr prev = 0;
for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 256) {
for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
const uptr p = RoundDown(p0 + x, kShadowCell);
if (p < beg || p >= end)
continue;
const uptr s = MemToShadowImpl::Apply<Mapping>(p);
u32 *const m = MemToMetaImpl::Apply<Mapping>(p);
const uptr r = ShadowToMemImpl::Apply<Mapping>(s);
Printf(" addr=0x%zx: shadow=0x%zx meta=%p reverse=0x%zx\n", p, s, m,
r);
CHECK(IsAppMemImpl::Apply<Mapping>(p));
if (!broken<Mapping>(kBrokenMapping))
CHECK(IsShadowMemImpl::Apply<Mapping>(s));
CHECK(IsMetaMemImpl::Apply<Mapping>(reinterpret_cast<uptr>(m)));
CHECK_EQ(p, RestoreAddrImpl::Apply<Mapping>(CompressAddr(p)));
if (!broken<Mapping>(kBrokenReverseMapping))
CHECK_EQ(p, r);
if (prev && !broken<Mapping>(kBrokenLinearity)) {
// Ensure that shadow and meta mappings are linear within a single
// user range. Lots of code that processes memory ranges assumes it.
const uptr prev_s = MemToShadowImpl::Apply<Mapping>(prev);
u32 *const prev_m = MemToMetaImpl::Apply<Mapping>(prev);
CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
CHECK_EQ(m - prev_m, (p - prev) / kMetaShadowCell);
}
prev = p;
}
}
}
template <typename Mapping>
static void TestDisjointMetas() {
// Checks that the meta for each app region does not overlap with
// the meta for other app regions. For example, the meta for a high
// app pointer shouldn't be aliased to the meta of a mid app pointer.
// Notice that this is important even though there does not exist a
// MetaToMem function.
// (If a MetaToMem function did exist, we could simply
// check in the TestRegion function that it inverts MemToMeta.)
//
// We don't try to be clever by allowing the non-PIE (low app)
// and PIE (mid and high app) meta regions to overlap.
struct Region metas[4];
int num_regions = 0;
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kLoAppMemBeg,
Mapping::kLoAppMemEnd);
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kMidAppMemBeg,
Mapping::kMidAppMemEnd);
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kHiAppMemBeg,
Mapping::kHiAppMemEnd);
AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kHeapMemBeg,
Mapping::kHeapMemEnd);
// It is not required that the low app shadow is below the mid app
// shadow etc., hence we sort the shadows.
qsort(metas, num_regions, sizeof(struct Region), CompareRegion);
for (int i = 0; i < num_regions; i++)
Printf("[0x%lu, 0x%lu]\n", metas[i].start, metas[i].end);
if (!broken<Mapping>(kBrokenAliasedMetas))
for (int i = 1; i < num_regions; i++)
CHECK(metas[i - 1].end <= metas[i].start);
}
};
TEST(Shadow, AllMappings) { ForEachMapping<MappingTest>(); }
} // namespace __tsan
|