File: tsan_shadow_test.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (248 lines) | stat: -rw-r--r-- 8,986 bytes parent folder | download | duplicates (19)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//===-- tsan_shadow_test.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "gtest/gtest.h"

namespace __tsan {

struct Region {
  uptr start;
  uptr end;
};

void CheckShadow(const Shadow *s, Sid sid, Epoch epoch, uptr addr, uptr size,
                 AccessType typ) {
  uptr addr1 = 0;
  uptr size1 = 0;
  AccessType typ1 = 0;
  s->GetAccess(&addr1, &size1, &typ1);
  CHECK_EQ(s->sid(), sid);
  CHECK_EQ(s->epoch(), epoch);
  CHECK_EQ(addr1, addr);
  CHECK_EQ(size1, size);
  CHECK_EQ(typ1, typ);
}

TEST(Shadow, Shadow) {
  Sid sid = static_cast<Sid>(11);
  Epoch epoch = static_cast<Epoch>(22);
  FastState fs;
  fs.SetSid(sid);
  fs.SetEpoch(epoch);
  CHECK_EQ(fs.sid(), sid);
  CHECK_EQ(fs.epoch(), epoch);
  CHECK_EQ(fs.GetIgnoreBit(), false);
  fs.SetIgnoreBit();
  CHECK_EQ(fs.GetIgnoreBit(), true);
  fs.ClearIgnoreBit();
  CHECK_EQ(fs.GetIgnoreBit(), false);

  Shadow s0(fs, 1, 2, kAccessWrite);
  CheckShadow(&s0, sid, epoch, 1, 2, kAccessWrite);
  Shadow s1(fs, 2, 3, kAccessRead);
  CheckShadow(&s1, sid, epoch, 2, 3, kAccessRead);
  Shadow s2(fs, 0xfffff8 + 4, 1, kAccessWrite | kAccessAtomic);
  CheckShadow(&s2, sid, epoch, 4, 1, kAccessWrite | kAccessAtomic);
  Shadow s3(fs, 0xfffff8 + 0, 8, kAccessRead | kAccessAtomic);
  CheckShadow(&s3, sid, epoch, 0, 8, kAccessRead | kAccessAtomic);

  CHECK(!s0.IsBothReadsOrAtomic(kAccessRead | kAccessAtomic));
  CHECK(!s1.IsBothReadsOrAtomic(kAccessAtomic));
  CHECK(!s1.IsBothReadsOrAtomic(kAccessWrite));
  CHECK(s1.IsBothReadsOrAtomic(kAccessRead));
  CHECK(s2.IsBothReadsOrAtomic(kAccessAtomic));
  CHECK(!s2.IsBothReadsOrAtomic(kAccessWrite));
  CHECK(!s2.IsBothReadsOrAtomic(kAccessRead));
  CHECK(s3.IsBothReadsOrAtomic(kAccessAtomic));
  CHECK(!s3.IsBothReadsOrAtomic(kAccessWrite));
  CHECK(s3.IsBothReadsOrAtomic(kAccessRead));

  CHECK(!s0.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
  CHECK(s1.IsRWWeakerOrEqual(kAccessWrite));
  CHECK(s1.IsRWWeakerOrEqual(kAccessRead));
  CHECK(!s1.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));

  CHECK(!s2.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
  CHECK(s2.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
  CHECK(s2.IsRWWeakerOrEqual(kAccessRead));
  CHECK(s2.IsRWWeakerOrEqual(kAccessWrite));

  CHECK(s3.IsRWWeakerOrEqual(kAccessRead | kAccessAtomic));
  CHECK(s3.IsRWWeakerOrEqual(kAccessWrite | kAccessAtomic));
  CHECK(s3.IsRWWeakerOrEqual(kAccessRead));
  CHECK(s3.IsRWWeakerOrEqual(kAccessWrite));

  Shadow sro(Shadow::kRodata);
  CheckShadow(&sro, static_cast<Sid>(0), kEpochZero, 0, 0, kAccessRead);
}

TEST(Shadow, Mapping) {
  static int global;
  int stack;
  void *heap = malloc(0);
  free(heap);

  CHECK(IsAppMem((uptr)&global));
  CHECK(IsAppMem((uptr)&stack));
  CHECK(IsAppMem((uptr)heap));

  CHECK(IsShadowMem(MemToShadow((uptr)&global)));
  CHECK(IsShadowMem(MemToShadow((uptr)&stack)));
  CHECK(IsShadowMem(MemToShadow((uptr)heap)));
}

TEST(Shadow, Celling) {
  u64 aligned_data[4];
  char *data = (char*)aligned_data;
  CHECK(IsAligned(reinterpret_cast<uptr>(data), kShadowSize));
  RawShadow *s0 = MemToShadow((uptr)&data[0]);
  CHECK(IsAligned(reinterpret_cast<uptr>(s0), kShadowSize));
  for (unsigned i = 1; i < kShadowCell; i++)
    CHECK_EQ(s0, MemToShadow((uptr)&data[i]));
  for (unsigned i = kShadowCell; i < 2*kShadowCell; i++)
    CHECK_EQ(s0 + kShadowCnt, MemToShadow((uptr)&data[i]));
  for (unsigned i = 2*kShadowCell; i < 3*kShadowCell; i++)
    CHECK_EQ(s0 + 2 * kShadowCnt, MemToShadow((uptr)&data[i]));
}

