1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
|
//===-- ConvertCall.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertProcedureDesignator.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Lower/HlfirIntrinsics.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/CUF/CUFOps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/IR/IRMapping.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-expr"
static llvm::cl::opt<bool> useHlfirIntrinsicOps(
"use-hlfir-intrinsic-ops", llvm::cl::init(true),
llvm::cl::desc("Lower via HLFIR transformational intrinsic operations such "
"as hlfir.sum"));
static constexpr char tempResultName[] = ".tmp.func_result";
/// Helper to package a Value and its properties into an ExtendedValue.
static fir::ExtendedValue toExtendedValue(mlir::Location loc, mlir::Value base,
llvm::ArrayRef<mlir::Value> extents,
llvm::ArrayRef<mlir::Value> lengths) {
mlir::Type type = base.getType();
if (mlir::isa<fir::BaseBoxType>(type))
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
type = fir::unwrapRefType(type);
if (mlir::isa<fir::BaseBoxType>(type))
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(type)) {
if (seqTy.getDimension() != extents.size())
fir::emitFatalError(loc, "incorrect number of extents for array");
if (mlir::isa<fir::CharacterType>(seqTy.getEleTy())) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharArrayBoxValue(base, lengths[0], extents);
}
return fir::ArrayBoxValue(base, extents);
}
if (mlir::isa<fir::CharacterType>(type)) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharBoxValue(base, lengths[0]);
}
return base;
}
/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
/// reference. A C pointer can correspond to a Fortran dummy argument of type
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
static mlir::Value genRecordCPtrValueArg(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value rec,
mlir::Type ty) {
mlir::Value cAddr = fir::factory::genCPtrOrCFunptrAddr(builder, loc, rec, ty);
mlir::Value cVal = builder.create<fir::LoadOp>(loc, cAddr);
return builder.createConvert(loc, cAddr.getType(), cVal);
}
// Find the argument that corresponds to the host associations.
// Verify some assumptions about how the signature was built here.
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::func::FuncOp fn) {
// Scan the argument list from last to first as the host associations are
// appended for now.
for (unsigned i = fn.getNumArguments(); i > 0; --i)
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
// Host assoc tuple must be last argument (for now).
assert(i == fn.getNumArguments() && "tuple must be last");
return i - 1;
}
llvm_unreachable("anyFuncArgsHaveAttr failed");
}
mlir::Value
Fortran::lower::argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
mlir::Value arg) {
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
auto &builder = converter.getFirOpBuilder();
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
return converter.hostAssocTupleValue();
}
return {};
}
static bool mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
mlir::FunctionType callSiteType, mlir::FunctionType funcOpType) {
// Deal with argument number mismatch by making a function pointer so
// that function type cast can be inserted. Do not emit a warning here
// because this can happen in legal program if the function is not
// defined here and it was first passed as an argument without any more
// information.
if (callSiteType.getNumResults() != funcOpType.getNumResults() ||
callSiteType.getNumInputs() != funcOpType.getNumInputs())
return true;
// Implicit interface result type mismatch are not standard Fortran, but
// some compilers are not complaining about it. The front end is not
// protecting lowering from this currently. Support this with a
// discouraging warning.
// Cast the actual function to the current caller implicit type because
// that is the behavior we would get if we could not see the definition.
if (callSiteType.getResults() != funcOpType.getResults()) {
LLVM_DEBUG(mlir::emitWarning(
loc, "a return type mismatch is not standard compliant and may "
"lead to undefined behavior."));
return true;
}
// In HLFIR, there is little attempt to cope with implicit interface
// mismatch on the arguments. The argument are always prepared according
// to the implicit interface. Cast the actual function if any of the
// argument mismatch cannot be dealt with a simple fir.convert.
if (converter.getLoweringOptions().getLowerToHighLevelFIR())
for (auto [actualType, dummyType] :
llvm::zip(callSiteType.getInputs(), funcOpType.getInputs()))
if (actualType != dummyType &&
!fir::ConvertOp::canBeConverted(actualType, dummyType))
return true;
return false;
}
static mlir::Value readDim3Value(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value dim3Addr, llvm::StringRef comp) {
mlir::Type i32Ty = builder.getI32Type();
mlir::Type refI32Ty = fir::ReferenceType::get(i32Ty);
llvm::SmallVector<mlir::Value> lenParams;
mlir::Value designate = builder.create<hlfir::DesignateOp>(
loc, refI32Ty, dim3Addr, /*component=*/comp,
/*componentShape=*/mlir::Value{}, hlfir::DesignateOp::Subscripts{},
/*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt,
mlir::Value{}, lenParams);
return hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{designate});
}
static mlir::Value remapActualToDummyDescriptor(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::lower::CallerInterface::PassedEntity &arg,
Fortran::lower::CallerInterface &caller, bool isBindcCall) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
Fortran::lower::StatementContext localStmtCtx;
auto lowerSpecExpr = [&](const auto &expr,
bool isAssumedSizeExtent) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, localStmtCtx)));
if (isAssumedSizeExtent)
return convertExpr;
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
bool mapSymbols = caller.mustMapInterfaceSymbolsForDummyArgument(arg);
if (mapSymbols) {
symMap.pushScope();
const Fortran::semantics::Symbol *sym = caller.getDummySymbol(arg);
assert(sym && "call must have explicit interface to map interface symbols");
Fortran::lower::mapCallInterfaceSymbolsForDummyArgument(converter, caller,
symMap, *sym);
}
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
mlir::Type dummyBoxType = caller.getDummyArgumentType(arg);
mlir::Type dummyBaseType = fir::unwrapPassByRefType(dummyBoxType);
if (mlir::isa<fir::SequenceType>(dummyBaseType))
caller.walkDummyArgumentExtents(
arg, [&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
extents.emplace_back(lowerSpecExpr(e, isAssumedSizeExtent));
});
mlir::Value shape;
if (!extents.empty()) {
if (isBindcCall) {
// Preserve zero lower bounds (see F'2023 18.5.3).
llvm::SmallVector<mlir::Value> lowerBounds(extents.size(), zero);
shape = builder.genShape(loc, lowerBounds, extents);
} else {
shape = builder.genShape(loc, extents);
}
}
hlfir::Entity explicitArgument = hlfir::Entity{caller.getInput(arg)};
mlir::Type dummyElementType = fir::unwrapSequenceType(dummyBaseType);
if (auto recType = llvm::dyn_cast<fir::RecordType>(dummyElementType))
if (recType.getNumLenParams() > 0)
TODO(loc, "sequence association of length parameterized derived type "
"dummy arguments");
if (fir::isa_char(dummyElementType))
lengths.emplace_back(hlfir::genCharLength(loc, builder, explicitArgument));
mlir::Value baseAddr =
hlfir::genVariableRawAddress(loc, builder, explicitArgument);
baseAddr = builder.createConvert(loc, fir::ReferenceType::get(dummyBaseType),
baseAddr);
mlir::Value mold;
if (fir::isPolymorphicType(dummyBoxType))
mold = explicitArgument;
mlir::Value remapped =
builder.create<fir::EmboxOp>(loc, dummyBoxType, baseAddr, shape,
/*slice=*/mlir::Value{}, lengths, mold);
if (mapSymbols)
symMap.popScope();
return remapped;
}
/// Create a descriptor for sequenced associated descriptor that are passed
/// by descriptor. Sequence association (F'2023 15.5.2.12) implies that the
/// dummy shape and rank need to not be the same as the actual argument. This
/// helper creates a descriptor based on the dummy shape and rank (sequence
/// association can only happen with explicit and assumed-size array) so that it
/// is safe to assume the rank of the incoming descriptor inside the callee.
/// This helper must be called once all the actual arguments have been lowered
/// and placed inside "caller". Copy-in/copy-out must already have been
/// generated if needed using the actual argument shape (the dummy shape may be
/// assumed-size).
static void remapActualToDummyDescriptors(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller, bool isBindcCall) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (auto [preparedActual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
if (arg.isSequenceAssociatedDescriptor()) {
if (!preparedActual.value().handleDynamicOptional()) {
mlir::Value remapped = remapActualToDummyDescriptor(
loc, converter, symMap, arg, caller, isBindcCall);
caller.placeInput(arg, remapped);
} else {
// Absent optional actual argument descriptor cannot be read and
// remapped unconditionally.
mlir::Type dummyType = caller.getDummyArgumentType(arg);
mlir::Value isPresent = preparedActual.value().getIsPresent();
auto &argLambdaCapture = arg;
mlir::Value remapped =
builder
.genIfOp(loc, {dummyType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
mlir::Value newBox = remapActualToDummyDescriptor(
loc, converter, symMap, argLambdaCapture, caller,
isBindcCall);
builder.create<fir::ResultOp>(loc, newBox);
})
.genElse([&]() {
mlir::Value absent =
builder.create<fir::AbsentOp>(loc, dummyType);
builder.create<fir::ResultOp>(loc, absent);
})
.getResults()[0];
caller.placeInput(arg, remapped);
}
}
}
}
std::pair<fir::ExtendedValue, bool> Fortran::lower::genCallOpAndResult(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
std::optional<mlir::Type> resultType, bool isElemental) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
bool mustPopSymMap = false;
if (caller.mustMapInterfaceSymbolsForResult()) {
symMap.pushScope();
mustPopSymMap = true;
Fortran::lower::mapCallInterfaceSymbolsForResult(converter, caller, symMap);
}
// If this is an indirect call, retrieve the function address. Also retrieve
// the result length if this is a character function (note that this length
// will be used only if there is no explicit length in the local interface).
mlir::Value funcPointer;
mlir::Value charFuncPointerLength;
if (const Fortran::evaluate::ProcedureDesignator *procDesignator =
caller.getIfIndirectCall()) {
if (mlir::Value passedArg = caller.getIfPassedArg()) {
// Procedure pointer component call with PASS argument. To avoid
// "double" lowering of the ComponentRef, semantics only place the
// ComponentRef in the ActualArguments, not in the ProcedureDesignator (
// that is only the component symbol).
// Fetch the passed argument and addresses of its procedure pointer
// component.
funcPointer = Fortran::lower::derefPassProcPointerComponent(
loc, converter, *procDesignator, passedArg, symMap, stmtCtx);
} else {
Fortran::lower::SomeExpr expr{*procDesignator};
fir::ExtendedValue loweredProc =
converter.genExprAddr(loc, expr, stmtCtx);
funcPointer = fir::getBase(loweredProc);
// Dummy procedure may have assumed length, in which case the result
// length was passed along the dummy procedure.
// This is not possible with procedure pointer components.
if (const fir::CharBoxValue *charBox = loweredProc.getCharBox())
charFuncPointerLength = charBox->getLen();
}
}
mlir::IndexType idxTy = builder.getIndexType();
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> resultLengths;
auto allocatedResult = [&]() -> std::optional<fir::ExtendedValue> {
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
if (!caller.callerAllocateResult())
return {};
mlir::Type type = caller.getResultStorageType();
if (mlir::isa<fir::SequenceType>(type))
caller.walkResultExtents(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
extents.emplace_back(lowerSpecExpr(e));
});
caller.walkResultLengths(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
lengths.emplace_back(lowerSpecExpr(e));
});
// Result length parameters should not be provided to box storage
// allocation and save_results, but they are still useful information to
// keep in the ExtendedValue if non-deferred.
if (!mlir::isa<fir::BoxType>(type)) {
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
// Calling an assumed length function. This is only possible if this
// is a call to a character dummy procedure.
if (!charFuncPointerLength)
fir::emitFatalError(loc, "failed to retrieve character function "
"length while calling it");
lengths.push_back(charFuncPointerLength);
}
resultLengths = lengths;
}
if (!extents.empty() || !lengths.empty()) {
auto *bldr = &converter.getFirOpBuilder();
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
mlir::Value sp;
fir::CallOp call = bldr->create<fir::CallOp>(
loc, stackSaveFn.getFunctionType().getResults(), stackSaveSymbol,
mlir::ValueRange{});
if (call.getNumResults() != 0)
sp = call.getResult(0);
stmtCtx.attachCleanup([bldr, loc, sp]() {
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
auto stackRestoreSymbol =
bldr->getSymbolRefAttr(stackRestoreFn.getName());
bldr->create<fir::CallOp>(loc,
stackRestoreFn.getFunctionType().getResults(),
stackRestoreSymbol, mlir::ValueRange{sp});
});
}
mlir::Value temp =
builder.createTemporary(loc, type, ".result", extents, resultLengths);
return toExtendedValue(loc, temp, extents, lengths);
}();
if (mustPopSymMap)
symMap.popScope();
// Place allocated result or prepare the fir.save_result arguments.
mlir::Value arrayResultShape;
if (allocatedResult) {
if (std::optional<Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity>
resultArg = caller.getPassedResult()) {
if (resultArg->passBy == PassBy::AddressAndLength)
caller.placeAddressAndLengthInput(*resultArg,
fir::getBase(*allocatedResult),
fir::getLen(*allocatedResult));
else if (resultArg->passBy == PassBy::BaseAddress)
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
else
fir::emitFatalError(
loc, "only expect character scalar result to be passed by ref");
} else {
assert(caller.mustSaveResult());
arrayResultShape = allocatedResult->match(
[&](const fir::CharArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const fir::ArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const auto &) { return mlir::Value{}; });
}
}
// In older Fortran, procedure argument types are inferred. This may lead
// different view of what the function signature is in different locations.
// Casts are inserted as needed below to accommodate this.
// The mlir::func::FuncOp type prevails, unless it has a different number of
// arguments which can happen in legal program if it was passed as a dummy
// procedure argument earlier with no further type information.
mlir::SymbolRefAttr funcSymbolAttr;
bool addHostAssociations = false;
if (!funcPointer) {
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
mlir::SymbolRefAttr symbolAttr =
builder.getSymbolRefAttr(caller.getMangledName());
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
fir::getHostAssocAttrName())) {
// The number of arguments is off by one, and we're lowering a function
// with host associations. Modify call to include host associations
// argument by appending the value at the end of the operands.
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
converter.hostAssocTupleValue().getType());
addHostAssociations = true;
}
// When this is not a call to an internal procedure (where there is a
// mismatch due to the extra argument, but the interface is otherwise
// explicit and safe), handle interface mismatch due to F77 implicit
// interface "abuse" with a function address cast if needed.
if (!addHostAssociations &&
mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
loc, converter, callSiteType, funcOpType))
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
else
funcSymbolAttr = symbolAttr;
// Issue a warning if the procedure name conflicts with
// a runtime function name a call to which has been already
// lowered (implying that the FuncOp has been created).
// The behavior is undefined in this case.
if (caller.getFuncOp()->hasAttrOfType<mlir::UnitAttr>(
fir::FIROpsDialect::getFirRuntimeAttrName()))
LLVM_DEBUG(mlir::emitWarning(
loc,
llvm::Twine("function name '") +
llvm::Twine(symbolAttr.getLeafReference()) +
llvm::Twine("' conflicts with a runtime function name used by "
"Flang - this may lead to undefined behavior")));
}
mlir::FunctionType funcType =
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
llvm::SmallVector<mlir::Value> operands;
// First operand of indirect call is the function pointer. Cast it to
// required function type for the call to handle procedures that have a
// compatible interface in Fortran, but that have different signatures in
// FIR.
if (funcPointer) {
operands.push_back(
mlir::isa<fir::BoxProcType>(funcPointer.getType())
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
: builder.createConvert(loc, funcType, funcPointer));
}
// Deal with potential mismatches in arguments types. Passing an array to a
// scalar argument should for instance be tolerated here.
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
for (auto [fst, snd] : llvm::zip(caller.getInputs(), funcType.getInputs())) {
// When passing arguments to a procedure that can be called by implicit
// interface, allow any character actual arguments to be passed to dummy
// arguments of any type and vice versa.
mlir::Value cast;
auto *context = builder.getContext();
if (mlir::isa<fir::BoxProcType>(snd) &&
mlir::isa<mlir::FunctionType>(fst.getType())) {
auto funcTy =
mlir::FunctionType::get(context, std::nullopt, std::nullopt);
auto boxProcTy = builder.getBoxProcType(funcTy);
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
cast = builder.create<fir::EmboxProcOp>(
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
} else {
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
}
} else {
mlir::Type fromTy = fir::unwrapRefType(fst.getType());
if (fir::isa_builtin_cptr_type(fromTy) &&
Fortran::lower::isCPtrArgByValueType(snd)) {
cast = genRecordCPtrValueArg(builder, loc, fst, fromTy);
} else if (fir::isa_derived(snd) && !fir::isa_derived(fst.getType())) {
// TODO: remove this TODO once the old lowering is gone.
TODO(loc, "derived type argument passed by value");
} else {
// With the lowering to HLFIR, box arguments have already been built
// according to the attributes, rank, bounds, and type they should have.
// Do not attempt any reboxing here that could break this.
bool legacyLowering =
!converter.getLoweringOptions().getLowerToHighLevelFIR();
cast = builder.convertWithSemantics(loc, snd, fst,
callingImplicitInterface,
/*allowRebox=*/legacyLowering);
}
}
operands.push_back(cast);
}
// Add host associations as necessary.
if (addHostAssociations)
operands.push_back(converter.hostAssocTupleValue());
mlir::Value callResult;
unsigned callNumResults;
if (!caller.getCallDescription().chevrons().empty()) {
// A call to a CUDA kernel with the chevron syntax.
mlir::Type i32Ty = builder.getI32Type();
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
mlir::Value grid_x, grid_y, grid_z;
if (caller.getCallDescription().chevrons()[0].GetType()->category() ==
Fortran::common::TypeCategory::Integer) {
// If grid is an integer, it is converted to dim3(grid,1,1). Since z is
// not used for the number of thread blocks, it is omitted in the op.
grid_x = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[0], stmtCtx)));
grid_y = one;
grid_z = one;
} else {
auto dim3Addr = converter.genExprAddr(
caller.getCallDescription().chevrons()[0], stmtCtx);
grid_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
grid_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
grid_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
}
mlir::Value block_x, block_y, block_z;
if (caller.getCallDescription().chevrons()[1].GetType()->category() ==
Fortran::common::TypeCategory::Integer) {
// If block is an integer, it is converted to dim3(block,1,1).
block_x = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[1], stmtCtx)));
block_y = one;
block_z = one;
} else {
auto dim3Addr = converter.genExprAddr(
caller.getCallDescription().chevrons()[1], stmtCtx);
block_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
block_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
block_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
}
mlir::Value bytes; // bytes is optional.
if (caller.getCallDescription().chevrons().size() > 2)
bytes = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[2], stmtCtx)));
mlir::Value stream; // stream is optional.
if (caller.getCallDescription().chevrons().size() > 3)
stream = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[3], stmtCtx)));
builder.create<cuf::KernelLaunchOp>(
loc, funcType.getResults(), funcSymbolAttr, grid_x, grid_y, grid_z,
block_x, block_y, block_z, bytes, stream, operands);
callNumResults = 0;
} else if (caller.requireDispatchCall()) {
// Procedure call requiring a dynamic dispatch. Call is created with
// fir.dispatch.
// Get the raw procedure name. The procedure name is not mangled in the
// binding table, but there can be a suffix to distinguish bindings of
// the same name (which happens only when PRIVATE bindings exist in
// ancestor types in other modules).
const auto &ultimateSymbol =
caller.getCallDescription().proc().GetSymbol()->GetUltimate();
std::string procName = ultimateSymbol.name().ToString();
if (const auto &binding{
ultimateSymbol.get<Fortran::semantics::ProcBindingDetails>()};
binding.numPrivatesNotOverridden() > 0)
procName += "."s + std::to_string(binding.numPrivatesNotOverridden());
fir::DispatchOp dispatch;
if (std::optional<unsigned> passArg = caller.getPassArgIndex()) {
// PASS, PASS(arg-name)
// Note that caller.getInputs is used instead of operands to get the
// passed object because interface mismatch issues may have inserted a
// cast to the operand with a different declared type, which would break
// later type bound call resolution in the FIR to FIR pass.
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
caller.getInputs()[*passArg], operands,
builder.getI32IntegerAttr(*passArg));
} else {
// NOPASS
const Fortran::evaluate::Component *component =
caller.getCallDescription().proc().GetComponent();
assert(component && "expect component for type-bound procedure call.");
fir::ExtendedValue dataRefValue = Fortran::lower::convertDataRefToValue(
loc, converter, component->base(), symMap, stmtCtx);
mlir::Value passObject = fir::getBase(dataRefValue);
if (fir::isa_ref_type(passObject.getType()))
passObject = builder.create<fir::LoadOp>(loc, passObject);
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
passObject, operands, nullptr);
}
callNumResults = dispatch.getNumResults();
if (callNumResults != 0)
callResult = dispatch.getResult(0);
} else {
// Standard procedure call with fir.call.
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
funcSymbolAttr, operands);
if (caller.characterize().IsBindC())
call.setIsBindC(true);
callNumResults = call.getNumResults();
if (callNumResults != 0)
callResult = call.getResult(0);
}
if (caller.mustSaveResult()) {
assert(allocatedResult.has_value());
builder.create<fir::SaveResultOp>(loc, callResult,
fir::getBase(*allocatedResult),
arrayResultShape, resultLengths);
}
if (allocatedResult) {
// The result must be optionally destroyed (if it is of a derived type
// that may need finalization or deallocation of the components).
// For an allocatable result we have to free the memory allocated
// for the top-level entity. Note that the Destroy calls below
// do not deallocate the top-level entity. The two clean-ups
// must be pushed in reverse order, so that the final order is:
// Destroy(desc)
// free(desc->base_addr)
allocatedResult->match(
[&](const fir::MutableBoxValue &box) {
if (box.isAllocatable()) {
// 9.7.3.2 point 4. Deallocate allocatable results. Note that
// finalization was done independently by calling
// genDerivedTypeDestroy above and is not triggered by this inline
// deallocation.
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, box]() {
fir::factory::genFreememIfAllocated(*bldr, loc, box);
});
}
},
[](const auto &) {});
// 7.5.6.3 point 5. Derived-type finalization for nonpointer function.
bool resultIsFinalized = false;
// Check if the derived-type is finalizable if it is a monomorphic
// derived-type.