// Detect is the Mapping has kBroken field.
template <uptr>
struct Has {
  typedef bool Result;
};

template <typename Mapping>
bool broken(...) {
  return false;
}

template <typename Mapping>
bool broken(uptr what, typename Has<Mapping::kBroken>::Result = false) {
  return Mapping::kBroken & what;
}

static int CompareRegion(const void *region_a, const void *region_b) {
  uptr start_a = ((const struct Region *)region_a)->start;
  uptr start_b = ((const struct Region *)region_b)->start;

  if (start_a < start_b) {
    return -1;
  } else if (start_a > start_b) {
    return 1;
  } else {
    return 0;
  }
}

template <typename Mapping>
static void AddMetaRegion(struct Region *shadows, int *num_regions, uptr start,
                          uptr end) {
  // If the app region is not empty, add its meta to the array.
  if (start != end) {
    shadows[*num_regions].start = (uptr)MemToMetaImpl::Apply<Mapping>(start);
    shadows[*num_regions].end = (uptr)MemToMetaImpl::Apply<Mapping>(end - 1);
    *num_regions = (*num_regions) + 1;
  }
}

struct MappingTest {
  template <typename Mapping>
  static void Apply() {
    // Easy (but ugly) way to print the mapping name.
    Printf("%s\n", __PRETTY_FUNCTION__);
    TestRegion<Mapping>(Mapping::kLoAppMemBeg, Mapping::kLoAppMemEnd);
    TestRegion<Mapping>(Mapping::kMidAppMemBeg, Mapping::kMidAppMemEnd);
    TestRegion<Mapping>(Mapping::kHiAppMemBeg, Mapping::kHiAppMemEnd);
    TestRegion<Mapping>(Mapping::kHeapMemBeg, Mapping::kHeapMemEnd);

    TestDisjointMetas<Mapping>();

    // Not tested: the ordering of regions (low app vs. shadow vs. mid app
    // etc.). That is enforced at runtime by CheckAndProtect.
  }

  template <typename Mapping>
  static void TestRegion(uptr beg, uptr end) {
    if (beg == end)
      return;
    Printf("checking region [0x%zx-0x%zx)\n", beg, end);
    uptr prev = 0;
    for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 256) {
      for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
        const uptr p = RoundDown(p0 + x, kShadowCell);
        if (p < beg || p >= end)
          continue;
        const uptr s = MemToShadowImpl::Apply<Mapping>(p);
        u32 *const m = MemToMetaImpl::Apply<Mapping>(p);
        const uptr r = ShadowToMemImpl::Apply<Mapping>(s);
        Printf("  addr=0x%zx: shadow=0x%zx meta=%p reverse=0x%zx\n", p, s, m,
               r);
        CHECK(IsAppMemImpl::Apply<Mapping>(p));
        if (!broken<Mapping>(kBrokenMapping))
          CHECK(IsShadowMemImpl::Apply<Mapping>(s));
        CHECK(IsMetaMemImpl::Apply<Mapping>(reinterpret_cast<uptr>(m)));
        CHECK_EQ(p, RestoreAddrImpl::Apply<Mapping>(CompressAddr(p)));
        if (!broken<Mapping>(kBrokenReverseMapping))
          CHECK_EQ(p, r);
        if (prev && !broken<Mapping>(kBrokenLinearity)) {
          // Ensure that shadow and meta mappings are linear within a single
          // user range. Lots of code that processes memory ranges assumes it.
          const uptr prev_s = MemToShadowImpl::Apply<Mapping>(prev);
          u32 *const prev_m = MemToMetaImpl::Apply<Mapping>(prev);
          CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
          CHECK_EQ(m - prev_m, (p - prev) / kMetaShadowCell);
        }
        prev = p;
      }
    }
  }

  template <typename Mapping>
  static void TestDisjointMetas() {
    // Checks that the meta for each app region does not overlap with
    // the meta for other app regions. For example, the meta for a high
    // app pointer shouldn't be aliased to the meta of a mid app pointer.
    // Notice that this is important even though there does not exist a
    // MetaToMem function.
    // (If a MetaToMem function did exist, we could simply
    // check in the TestRegion function that it inverts MemToMeta.)
    //
    // We don't try to be clever by allowing the non-PIE (low app)
    // and PIE (mid and high app) meta regions to overlap.
    struct Region metas[4];
    int num_regions = 0;
    AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kLoAppMemBeg,
                           Mapping::kLoAppMemEnd);
    AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kMidAppMemBeg,
                           Mapping::kMidAppMemEnd);
    AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kHiAppMemBeg,
                           Mapping::kHiAppMemEnd);
    AddMetaRegion<Mapping>(metas, &num_regions, Mapping::kHeapMemBeg,
                           Mapping::kHeapMemEnd);

    // It is not required that the low app shadow is below the mid app
    // shadow etc., hence we sort the shadows.
    qsort(metas, num_regions, sizeof(struct Region), CompareRegion);

    for (int i = 0; i < num_regions; i++)
      Printf("[0x%lu, 0x%lu]\n", metas[i].start, metas[i].end);

    if (!broken<Mapping>(kBrokenAliasedMetas))
      for (int i = 1; i < num_regions; i++)
        CHECK(metas[i - 1].end <= metas[i].start);
  }
};

TEST(Shadow, AllMappings) { ForEachMapping<MappingTest>(); }

}  // namespace __tsan