// For polymorphic and unlimited polymorphic enities call the runtime
// in any cases.
std::optional<Fortran::evaluate::DynamicType> retTy =
caller.getCallDescription().proc().GetType();
// With HLFIR lowering, isElemental must be set to true
// if we are producing an elemental call. In this case,
// the elemental results must not be destroyed, instead,
// the resulting array result will be finalized/destroyed
// as needed by hlfir.destroy.
if (!isElemental && !fir::isPointerType(funcType.getResults()[0]) &&
retTy &&
(retTy->category() == Fortran::common::TypeCategory::Derived ||
retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())) {
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic()) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
fir::runtime::genDerivedTypeDestroy(*bldr, loc,
fir::getBase(*allocatedResult));
});
resultIsFinalized = true;
} else {
const Fortran::semantics::DerivedTypeSpec &typeSpec =
retTy->GetDerivedTypeSpec();
// If the result type may require finalization
// or have allocatable components, we need to make sure
// everything is properly finalized/deallocated.
if (Fortran::semantics::MayRequireFinalization(typeSpec) ||
// We can use DerivedTypeDestroy even if finalization is not needed.
hlfir::mayHaveAllocatableComponent(funcType.getResults()[0])) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
mlir::Value box = bldr->createBox(loc, *allocatedResult);
fir::runtime::genDerivedTypeDestroy(*bldr, loc, box);
});
resultIsFinalized = true;
}
}
}
return {*allocatedResult, resultIsFinalized};
}
// subroutine call
if (!resultType)
return {fir::ExtendedValue{mlir::Value{}}, /*resultIsFinalized=*/false};
// For now, Fortran return values are implemented with a single MLIR
// function return value.
assert(callNumResults == 1 && "Expected exactly one result in FUNCTION call");
(void)callNumResults;
// Call a BIND(C) function that return a char.
if (caller.characterize().IsBindC() &&
mlir::isa<fir::CharacterType>(funcType.getResults()[0])) {
fir::CharacterType charTy =
mlir::dyn_cast<fir::CharacterType>(funcType.getResults()[0]);
mlir::Value len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), charTy.getLen());
return {fir::CharBoxValue{callResult, len}, /*resultIsFinalized=*/false};
}
return {callResult, /*resultIsFinalized=*/false};
}
static hlfir::EntityWithAttributes genStmtFunctionRef(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
assert(symbol && "expected symbol in ProcedureRef of statement functions");
const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Statement functions have their own scope, we just need to associate
// the dummy symbols to argument expressions. There are no
// optional/alternate return arguments. Statement functions cannot be
// recursive (directly or indirectly) so it is safe to add dummy symbols to
// the local map here.
symMap.pushScope();
llvm::SmallVector<hlfir::AssociateOp> exprAssociations;
for (auto [arg, bind] : llvm::zip(details.dummyArgs(), procRef.arguments())) {
assert(arg && "alternate return in statement function");
assert(bind && "optional argument in statement function");
const auto *expr = bind->UnwrapExpr();
// TODO: assumed type in statement function, that surprisingly seems
// allowed, probably because nobody thought of restricting this usage.
// gfortran/ifort compiles this.
assert(expr && "assumed type used as statement function argument");
// As per Fortran 2018 C1580, statement function arguments can only be
// scalars.
// The only care is to use the dummy character explicit length if any
// instead of the actual argument length (that can be bigger).
hlfir::EntityWithAttributes loweredArg = Fortran::lower::convertExprToHLFIR(
loc, converter, *expr, symMap, stmtCtx);
fir::FortranVariableOpInterface variableIface = loweredArg.getIfVariable();
if (!variableIface) {
// So far only FortranVariableOpInterface can be mapped to symbols.
// Create an hlfir.associate to create a variable from a potential
// value argument.
mlir::Type argType = converter.genType(*arg);
auto associate = hlfir::genAssociateExpr(
loc, builder, loweredArg, argType, toStringRef(arg->name()));
exprAssociations.push_back(associate);
variableIface = associate;
}
const Fortran::semantics::DeclTypeSpec *type = arg->GetType();
if (type &&
type->category() == Fortran::semantics::DeclTypeSpec::Character) {
// Instantiate character as if it was a normal dummy argument so that the
// statement function dummy character length is applied and dealt with
// correctly.
symMap.addSymbol(*arg, variableIface.getBase());
Fortran::lower::mapSymbolAttributes(converter, *arg, symMap, stmtCtx);
} else {
// No need to create an extra hlfir.declare otherwise for
// numerical and logical scalar dummies.
symMap.addVariableDefinition(*arg, variableIface);
}
}
// Explicitly map statement function host associated symbols to their
// parent scope lowered symbol box.
for (const Fortran::semantics::SymbolRef &sym :
Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
if (const auto *details =
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
converter.copySymbolBinding(details->symbol(), sym);
hlfir::Entity result = Fortran::lower::convertExprToHLFIR(
loc, converter, details.stmtFunction().value(), symMap, stmtCtx);
symMap.popScope();
// The result must not be a variable.
result = hlfir::loadTrivialScalar(loc, builder, result);
if (result.isVariable())
result = hlfir::Entity{builder.create<hlfir::AsExprOp>(loc, result)};
for (auto associate : exprAssociations)
builder.create<hlfir::EndAssociateOp>(loc, associate);
return hlfir::EntityWithAttributes{result};
}
namespace {
// Structure to hold the information about the call and the lowering context.
// This structure is intended to help threading the information
// through the various lowering calls without having to pass every
// required structure one by one.
struct CallContext {
CallContext(const Fortran::evaluate::ProcedureRef &procRef,
std::optional<mlir::Type> resultType, mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx)
: procRef{procRef}, converter{converter}, symMap{symMap},
stmtCtx{stmtCtx}, resultType{resultType}, loc{loc} {}
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
std::string getProcedureName() const {
if (const Fortran::semantics::Symbol *sym = procRef.proc().GetSymbol())
return sym->GetUltimate().name().ToString();
return procRef.proc().GetName();
}
/// Is this a call to an elemental procedure with at least one array argument?
bool isElementalProcWithArrayArgs() const {
if (procRef.IsElemental())
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
procRef.arguments())
if (arg && arg->Rank() != 0)
return true;
return false;
}
/// Is this a statement function reference?
bool isStatementFunctionCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
if (const auto *details =
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
return details->stmtFunction().has_value();
return false;
}
/// Is this a call to a BIND(C) procedure?
bool isBindcCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
return Fortran::semantics::IsBindCProcedure(*symbol);
return false;
}
const Fortran::evaluate::ProcedureRef &procRef;
Fortran::lower::AbstractConverter &converter;
Fortran::lower::SymMap &symMap;
Fortran::lower::StatementContext &stmtCtx;
std::optional<mlir::Type> resultType;
mlir::Location loc;
};
using ExvAndCleanup =
std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>;
} // namespace
// Helper to transform a fir::ExtendedValue to an hlfir::EntityWithAttributes.
static hlfir::EntityWithAttributes
extendedValueToHlfirEntity(mlir::Location loc, fir::FirOpBuilder &builder,
const fir::ExtendedValue &exv,
llvm::StringRef name) {
mlir::Value firBase = fir::getBase(exv);
mlir::Type firBaseTy = firBase.getType();
if (fir::isa_trivial(firBaseTy))
return hlfir::EntityWithAttributes{firBase};
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(firBase.getType())) {
// CHAR() intrinsic and BIND(C) procedures returning CHARACTER(1)
// are lowered to a fir.char<kind,1> that is not in memory.
// This tends to cause a lot of bugs because the rest of the
// infrastructure is mostly tested with characters that are
// in memory.
// To avoid having to deal with this special case here and there,
// place it in memory here. If this turns out to be suboptimal,
// this could be fixed, but for now llvm opt -O1 is able to get
// rid of the memory indirection in a = char(b), so there is
// little incentive to increase the compiler complexity.
hlfir::Entity storage{builder.createTemporary(loc, charTy)};
builder.create<fir::StoreOp>(loc, firBase, storage);
auto asExpr = builder.create<hlfir::AsExprOp>(
loc, storage, /*mustFree=*/builder.createBool(loc, false));
return hlfir::EntityWithAttributes{asExpr.getResult()};
}
return hlfir::genDeclare(loc, builder, exv, name,
fir::FortranVariableFlagsAttr{});
}
namespace {
/// Structure to hold the clean-up related to a dummy argument preparation
/// that may have to be done after a call (copy-out or temporary deallocation).
struct CallCleanUp {
struct CopyIn {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::CopyOutOp>(loc, tempBox, wasCopied, copyBackVar);
}
// address of the descriptor holding the temp if a temp was created.
mlir::Value tempBox;
// Boolean indicating if a copy was made or not.
mlir::Value wasCopied;
// copyBackVar may be null if copy back is not needed.
mlir::Value copyBackVar;
};
struct ExprAssociate {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::EndAssociateOp>(loc, tempVar, mustFree);
}
mlir::Value tempVar;
mlir::Value mustFree;
};
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
Fortran::common::visit([&](auto &c) { c.genCleanUp(loc, builder); },
cleanUp);
}
std::variant<CopyIn, ExprAssociate> cleanUp;
};
/// Structure representing a prepared dummy argument.
/// It holds the value to be passed in the call and any related
/// clean-ups to be done after the call.
struct PreparedDummyArgument {
void pushCopyInCleanUp(mlir::Value tempBox, mlir::Value wasCopied,
mlir::Value copyBackVar) {
cleanups.emplace_back(
CallCleanUp{CallCleanUp::CopyIn{tempBox, wasCopied, copyBackVar}});
}
void pushExprAssociateCleanUp(mlir::Value tempVar, mlir::Value wasCopied) {
cleanups.emplace_back(
CallCleanUp{CallCleanUp::ExprAssociate{tempVar, wasCopied}});
}
void pushExprAssociateCleanUp(hlfir::AssociateOp associate) {
mlir::Value hlfirBase = associate.getBase();
mlir::Value firBase = associate.getFirBase();
cleanups.emplace_back(CallCleanUp{CallCleanUp::ExprAssociate{
hlfir::mayHaveAllocatableComponent(hlfirBase.getType()) ? hlfirBase
: firBase,
associate.getMustFreeStrorageFlag()}});
}
mlir::Value dummy;
// NOTE: the clean-ups are executed in reverse order.
llvm::SmallVector<CallCleanUp, 2> cleanups;
};
/// Structure to help conditionally preparing a dummy argument based
/// on the actual argument presence.
/// It helps "wrapping" the dummy and the clean-up information in
/// an if (present) {...}:
///
/// %conditionallyPrepared = fir.if (%present) {
/// fir.result %preparedDummy
/// } else {
/// fir.result %absent
/// }
///
struct ConditionallyPreparedDummy {
/// Create ConditionallyPreparedDummy from a preparedDummy that must
/// be wrapped in a fir.if.
ConditionallyPreparedDummy(PreparedDummyArgument &preparedDummy) {
thenResultValues.push_back(preparedDummy.dummy);
for (const CallCleanUp &c : preparedDummy.cleanups) {
if (const auto *copyInCleanUp =
std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
thenResultValues.push_back(copyInCleanUp->wasCopied);
if (copyInCleanUp->copyBackVar)
thenResultValues.push_back(copyInCleanUp->copyBackVar);
} else {
const auto &exprAssociate =
std::get<CallCleanUp::ExprAssociate>(c.cleanUp);
thenResultValues.push_back(exprAssociate.tempVar);
thenResultValues.push_back(exprAssociate.mustFree);
}
}
}
/// Get the result types of the wrapping fir.if that must be created.
llvm::SmallVector<mlir::Type> getIfResulTypes() const {
llvm::SmallVector<mlir::Type> types;
for (mlir::Value res : thenResultValues)
types.push_back(res.getType());
return types;
}
/// Generate the "fir.result %preparedDummy" in the then branch of the
/// wrapping fir.if.
void genThenResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
builder.create<fir::ResultOp>(loc, thenResultValues);
}
/// Generate the "fir.result %absent" in the else branch of the
/// wrapping fir.if.
void genElseResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
llvm::SmallVector<mlir::Value> elseResultValues;
mlir::Type i1Type = builder.getI1Type();
for (mlir::Value res : thenResultValues) {
mlir::Type type = res.getType();
if (type == i1Type)
elseResultValues.push_back(builder.createBool(loc, false));
else
elseResultValues.push_back(builder.genAbsentOp(loc, type));
}
builder.create<fir::ResultOp>(loc, elseResultValues);
}
/// Once the fir.if has been created, get the resulting %conditionallyPrepared
/// dummy argument.
PreparedDummyArgument
getPreparedDummy(fir::IfOp ifOp,
const PreparedDummyArgument &unconditionalDummy) {
PreparedDummyArgument preparedDummy;
preparedDummy.dummy = ifOp.getResults()[0];
for (const CallCleanUp &c : unconditionalDummy.cleanups) {
if (const auto *copyInCleanUp =
std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
mlir::Value copyBackVar;
if (copyInCleanUp->copyBackVar)
copyBackVar = ifOp.getResults().back();
// tempBox is an hlfir.copy_in argument created outside of the
// fir.if region. It needs not to be threaded as a fir.if result.
preparedDummy.pushCopyInCleanUp(copyInCleanUp->tempBox,
ifOp.getResults()[1], copyBackVar);
} else {
preparedDummy.pushExprAssociateCleanUp(ifOp.getResults()[1],
ifOp.getResults()[2]);
}
}
return preparedDummy;
}
llvm::SmallVector<mlir::Value> thenResultValues;
};
} // namespace
/// Fix-up the fact that it is supported to pass a character procedure
/// designator to a non character procedure dummy procedure and vice-versa, even
/// in case of explicit interface. Uglier cases where an object is passed as
/// procedure designator or vice versa are handled only for implicit interfaces
/// (refused by semantics with explicit interface), and handled with a funcOp
/// cast like other implicit interface mismatches.
static hlfir::Entity fixProcedureDummyMismatch(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity actual,
mlir::Type dummyType) {
if (mlir::isa<fir::BoxProcType>(actual.getType()) &&
fir::isCharacterProcedureTuple(dummyType)) {
mlir::Value length =
builder.create<fir::UndefOp>(loc, builder.getCharacterLengthType());
mlir::Value tuple = fir::factory::createCharacterProcedureTuple(
builder, loc, dummyType, actual, length);
return hlfir::Entity{tuple};
}
assert(fir::isCharacterProcedureTuple(actual.getType()) &&
mlir::isa<fir::BoxProcType>(dummyType) &&
"unsupported dummy procedure mismatch with the actual argument");
mlir::Value boxProc = fir::factory::extractCharacterProcedureTuple(
builder, loc, actual, /*openBoxProc=*/false)
.first;
return hlfir::Entity{boxProc};
}
mlir::Value static getZeroLowerBounds(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity entity) {
assert(!entity.isAssumedRank() &&
"assumed-rank must use fir.rebox_assumed_rank");
if (entity.getRank() < 1)
return {};
mlir::Value zero =
builder.createIntegerConstant(loc, builder.getIndexType(), 0);
llvm::SmallVector<mlir::Value> lowerBounds(entity.getRank(), zero);
return builder.genShift(loc, lowerBounds);
}
static bool
isSimplyContiguous(const Fortran::evaluate::ActualArgument &arg,
Fortran::evaluate::FoldingContext &foldingContext) {
if (const auto *expr = arg.UnwrapExpr())
return Fortran::evaluate::IsSimplyContiguous(*expr, foldingContext);
const Fortran::semantics::Symbol *sym = arg.GetAssumedTypeDummy();
assert(sym &&
"expect ActualArguments to be expression or assumed-type symbols");
return sym->Rank() == 0 ||
Fortran::evaluate::IsSimplyContiguous(*sym, foldingContext);
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface. Do as needed:
/// - address element if this is an array argument in an elemental call.
/// - set dynamic type to the dummy type if the dummy is not polymorphic.
/// - copy-in into contiguous variable if the dummy must be contiguous
/// - copy into a temporary if the dummy has the VALUE attribute.
/// - package the prepared dummy as required (fir.box, fir.class,
/// fir.box_char...).
/// This function should only be called with an actual that is present.
/// The optional aspects must be handled by this function user.
static PreparedDummyArgument preparePresentUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
Fortran::evaluate::FoldingContext &foldingContext =
callContext.converter.getFoldingContext();
// Step 1: get the actual argument, which includes addressing the
// element if this is an array in an elemental call.
hlfir::Entity actual = preparedActual.getActual(loc, builder);
// Handle procedure arguments (procedure pointers should go through
// prepareProcedurePointerActualArgument).
if (hlfir::isFortranProcedureValue(dummyType)) {
// Procedure pointer or function returns procedure pointer actual to
// procedure dummy.
if (actual.isProcedurePointer()) {
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
return PreparedDummyArgument{actual, /*cleanups=*/{}};
}
// Procedure actual to procedure dummy.
assert(actual.isProcedure());
// Do nothing if this is a procedure argument. It is already a
// fir.boxproc/fir.tuple<fir.boxproc, len> as it should.
if (!mlir::isa<fir::BoxProcType>(actual.getType()) &&
actual.getType() != dummyType)
// The actual argument may be a procedure that returns character (a
// fir.tuple<fir.boxproc, len>) while the dummy is not. Extract the tuple
// in that case.
actual = fixProcedureDummyMismatch(loc, builder, actual, dummyType);
return PreparedDummyArgument{actual, /*cleanups=*/{}};
}
const bool ignoreTKRtype = arg.testTKR(Fortran::common::IgnoreTKR::Type);
const bool passingPolymorphicToNonPolymorphic =
actual.isPolymorphic() && !fir::isPolymorphicType(dummyType) &&
!ignoreTKRtype;
// When passing a CLASS(T) to TYPE(T), only the "T" part must be
// passed. Unless the entity is a scalar passed by raw address, a
// new descriptor must be made using the dummy argument type as
// dynamic type. This must be done before any copy/copy-in because the
// dynamic type matters to determine the contiguity.
const bool mustSetDynamicTypeToDummyType =
passingPolymorphicToNonPolymorphic &&
(actual.isArray() || mlir::isa<fir::BaseBoxType>(dummyType));
// The simple contiguity of the actual is "lost" when passing a polymorphic
// to a non polymorphic entity because the dummy dynamic type matters for
// the contiguity.
const bool mustDoCopyInOut =
actual.isArray() && arg.mustBeMadeContiguous() &&
(passingPolymorphicToNonPolymorphic ||
!isSimplyContiguous(*arg.entity, foldingContext));
const bool actualIsAssumedRank = actual.isAssumedRank();
// Create dummy type with actual argument rank when the dummy is an assumed
// rank. That way, all the operation to create dummy descriptors are ranked if
// the actual argument is ranked, which allows simple code generation.
// Also do the same when the dummy is a sequence associated descriptor
// because the actual shape/rank may mismatch with the dummy, and the dummy
// may be an assumed-size array, so any descriptor manipulation should use the
// actual argument shape information. A descriptor with the dummy shape
// information will be created later when all actual arguments are ready.
mlir::Type dummyTypeWithActualRank = dummyType;
if (auto baseBoxDummy = mlir::dyn_cast<fir::BaseBoxType>(dummyType)) {
if (baseBoxDummy.isAssumedRank() ||
arg.testTKR(Fortran::common::IgnoreTKR::Rank) ||
arg.isSequenceAssociatedDescriptor()) {
mlir::Type actualTy =
hlfir::getFortranElementOrSequenceType(actual.getType());
dummyTypeWithActualRank = baseBoxDummy.getBoxTypeWithNewShape(actualTy);
}
}
// Preserve the actual type in the argument preparation in case IgnoreTKR(t)
// is set (descriptors must be created with the actual type in this case, and
// copy-in/copy-out should be driven by the contiguity with regard to the
// actual type).
if (ignoreTKRtype)
dummyTypeWithActualRank = fir::changeElementType(
dummyTypeWithActualRank, actual.getFortranElementType(),
actual.isPolymorphic());
PreparedDummyArgument preparedDummy;
// Helpers to generate hlfir.copy_in operation and register the related
// hlfir.copy_out creation.
auto genCopyIn = [&](hlfir::Entity var, bool doCopyOut) -> hlfir::Entity {
auto baseBoxTy = mlir::dyn_cast<fir::BaseBoxType>(var.getType());
assert(baseBoxTy && "expect non simply contiguous variables to be boxes");
// Create allocatable descriptor for the potential temporary.
mlir::Type tempBoxType = baseBoxTy.getBoxTypeWithNewAttr(
fir::BaseBoxType::Attribute::Allocatable);
mlir::Value tempBox = builder.createTemporary(loc, tempBoxType);
auto copyIn = builder.create<hlfir::CopyInOp>(
loc, var, tempBox, /*var_is_present=*/mlir::Value{});
// Register the copy-out after the call.
preparedDummy.pushCopyInCleanUp(copyIn.getTempBox(), copyIn.getWasCopied(),
doCopyOut ? copyIn.getVar()
: mlir::Value{});
return hlfir::Entity{copyIn.getCopiedIn()};
};
auto genSetDynamicTypeToDummyType = [&](hlfir::Entity var) -> hlfir::Entity {
fir::BaseBoxType boxType = fir::BoxType::get(
hlfir::getFortranElementOrSequenceType(dummyTypeWithActualRank));
if (actualIsAssumedRank)
return hlfir::Entity{builder.create<fir::ReboxAssumedRankOp>(
loc, boxType, var, fir::LowerBoundModifierAttribute::SetToOnes)};
// Use actual shape when creating descriptor with dummy type, the dummy
// shape may be unknown in case of sequence association.
mlir::Type actualTy =
hlfir::getFortranElementOrSequenceType(actual.getType());
boxType = boxType.getBoxTypeWithNewShape(actualTy);
return hlfir::Entity{builder.create<fir::ReboxOp>(loc, boxType, var,
/*shape=*/mlir::Value{},
/*slice=*/mlir::Value{})};
};
// Step 2: prepare the storage for the dummy arguments, ensuring that it
// matches the dummy requirements (e.g., must be contiguous or must be
// a temporary).
hlfir::Entity entity =
hlfir::derefPointersAndAllocatables(loc, builder, actual);
if (entity.isVariable()) {
// Set dynamic type if needed before any copy-in or copy so that the dummy
// is contiguous according to the dummy type.
if (mustSetDynamicTypeToDummyType)
entity = genSetDynamicTypeToDummyType(entity);
if (arg.hasValueAttribute() ||
// Constant expressions might be lowered as variables with
// 'parameter' attribute. Even though the constant expressions
// are not definable and explicit assignments to them are not
// possible, we have to create a temporary copies when we pass
// them down the call stack.
entity.isParameter()) {
// Make a copy in a temporary.
auto copy = builder.create<hlfir::AsExprOp>(loc, entity);
mlir::Type storageType = entity.getType();
mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, hlfir::Entity{copy}, storageType, "", byRefAttr);
entity = hlfir::Entity{associate.getBase()};
// Register the temporary destruction after the call.
preparedDummy.pushExprAssociateCleanUp(associate);
} else if (mustDoCopyInOut) {
// Copy-in non contiguous variables.
// TODO: for non-finalizable monomorphic derived type actual
// arguments associated with INTENT(OUT) dummy arguments
// we may avoid doing the copy and only allocate the temporary.
// The codegen would do a "mold" allocation instead of "sourced"
// allocation for the temp in this case. We can communicate
// this to the codegen via some CopyInOp flag.
// This is a performance concern.
entity = genCopyIn(entity, arg.mayBeModifiedByCall());
}
} else {
const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
assert(expr && "expression actual argument cannot be an assumed type");
// The actual is an expression value, place it into a temporary
// and register the temporary destruction after the call.
mlir::Type storageType = callContext.converter.genType(*expr);
mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, entity, storageType, "", byRefAttr);
entity = hlfir::Entity{associate.getBase()};
preparedDummy.pushExprAssociateCleanUp(associate);
// Rebox the actual argument to the dummy argument's type, and make sure
// that we pass a contiguous entity (i.e. make copy-in, if needed).
//
// TODO: this can probably be optimized by associating the expression with
// properly typed temporary, but this needs either a new operation or
// making the hlfir.associate more complex.
if (mustSetDynamicTypeToDummyType) {
entity = genSetDynamicTypeToDummyType(entity);
entity = genCopyIn(entity, /*doCopyOut=*/false);
}
}
// Step 3: now that the dummy argument storage has been prepared, package
// it according to the interface.
mlir::Value addr;
if (mlir::isa<fir::BoxCharType>(dummyTypeWithActualRank)) {
addr = hlfir::genVariableBoxChar(loc, builder, entity);
} else if (mlir::isa<fir::BaseBoxType>(dummyTypeWithActualRank)) {
entity = hlfir::genVariableBox(loc, builder, entity);
// Ensures the box has the right attributes and that it holds an
// addendum if needed.
fir::BaseBoxType actualBoxType =
mlir::cast<fir::BaseBoxType>(entity.getType());
mlir::Type boxEleType = actualBoxType.getEleTy();
// For now, assume it is not OK to pass the allocatable/pointer
// descriptor to a non pointer/allocatable dummy. That is a strict
// interpretation of 18.3.6 point 4 that stipulates the descriptor
// has the dummy attributes in BIND(C) contexts.
const bool actualBoxHasAllocatableOrPointerFlag =
fir::isa_ref_type(boxEleType);
// Fortran 2018 18.5.3, pp3: BIND(C) non pointer allocatable descriptors
// must have zero lower bounds.
bool needsZeroLowerBounds = callContext.isBindcCall() && entity.isArray();
// On the callee side, the current code generated for unlimited
// polymorphic might unconditionally read the addendum. Intrinsic type
// descriptors may not have an addendum, the rebox below will create a
// descriptor with an addendum in such case.
const bool actualBoxHasAddendum = fir::boxHasAddendum(actualBoxType);
const bool needToAddAddendum =
fir::isUnlimitedPolymorphicType(dummyTypeWithActualRank) &&
!actualBoxHasAddendum;
if (needToAddAddendum || actualBoxHasAllocatableOrPointerFlag ||
needsZeroLowerBounds) {
if (actualIsAssumedRank) {
auto lbModifier = needsZeroLowerBounds
? fir::LowerBoundModifierAttribute::SetToZeroes
: fir::LowerBoundModifierAttribute::SetToOnes;
entity = hlfir::Entity{builder.create<fir::ReboxAssumedRankOp>(
loc, dummyTypeWithActualRank, entity, lbModifier)};
} else {
mlir::Value shift{};
if (needsZeroLowerBounds)
shift = getZeroLowerBounds(loc, builder, entity);
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
loc, dummyTypeWithActualRank, entity, /*shape=*/shift,
/*slice=*/mlir::Value{})};
}
}
addr = entity;
} else {
addr = hlfir::genVariableRawAddress(loc, builder, entity);
}
// For ranked actual passed to assumed-rank dummy, the cast to assumed-rank
// box is inserted when building the fir.call op. Inserting it here would
// cause the fir.if results to be assumed-rank in case of OPTIONAL dummy,
// causing extra runtime costs due to the unknown runtime size of assumed-rank
// descriptors.
preparedDummy.dummy =
builder.createConvert(loc, dummyTypeWithActualRank, addr);
return preparedDummy;
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface, taking care
/// of any optional aspect.
static PreparedDummyArgument prepareUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
if (!preparedActual.handleDynamicOptional())
return preparePresentUserCallActualArgument(loc, builder, preparedActual,
dummyType, arg, callContext);
// Conditional dummy argument preparation. The actual may be absent
// at runtime, causing any addressing, copy, and packaging to have
// undefined behavior.
// To simplify the handling of this case, the "normal" dummy preparation
// helper is used, except its generated code is wrapped inside a
// fir.if(present).
mlir::Value isPresent = preparedActual.getIsPresent();
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
// Code generated in a preparation block that will become the
// "then" block in "if (present) then {} else {}". The reason
// for this unusual if/then/else generation is that the number
// and types of the if results will depend on how the argument
// is prepared, and forecasting that here would be brittle.
auto badIfOp = builder.create<fir::IfOp>(loc, dummyType, isPresent,
/*withElseRegion=*/false);
mlir::Block *preparationBlock = &badIfOp.getThenRegion().front();
builder.setInsertionPointToStart(preparationBlock);
PreparedDummyArgument unconditionalDummy =
preparePresentUserCallActualArgument(loc, builder, preparedActual,
dummyType, arg, callContext);
builder.restoreInsertionPoint(insertPt);
// TODO: when forwarding an optional to an optional of the same kind
// (i.e, unconditionalDummy.dummy was not created in preparationBlock),
// the if/then/else generation could be skipped to improve the generated
// code.
// Now that the result types of the ifOp can be deduced, generate
// the "real" ifOp (operation result types cannot be changed, so
// badIfOp cannot be modified and used here).
llvm::SmallVector<mlir::Type> ifOpResultTypes;
ConditionallyPreparedDummy conditionalDummy(unconditionalDummy);
auto ifOp = builder.create<fir::IfOp>(loc, conditionalDummy.getIfResulTypes(),
isPresent,
/*withElseRegion=*/true);
// Move "preparationBlock" into the "then" of the new
// fir.if operation and create fir.result propagating
// unconditionalDummy.
preparationBlock->moveBefore(&ifOp.getThenRegion().back());
ifOp.getThenRegion().back().erase();
builder.setInsertionPointToEnd(&ifOp.getThenRegion().front());
conditionalDummy.genThenResult(loc, builder);
// Generate "else" branch with returning absent values.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
conditionalDummy.genElseResult(loc, builder);
// Build dummy from IfOpResults.
builder.setInsertionPointAfter(ifOp);
PreparedDummyArgument result =
conditionalDummy.getPreparedDummy(ifOp, unconditionalDummy);
badIfOp->erase();
return result;
}
/// Prepare actual argument for a procedure pointer dummy.
static PreparedDummyArgument prepareProcedurePointerActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
// NULL() actual to procedure pointer dummy
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*arg.entity) &&
fir::isBoxProcAddressType(dummyType)) {
auto boxTy{Fortran::lower::getUntypedBoxProcType(builder.getContext())};
auto tempBoxProc{builder.createTemporary(loc, boxTy)};
hlfir::Entity nullBoxProc(
fir::factory::createNullBoxProc(builder, loc, boxTy));
builder.create<fir::StoreOp>(loc, nullBoxProc, tempBoxProc);
return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
}
hlfir::Entity actual = preparedActual.getActual(loc, builder);
if (actual.isProcedurePointer())
return PreparedDummyArgument{actual, /*cleanups=*/{}};
assert(actual.isProcedure());
// Procedure actual to procedure pointer dummy.
auto tempBoxProc{builder.createTemporary(loc, actual.getType())};
builder.create<fir::StoreOp>(loc, actual, tempBoxProc);
return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
}
/// Prepare arguments of calls to user procedures with actual arguments that
/// have been pre-lowered but not yet prepared according to the interface.
void prepareUserCallArguments(
Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
CallContext &callContext, llvm::SmallVector<CallCleanUp> &callCleanUps) {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
mlir::Location loc = callContext.loc;
bool mustRemapActualToDummyDescriptors = false;
fir::FirOpBuilder &builder = callContext.getBuilder();
for (auto [preparedActual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
if (!preparedActual) {
// Optional dummy argument for which there is no actual argument.
caller.placeInput(arg, builder.genAbsentOp(loc, argTy));
continue;
}
switch (arg.passBy) {
case PassBy::Value: {
// True pass-by-value semantics.
assert(!preparedActual->handleDynamicOptional() && "cannot be optional");
hlfir::Entity actual = preparedActual->getActual(loc, builder);
hlfir::Entity value = hlfir::loadTrivialScalar(loc, builder, actual);
mlir::Type eleTy = value.getFortranElementType();
if (fir::isa_builtin_cptr_type(eleTy)) {
// Pass-by-value argument of type(C_PTR/C_FUNPTR).
// Load the __address component and pass it by value.
if (value.isValue()) {
auto associate = hlfir::genAssociateExpr(loc, builder, value, eleTy,
"adapt.cptrbyval");
value = hlfir::Entity{genRecordCPtrValueArg(
builder, loc, associate.getFirBase(), eleTy)};
builder.create<hlfir::EndAssociateOp>(loc, associate);
} else {
value =
hlfir::Entity{genRecordCPtrValueArg(builder, loc, value, eleTy)};
}
} else if (fir::isa_derived(value.getFortranElementType()) ||
value.isCharacter()) {
// BIND(C), VALUE derived type or character. The value must really
// be loaded here.
auto [exv, cleanup] = hlfir::convertToValue(loc, builder, value);
mlir::Value loadedValue = fir::getBase(exv);
// Character actual arguments may have unknown length or a length longer
// than one. Cast the memory ref to the dummy type so that the load is
// valid and only loads what is needed.
if (mlir::Type baseTy = fir::dyn_cast_ptrEleTy(loadedValue.getType()))
if (fir::isa_char(baseTy))
loadedValue = builder.createConvert(
loc, fir::ReferenceType::get(argTy), loadedValue);
if (fir::isa_ref_type(loadedValue.getType()))
loadedValue = builder.create<fir::LoadOp>(loc, loadedValue);
caller.placeInput(arg, loadedValue);
if (cleanup)
(*cleanup)();
break;
}
caller.placeInput(arg, builder.createConvert(loc, argTy, value));
} break;
case PassBy::BaseAddressValueAttribute:
case PassBy::CharBoxValueAttribute:
case PassBy::Box:
case PassBy::BaseAddress:
case PassBy::BoxChar: {
PreparedDummyArgument preparedDummy = prepareUserCallActualArgument(
loc, builder, *preparedActual, argTy, arg, callContext);
callCleanUps.append(preparedDummy.cleanups.rbegin(),
preparedDummy.cleanups.rend());
caller.placeInput(arg, preparedDummy.dummy);
if (arg.passBy == PassBy::Box)
mustRemapActualToDummyDescriptors |=
arg.isSequenceAssociatedDescriptor();
} break;
case PassBy::BoxProcRef: {
PreparedDummyArgument preparedDummy =
prepareProcedurePointerActualArgument(loc, builder, *preparedActual,
argTy, arg, callContext);
callCleanUps.append(preparedDummy.cleanups.rbegin(),
preparedDummy.cleanups.rend());
caller.placeInput(arg, preparedDummy.dummy);
} break;
case PassBy::AddressAndLength:
// PassBy::AddressAndLength is only used for character results. Results
// are not handled here.
fir::emitFatalError(
loc, "unexpected PassBy::AddressAndLength for actual arguments");
break;
case PassBy::CharProcTuple: {
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (actual.isProcedurePointer())
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
if (!fir::isCharacterProcedureTuple(actual.getType()))
actual = fixProcedureDummyMismatch(loc, builder, actual, argTy);
caller.placeInput(arg, actual);
} break;
case PassBy::MutableBox: {
const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
// C709 and C710.
assert(expr && "cannot pass TYPE(*) to POINTER or ALLOCATABLE");
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// If expr is NULL(), the mutableBox created must be a deallocated
// pointer with the dummy argument characteristics (see table 16.5
// in Fortran 2018 standard).
// No length parameters are set for the created box because any non
// deferred type parameters of the dummy will be evaluated on the
// callee side, and it is illegal to use NULL without a MOLD if any
// dummy length parameters are assumed.
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
assert(boxTy && mlir::isa<fir::BaseBoxType>(boxTy) &&
"must be a fir.box type");
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
caller.placeInput(arg, boxStorage);
continue;
}
if (fir::isPointerType(argTy) &&
!Fortran::evaluate::IsObjectPointer(*expr)) {
// Passing a non POINTER actual argument to a POINTER dummy argument.
// Create a pointer of the dummy argument type and assign the actual
// argument to it.
auto dataTy = llvm::cast<fir::BaseBoxType>(fir::unwrapRefType(argTy));
fir::ExtendedValue actualExv = Fortran::lower::convertToAddress(
loc, callContext.converter, actual, callContext.stmtCtx,
hlfir::getFortranElementType(dataTy));
// If the dummy is an assumed-rank pointer, allocate a pointer
// descriptor with the actual argument rank (if it is not assumed-rank
// itself).
if (dataTy.isAssumedRank()) {
dataTy =
dataTy.getBoxTypeWithNewShape(fir::getBase(actualExv).getType());
}
mlir::Value irBox = builder.createTemporary(loc, dataTy);
fir::MutableBoxValue ptrBox(irBox,
/*nonDeferredParams=*/mlir::ValueRange{},
/*mutableProperties=*/{});
fir::factory::associateMutableBox(builder, loc, ptrBox, actualExv,
/*lbounds=*/std::nullopt);
caller.placeInput(arg, irBox);
continue;
}
// Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
assert(actual.isMutableBox() && "actual must be a mutable box");
if (fir::isAllocatableType(argTy) && arg.isIntentOut() &&
callContext.isBindcCall()) {
// INTENT(OUT) allocatables are deallocated on the callee side,
// but BIND(C) procedures may be implemented in C, so deallocation is
// also done on the caller side (if the procedure is implemented in
// Fortran, the deallocation attempt in the callee will be a no-op).
auto [exv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, actual);
const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>();
assert(mutableBox && !cleanup && "expect allocatable");
Fortran::lower::genDeallocateIfAllocated(callContext.converter,
*mutableBox, loc);
}
caller.placeInput(arg, actual);
} break;
}
}
// Handle cases where caller must allocate the result or a fir.box for it.
if (mustRemapActualToDummyDescriptors)
remapActualToDummyDescriptors(loc, callContext.converter,
callContext.symMap, loweredActuals, caller,
callContext.isBindcCall());
}
/// Lower calls to user procedures with actual arguments that have been
/// pre-lowered but not yet prepared according to the interface.
/// This can be called for elemental procedures, but only with scalar
/// arguments: if there are array arguments, it must be provided with
/// the array argument elements value and will return the corresponding
/// scalar result value.
static std::optional<hlfir::EntityWithAttributes>
genUserCall(Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType, CallContext &callContext) {
mlir::Location loc = callContext.loc;
llvm::SmallVector<CallCleanUp> callCleanUps;
fir::FirOpBuilder &builder = callContext.getBuilder();
prepareUserCallArguments(loweredActuals, caller, callSiteType, callContext,
callCleanUps);
// Prepare lowered arguments according to the interface
// and map the lowered values to the dummy
// arguments.
auto [result, resultIsFinalized] = Fortran::lower::genCallOpAndResult(
loc, callContext.converter, callContext.symMap, callContext.stmtCtx,
caller, callSiteType, callContext.resultType,
callContext.isElementalProcWithArrayArgs());
// For procedure pointer function result, just return the call.
if (callContext.resultType &&
mlir::isa<fir::BoxProcType>(*callContext.resultType))
return hlfir::EntityWithAttributes(fir::getBase(result));
/// Clean-up associations and copy-in.
for (auto cleanUp : callCleanUps)
cleanUp.genCleanUp(loc, builder);
if (!fir::getBase(result))
return std::nullopt; // subroutine call.
if (fir::isPointerType(fir::getBase(result).getType()))
return extendedValueToHlfirEntity(loc, builder, result, tempResultName);
if (!resultIsFinalized) {
hlfir::Entity resultEntity =
extendedValueToHlfirEntity(loc, builder, result, tempResultName);
resultEntity = loadTrivialScalar(loc, builder, resultEntity);
if (resultEntity.isVariable()) {
// If the result has no finalization, it can be moved into an expression.
// In such case, the expression should not be freed after its use since
// the result is stack allocated or deallocation (for allocatable results)
// was already inserted in genCallOpAndResult.
auto asExpr = builder.create<hlfir::AsExprOp>(
loc, resultEntity, /*mustFree=*/builder.createBool(loc, false));
return hlfir::EntityWithAttributes{asExpr.getResult()};
}
return hlfir::EntityWithAttributes{resultEntity};
}
// If the result has finalization, it cannot be moved because use of its
// value have been created in the statement context and may be emitted
// after the hlfir.expr destroy, so the result is kept as a variable in
// HLFIR. This may lead to copies when passing the result to an argument
// with VALUE, and this do not convey the fact that the result will not
// change, but is correct, and using hlfir.expr without the move would
// trigger a copy that may be avoided.
// Load allocatable results before emitting the hlfir.declare and drop its
// lower bounds: this is not a variable From the Fortran point of view, so
// the lower bounds are ones when inquired on the caller side.
const auto *allocatable = result.getBoxOf<fir::MutableBoxValue>();
fir::ExtendedValue loadedResult =
allocatable
? fir::factory::genMutableBoxRead(builder, loc, *allocatable,
/*mayBePolymorphic=*/true,
/*preserveLowerBounds=*/false)
: result;
return extendedValueToHlfirEntity(loc, builder, loadedResult, tempResultName);
}
/// Create an optional dummy argument value from an entity that may be
/// absent. \p actualGetter callback returns hlfir::Entity denoting
/// the lowered actual argument. \p actualGetter can only return numerical
/// or logical scalar entity.
/// If the entity is considered absent according to 15.5.2.12 point 1., the
/// returned value is zero (or false), otherwise it is the value of the entity.
/// \p eleType specifies the entity's Fortran element type.
template <typename T>
static ExvAndCleanup genOptionalValue(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type eleType,
T actualGetter, mlir::Value isPresent) {
return {builder
.genIfOp(loc, {eleType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
hlfir::Entity entity = actualGetter(loc, builder);
assert(eleType == entity.getFortranElementType() &&
"result type mismatch in genOptionalValue");
assert(entity.isScalar() && fir::isa_trivial(eleType) &&
"must be a numerical or logical scalar");
mlir::Value val =
hlfir::loadTrivialScalar(loc, builder, entity);
builder.create<fir::ResultOp>(loc, val);
})
.genElse([&]() {
mlir::Value zero =
fir::factory::createZeroValue(builder, loc, eleType);
builder.create<fir::ResultOp>(loc, zero);
})
.getResults()[0],
std::nullopt};
}
/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is a null pointer, otherwise it is the address of \p
/// entity.
static ExvAndCleanup genOptionalAddr(fir::FirOpBuilder &builder,
mlir::Location loc, hlfir::Entity entity,
mlir::Value isPresent) {
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);
// If it is an exv pointer/allocatable, then it cannot be absent
// because it is passed to a non-pointer/non-allocatable.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
return {fir::factory::genMutableBoxRead(builder, loc, *box), cleanup};
// If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
// address and can be passed directly.
return {exv, cleanup};
}
/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is an absent fir.box, otherwise it is a fir.box
/// describing \p entity.
static ExvAndCleanup genOptionalBox(fir::FirOpBuilder &builder,
mlir::Location loc, hlfir::Entity entity,
mlir::Value isPresent) {
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);
// Non allocatable/pointer optional box -> simply forward
if (exv.getBoxOf<fir::BoxValue>())
return {exv, cleanup};
fir::ExtendedValue newExv = exv;
// Optional allocatable/pointer -> Cannot be absent, but need to translate
// unallocated/diassociated into absent fir.box.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
// createBox will not do create any invalid memory dereferences if exv is
// absent. The created fir.box will not be usable, but the SelectOp below
// ensures it won't be.
mlir::Value box = builder.createBox(loc, newExv);
mlir::Type boxType = box.getType();
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
loc, boxType, isPresent, box, absent);
return {fir::BoxValue(boxOrAbsent), cleanup};
}
/// Lower calls to intrinsic procedures with custom optional handling where the
/// actual arguments have been pre-lowered
static std::optional<hlfir::EntityWithAttributes> genCustomIntrinsicRefCore(
Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
auto &builder = callContext.getBuilder();
const auto &loc = callContext.loc;
assert(intrinsic &&
Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, callContext.converter));
// helper to get a particular prepared argument
auto getArgument = [&](std::size_t i, bool loadArg) -> fir::ExtendedValue {
if (!loweredActuals[i])
return fir::getAbsentIntrinsicArgument();
hlfir::Entity actual = loweredActuals[i]->getActual(loc, builder);
if (loadArg && fir::conformsWithPassByRef(actual.getType())) {
return hlfir::loadTrivialScalar(loc, builder, actual);
}
return Fortran::lower::translateToExtendedValue(loc, builder, actual,
callContext.stmtCtx);
};
// helper to get the isPresent flag for a particular prepared argument
auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> {
if (!loweredActuals[i])
return {builder.createBool(loc, false)};
if (loweredActuals[i]->handleDynamicOptional())
return {loweredActuals[i]->getIsPresent()};
return std::nullopt;
};
assert(callContext.resultType &&
"the elemental intrinsics with custom handling are all functions");
// if callContext.resultType is an array then this was originally an elemental
// call. What we are lowering here is inside the kernel of the hlfir.elemental
// so we should return the scalar type. If the return type is already a scalar
// then it should be unchanged here.
mlir::Type resTy = hlfir::getFortranElementType(*callContext.resultType);
fir::ExtendedValue result = Fortran::lower::lowerCustomIntrinsic(
builder, loc, callContext.getProcedureName(), resTy, isPresent,
getArgument, loweredActuals.size(), callContext.stmtCtx);
return {hlfir::EntityWithAttributes{extendedValueToHlfirEntity(
loc, builder, result, ".tmp.custom_intrinsic_result")}};
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRefCore(Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry,
CallContext &callContext) {
auto &converter = callContext.converter;
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter))
return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
llvm::SmallVector<fir::ExtendedValue> operands;
llvm::SmallVector<hlfir::CleanupFunction> cleanupFns;
auto addToCleanups = [&cleanupFns](std::optional<hlfir::CleanupFunction> fn) {
if (fn)
cleanupFns.emplace_back(std::move(*fn));
};
auto &stmtCtx = callContext.stmtCtx;
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
const fir::IntrinsicArgumentLoweringRules *argLowering =
intrinsicEntry.getArgumentLoweringRules();
for (auto arg : llvm::enumerate(loweredActuals)) {
if (!arg.value()) {
operands.emplace_back(fir::getAbsentIntrinsicArgument());
continue;
}
if (!argLowering) {
// No argument lowering instruction, lower by value.
assert(!arg.value()->handleDynamicOptional() &&
"should use genOptionalValue");
hlfir::Entity actual = arg.value()->getActual(loc, builder);
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
}
// Helper to get the type of the Fortran expression in case it is a
// computed value that must be placed in memory (logicals are computed as
// i1, but must be placed in memory as fir.logical).
auto getActualFortranElementType = [&]() -> mlir::Type {
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
mlir::Type type = converter.genType(*expr);
return hlfir::getFortranElementType(type);
}
// TYPE(*): is already in memory anyway. Can return none
// here.
return builder.getNoneType();
};
// Ad-hoc argument lowering handling.
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
if (arg.value()->handleDynamicOptional()) {
mlir::Value isPresent = arg.value()->getIsPresent();
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value: {
// In case of elemental call, getActual() may produce
// a designator denoting the array element to be passed
// to the subprogram. If the actual array is dynamically
// optional the designator must be generated under
// isPresent check, because the box bounds reads will be
// generated in the codegen. These reads are illegal,
// if the dynamically optional argument is absent.
auto getActualCb = [&](mlir::Location loc,
fir::FirOpBuilder &builder) -> hlfir::Entity {
return arg.value()->getActual(loc, builder);
};
auto [exv, cleanup] =
genOptionalValue(builder, loc, getActualFortranElementType(),
getActualCb, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Addr: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] = genOptionalAddr(builder, loc, actual, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Box: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] = genOptionalBox(builder, loc, actual, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Inquired: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, actual);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
}
llvm_unreachable("bad switch");
}
hlfir::Entity actual = arg.value()->getActual(loc, builder);
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value:
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
case fir::LowerIntrinsicArgAs::Addr:
operands.emplace_back(Fortran::lower::convertToAddress(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Box:
operands.emplace_back(Fortran::lower::convertToBox(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Inquired:
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// NULL() pointer without a MOLD must be passed as a deallocated
// pointer (see table 16.5 in Fortran 2018 standard).
// !fir.box<!fir.ptr<none>> should always be valid in this context.
mlir::Type noneTy = mlir::NoneType::get(builder.getContext());
mlir::Type nullPtrTy = fir::PointerType::get(noneTy);
mlir::Type boxTy = fir::BoxType::get(nullPtrTy);
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
hlfir::EntityWithAttributes nullBoxEntity =
extendedValueToHlfirEntity(loc, builder, boxStorage,
".tmp.null_box");
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, nullBoxEntity, stmtCtx));
continue;
}
}
// Place hlfir.expr in memory, and unbox fir.boxchar. Other entities
// are translated to fir::ExtendedValue without transformation (notably,
// pointers/allocatable are not dereferenced).
// TODO: once lowering to FIR retires, UBOUND and LBOUND can be simplified
// since the fir.box lowered here are now guaranteed to contain the local
// lower bounds thanks to the hlfir.declare (the extra rebox can be
// removed).
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, actual, stmtCtx));
continue;
}
llvm_unreachable("bad switch");
}
// genIntrinsicCall needs the scalar type, even if this is a transformational
// procedure returning an array.
std::optional<mlir::Type> scalarResultType;
if (callContext.resultType)
scalarResultType = hlfir::getFortranElementType(*callContext.resultType);
const std::string intrinsicName = callContext.getProcedureName();
// Let the intrinsic library lower the intrinsic procedure call.
auto [resultExv, mustBeFreed] = genIntrinsicCall(
builder, loc, intrinsicEntry, scalarResultType, operands, &converter);
for (const hlfir::CleanupFunction &fn : cleanupFns)
fn();
if (!fir::getBase(resultExv))
return std::nullopt;
hlfir::EntityWithAttributes resultEntity = extendedValueToHlfirEntity(
loc, builder, resultExv, ".tmp.intrinsic_result");
// Move result into memory into an hlfir.expr since they are immutable from
// that point, and the result storage is some temp. "Null" is special: it
// returns a null pointer variable that should not be transformed into a value
// (what matters is the memory address).
if (resultEntity.isVariable() && intrinsicName != "null") {
assert(!fir::isa_trivial(fir::unwrapRefType(resultEntity.getType())) &&
"expect intrinsic scalar results to not be in memory");
hlfir::AsExprOp asExpr;
// Character/Derived MERGE lowering returns one of its argument address
// (this is the only intrinsic implemented in that way so far). The
// ownership of this address cannot be taken here since it may not be a
// temp.
if (intrinsicName == "merge")
asExpr = builder.create<hlfir::AsExprOp>(loc, resultEntity);
else
asExpr = builder.create<hlfir::AsExprOp>(
loc, resultEntity, builder.createBool(loc, mustBeFreed));
resultEntity = hlfir::EntityWithAttributes{asExpr.getResult()};
}
return resultEntity;
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes> genHLFIRIntrinsicRefCore(
Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry,
CallContext &callContext) {
// Try lowering transformational intrinsic ops to HLFIR ops if enabled
// (transformational always have a result type)
if (useHlfirIntrinsicOps && callContext.resultType) {
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
const std::string intrinsicName = callContext.getProcedureName();
const fir::IntrinsicArgumentLoweringRules *argLowering =
intrinsicEntry.getArgumentLoweringRules();
std::optional<hlfir::EntityWithAttributes> res =
Fortran::lower::lowerHlfirIntrinsic(builder, loc, intrinsicName,
loweredActuals, argLowering,
*callContext.resultType);
if (res)
return res;
}
// fallback to calling the intrinsic via fir.call
return genIntrinsicRefCore(loweredActuals, intrinsic, intrinsicEntry,
callContext);
}
namespace {
template <typename ElementalCallBuilderImpl>
class ElementalCallBuilder {
public:
std::optional<hlfir::EntityWithAttributes>
genElementalCall(Fortran::lower::PreparedActualArguments &loweredActuals,
bool isImpure, CallContext &callContext) {
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
unsigned numArgs = loweredActuals.size();
// Step 1: dereference pointers/allocatables and compute elemental shape.
mlir::Value shape;
Fortran::lower::PreparedActualArgument *optionalWithShape;
// 10.1.4 p5. Impure elemental procedures must be called in element order.
bool mustBeOrdered = isImpure;
for (unsigned i = 0; i < numArgs; ++i) {
auto &preparedActual = loweredActuals[i];
if (preparedActual) {
// Elemental procedure dummy arguments cannot be pointer/allocatables
// (C15100), so it is safe to dereference any pointer or allocatable
// actual argument now instead of doing this inside the elemental
// region.
preparedActual->derefPointersAndAllocatables(loc, builder);
// Better to load scalars outside of the loop when possible.
if (!preparedActual->handleDynamicOptional() &&
impl().canLoadActualArgumentBeforeLoop(i))
preparedActual->loadTrivialScalar(loc, builder);
// TODO: merge shape instead of using the first one.
if (!shape && preparedActual->isArray()) {
if (preparedActual->handleDynamicOptional())
optionalWithShape = &*preparedActual;
else
shape = preparedActual->genShape(loc, builder);
}
// 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
// arguments must be called in element order.
if (impl().argMayBeModifiedByCall(i))
mustBeOrdered = true;
}
}
if (!shape && optionalWithShape) {
// If all array operands appear in optional positions, then none of them
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
// first operand.
shape = optionalWithShape->genShape(loc, builder);
// TODO: There is an opportunity to add a runtime check here that
// this array is present as required. Also, the optionality of all actual
// could be checked and reset given the Fortran requirement.
optionalWithShape->resetOptionalAspect();
}
assert(shape &&
"elemental array calls must have at least one array arguments");
// Evaluate the actual argument array expressions before the elemental
// call of an impure subprogram or a subprogram with intent(out) or
// intent(inout) arguments. Note that the scalar arguments are handled
// above.
if (mustBeOrdered) {
for (auto &preparedActual : loweredActuals) {
if (preparedActual) {
if (hlfir::AssociateOp associate =
preparedActual->associateIfArrayExpr(loc, builder)) {
fir::FirOpBuilder *bldr = &builder;
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::EndAssociateOp>(loc, associate); });
}
}
}
}
// Push a new local scope so that any temps made inside the elemental
// iterations are cleaned up inside the iterations.
if (!callContext.resultType) {
// Subroutine case. Generate call inside loop nest.
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, shape, !mustBeOrdered);
mlir::ValueRange oneBasedIndices = loopNest.oneBasedIndices;
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
builder.restoreInsertionPoint(insPt);
return std::nullopt;
}
// Function case: generate call inside hlfir.elemental
mlir::Type elementType =
hlfir::getFortranElementType(*callContext.resultType);
// Get result length parameters.
llvm::SmallVector<mlir::Value> typeParams;
if (mlir::isa<fir::CharacterType>(elementType) ||
fir::isRecordWithTypeParameters(elementType)) {
auto charType = mlir::dyn_cast<fir::CharacterType>(elementType);
if (charType && charType.hasConstantLen())
typeParams.push_back(builder.createIntegerConstant(
loc, builder.getIndexType(), charType.getLen()));
else if (charType)
typeParams.push_back(impl().computeDynamicCharacterResultLength(
loweredActuals, callContext));
else
TODO(
loc,
"compute elemental PDT function result length parameters in HLFIR");
}
auto genKernel = [&](mlir::Location l, fir::FirOpBuilder &b,
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
auto res = *impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
// Note that an hlfir.destroy is not emitted for the result since it
// is still used by the hlfir.yield_element that also marks its last
// use.
return res;
};
mlir::Value polymorphicMold;
if (fir::isPolymorphicType(*callContext.resultType))
polymorphicMold =
impl().getPolymorphicResultMold(loweredActuals, callContext);
mlir::Value elemental =
hlfir::genElementalOp(loc, builder, elementType, shape, typeParams,
genKernel, !mustBeOrdered, polymorphicMold);
// If the function result requires finalization, then it has to be done
// for the array result of the elemental call. We have to communicate
// this via the DestroyOp's attribute.
bool mustFinalizeExpr = impl().resultMayRequireFinalization(callContext);
fir::FirOpBuilder *bldr = &builder;
callContext.stmtCtx.attachCleanup([=]() {
bldr->create<hlfir::DestroyOp>(loc, elemental, mustFinalizeExpr);
});
return hlfir::EntityWithAttributes{elemental};
}
private:
ElementalCallBuilderImpl &impl() {
return *static_cast<ElementalCallBuilderImpl *>(this);
}
};
class ElementalUserCallBuilder
: public ElementalCallBuilder<ElementalUserCallBuilder> {
public:
ElementalUserCallBuilder(Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType)
: caller{caller}, callSiteType{callSiteType} {}
std::optional<hlfir::Entity>
genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
bool argMayBeModifiedByCall(unsigned argIdx) const {
assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
return caller.getPassedArguments()[argIdx].mayBeModifiedByCall();
}
bool canLoadActualArgumentBeforeLoop(unsigned argIdx) const {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
const auto &passedArgs{caller.getPassedArguments()};
assert(argIdx < passedArgs.size() && "bad argument index");
// If the actual argument does not need to be passed via an address,
// or will be passed in the address of a temporary copy, it can be loaded
// before the elemental loop nest.
const auto &arg{passedArgs[argIdx]};
return arg.passBy == PassBy::Value ||
arg.passBy == PassBy::BaseAddressValueAttribute;
}
mlir::Value computeDynamicCharacterResultLength(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<CallCleanUp> callCleanUps;
prepareUserCallArguments(loweredActuals, caller, callSiteType, callContext,
callCleanUps);
callContext.symMap.pushScope();
// Map prepared argument to dummy symbol to be able to lower spec expr.
for (const auto &arg : caller.getPassedArguments()) {
const Fortran::semantics::Symbol *sym = caller.getDummySymbol(arg);
assert(sym && "expect symbol for dummy argument");
auto input = caller.getInput(arg);
fir::ExtendedValue exv = Fortran::lower::translateToExtendedValue(
loc, builder, hlfir::Entity{input}, callContext.stmtCtx);
fir::FortranVariableOpInterface variableIface = hlfir::genDeclare(
loc, builder, exv, "dummy.tmp", fir::FortranVariableFlagsAttr{});
callContext.symMap.addVariableDefinition(*sym, variableIface);
}
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy,
fir::getBase(converter.genExprValue(expr, callContext.stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> lengths;
caller.walkResultLengths(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
lengths.emplace_back(lowerSpecExpr(e));
});
callContext.symMap.popScope();
assert(lengths.size() == 1 && "expect 1 length parameter for the result");
return lengths[0];
}
mlir::Value getPolymorphicResultMold(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
fir::emitFatalError(callContext.loc,
"elemental function call with polymorphic result");
return {};
}
bool resultMayRequireFinalization(CallContext &callContext) const {
std::optional<Fortran::evaluate::DynamicType> retTy =
caller.getCallDescription().proc().GetType();
if (!retTy)
return false;
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())
fir::emitFatalError(
callContext.loc,
"elemental function call with [unlimited-]polymorphic result");
if (retTy->category() == Fortran::common::TypeCategory::Derived) {
const Fortran::semantics::DerivedTypeSpec &typeSpec =
retTy->GetDerivedTypeSpec();
return Fortran::semantics::IsFinalizable(typeSpec);
}
return false;
}
private:
Fortran::lower::CallerInterface &caller;
mlir::FunctionType callSiteType;
};
class ElementalIntrinsicCallBuilder
: public ElementalCallBuilder<ElementalIntrinsicCallBuilder> {
public:
ElementalIntrinsicCallBuilder(
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry, bool isFunction)
: intrinsic{intrinsic}, intrinsicEntry{intrinsicEntry},
isFunction{isFunction} {}
std::optional<hlfir::Entity>
genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genHLFIRIntrinsicRefCore(loweredActuals, intrinsic, intrinsicEntry,
callContext);
}
// Elemental intrinsic functions cannot modify their arguments.
bool argMayBeModifiedByCall(int) const { return !isFunction; }
bool canLoadActualArgumentBeforeLoop(int) const {
// Elemental intrinsic functions never need the actual addresses
// of their arguments.
return isFunction;
}
mlir::Value computeDynamicCharacterResultLength(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
if (intrinsic)
if (intrinsic->name == "adjustr" || intrinsic->name == "adjustl" ||
intrinsic->name == "merge")
return loweredActuals[0].value().genCharLength(
callContext.loc, callContext.getBuilder());
// Character MIN/MAX is the min/max of the arguments length that are
// present.
TODO(callContext.loc,
"compute elemental character min/max function result length in HLFIR");
}
mlir::Value getPolymorphicResultMold(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
if (!intrinsic)
return {};
if (intrinsic->name == "merge") {
// MERGE seems to be the only elemental function that can produce
// polymorphic result. The MERGE's result is polymorphic iff
// both TSOURCE and FSOURCE are polymorphic, and they also must have
// the same declared and dynamic types. So any of them can be used
// for the mold.
assert(!loweredActuals.empty());
return loweredActuals.front()->getPolymorphicMold(callContext.loc);
}
return {};
}
bool resultMayRequireFinalization(
[[maybe_unused]] CallContext &callContext) const {
// FIXME: need access to the CallerInterface's return type
// to check if the result may need finalization (e.g. the result
// of MERGE).
return false;
}
private:
const Fortran::evaluate::SpecificIntrinsic *intrinsic;
fir::IntrinsicHandlerEntry intrinsicEntry;
const bool isFunction;
};
} // namespace
static std::optional<mlir::Value>
genIsPresentIfArgMaybeAbsent(mlir::Location loc, hlfir::Entity actual,
const Fortran::lower::SomeExpr &expr,
CallContext &callContext,
bool passAsAllocatableOrPointer) {
if (!Fortran::evaluate::MayBePassedAsAbsentOptional(expr))
return std::nullopt;
fir::FirOpBuilder &builder = callContext.getBuilder();
if (!passAsAllocatableOrPointer &&
Fortran::evaluate::IsAllocatableOrPointerObject(expr)) {
// Passing Allocatable/Pointer to non-pointer/non-allocatable OPTIONAL.
// Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, it is
// as if the argument was absent. The main care here is to not do a
// copy-in/copy-out because the temp address, even though pointing to a
// null size storage, would not be a nullptr and therefore the argument
// would not be considered absent on the callee side. Note: if the
// allocatable/pointer is also optional, it cannot be absent as per
// 15.5.2.12 point 7. and 8. We rely on this to un-conditionally read
// the allocatable/pointer descriptor here.
mlir::Value addr = genVariableRawAddress(loc, builder, actual);
return builder.genIsNotNullAddr(loc, addr);
}
// TODO: what if passing allocatable target to optional intent(in) pointer?
// May fall into the category above if the allocatable is not optional.
// Passing an optional to an optional.
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
.getResult();
}
// Lower a reference to an elemental intrinsic procedure with array arguments
// and custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomElementalIntrinsicRef(
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
assert(callContext.isElementalProcWithArrayArgs() &&
"Use genCustomIntrinsicRef for scalar calls");
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
Fortran::lower::PreparedActualArguments operands;
assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter));
// callback for optional arguments
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
std::optional<mlir::Value> isPresent =
genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
/*passAsAllocatableOrPointer=*/false);
operands.emplace_back(
Fortran::lower::PreparedActualArgument{actual, isPresent});
};
// callback for non-optional arguments
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
fir::LowerIntrinsicArgAs lowerAs) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
operands.emplace_back(Fortran::lower::PreparedActualArgument{
actual, /*isPresent=*/std::nullopt});
};
Fortran::lower::prepareCustomIntrinsicArgument(
callContext.procRef, *intrinsic, callContext.resultType,
prepareOptionalArg, prepareOtherArg, converter);
std::optional<fir::IntrinsicHandlerEntry> intrinsicEntry =
fir::lookupIntrinsicHandler(callContext.getBuilder(),
callContext.getProcedureName(),
callContext.resultType);
assert(intrinsicEntry.has_value() &&
"intrinsic with custom handling for OPTIONAL arguments must have "
"lowering entries");
// All of the custom intrinsic elementals with custom handling are pure
// functions
return ElementalIntrinsicCallBuilder{intrinsic, *intrinsicEntry,
/*isFunction=*/true}
.genElementalCall(operands, /*isImpure=*/false, callContext);
}
// Lower a reference to an intrinsic procedure with custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
assert(!callContext.isElementalProcWithArrayArgs() &&
"Needs to be run through ElementalIntrinsicCallBuilder first");
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
auto &converter = callContext.converter;
auto &stmtCtx = callContext.stmtCtx;
assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter));
Fortran::lower::PreparedActualArguments loweredActuals;
// callback for optional arguments
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
mlir::Value isPresent =
genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
/*passAsAllocatableOrPointer*/ false)
.value();
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{actual, {isPresent}});
};
// callback for non-optional arguments
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
fir::LowerIntrinsicArgAs lowerAs) {
auto getActualFortranElementType = [&]() -> mlir::Type {
return hlfir::getFortranElementType(converter.genType(expr));
};
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
std::optional<fir::ExtendedValue> exv;
switch (lowerAs) {
case fir::LowerIntrinsicArgAs::Value:
exv = Fortran::lower::convertToValue(loc, converter, actual, stmtCtx);
break;
case fir::LowerIntrinsicArgAs::Addr:
exv = Fortran::lower::convertToAddress(loc, converter, actual, stmtCtx,
getActualFortranElementType());
break;
case fir::LowerIntrinsicArgAs::Box:
exv = Fortran::lower::convertToBox(loc, converter, actual, stmtCtx,
getActualFortranElementType());
break;
case fir::LowerIntrinsicArgAs::Inquired:
exv = Fortran::lower::translateToExtendedValue(loc, builder, actual,
stmtCtx);
break;
}
if (!exv)
llvm_unreachable("bad switch");
actual = extendedValueToHlfirEntity(loc, builder, exv.value(),
"tmp.custom_intrinsic_arg");
loweredActuals.emplace_back(Fortran::lower::PreparedActualArgument{
actual, /*isPresent=*/std::nullopt});
};
Fortran::lower::prepareCustomIntrinsicArgument(
callContext.procRef, *intrinsic, callContext.resultType,
prepareOptionalArg, prepareOtherArg, converter);
return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
}
/// Lower an intrinsic procedure reference.
/// \p intrinsic is null if this is an intrinsic module procedure that must be
/// lowered as if it were an intrinsic module procedure (like C_LOC which is a
/// procedure from intrinsic module iso_c_binding). Otherwise, \p intrinsic
/// must not be null.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicHandlerEntry &intrinsicEntry,
CallContext &callContext) {
mlir::Location loc = callContext.loc;
Fortran::lower::PreparedActualArguments loweredActuals;
const fir::IntrinsicArgumentLoweringRules *argLowering =
intrinsicEntry.getArgumentLoweringRules();
for (const auto &arg : llvm::enumerate(callContext.procRef.arguments())) {
if (!arg.value()) {
// Absent optional.
loweredActuals.push_back(std::nullopt);
continue;
}
auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
if (!expr) {
// TYPE(*) dummy. They are only allowed as argument of a few intrinsics
// that do not take optional arguments: see Fortran 2018 standard C710.
const Fortran::evaluate::Symbol *assumedTypeSym =
arg.value()->GetAssumedTypeDummy();
if (!assumedTypeSym)
fir::emitFatalError(loc,
"expected assumed-type symbol as actual argument");
std::optional<fir::FortranVariableOpInterface> var =
callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
if (!var)
fir::emitFatalError(loc, "assumed-type symbol was not lowered");
assert(
(!argLowering ||
!fir::lowerIntrinsicArgumentAs(*argLowering, arg.index())
.handleDynamicOptional) &&
"TYPE(*) are not expected to appear as optional intrinsic arguments");
loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
hlfir::Entity{*var}, /*isPresent=*/std::nullopt});
continue;
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
std::optional<mlir::Value> isPresent;
if (argLowering) {
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
if (argRules.handleDynamicOptional)
isPresent =
genIsPresentIfArgMaybeAbsent(loc, loweredActual, *expr, callContext,
/*passAsAllocatableOrPointer=*/false);
}
loweredActuals.push_back(
Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
}
if (callContext.isElementalProcWithArrayArgs()) {
// All intrinsic elemental functions are pure.
const bool isFunction = callContext.resultType.has_value();
return ElementalIntrinsicCallBuilder{intrinsic, intrinsicEntry, isFunction}
.genElementalCall(loweredActuals, /*isImpure=*/!isFunction,
callContext);
}
std::optional<hlfir::EntityWithAttributes> result = genHLFIRIntrinsicRefCore(
loweredActuals, intrinsic, intrinsicEntry, callContext);
if (result && mlir::isa<hlfir::ExprType>(result->getType())) {
fir::FirOpBuilder *bldr = &callContext.getBuilder();
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, *result); });
}
return result;
}
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter)) {
if (callContext.isElementalProcWithArrayArgs())
return genCustomElementalIntrinsicRef(intrinsic, callContext);
return genCustomIntrinsicRef(intrinsic, callContext);
}
std::optional<fir::IntrinsicHandlerEntry> intrinsicEntry =
fir::lookupIntrinsicHandler(callContext.getBuilder(),
callContext.getProcedureName(),
callContext.resultType);
if (!intrinsicEntry)
fir::crashOnMissingIntrinsic(loc, callContext.getProcedureName());
return genIntrinsicRef(intrinsic, *intrinsicEntry, callContext);
}
/// Main entry point to lower procedure references, regardless of what they are.
static std::optional<hlfir::EntityWithAttributes>
genProcedureRef(CallContext &callContext) {
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
if (auto *intrinsic = callContext.procRef.proc().GetSpecificIntrinsic())
return genIntrinsicRef(intrinsic, callContext);
// Intercept non BIND(C) module procedure reference that have lowering
// handlers defined for there name. Otherwise, lower them as user
// procedure calls and expect the implementation to be part of
// runtime libraries with the proper name mangling.
if (Fortran::lower::isIntrinsicModuleProcRef(callContext.procRef) &&
!callContext.isBindcCall())
if (std::optional<fir::IntrinsicHandlerEntry> intrinsicEntry =
fir::lookupIntrinsicHandler(builder, callContext.getProcedureName(),
callContext.resultType))
return genIntrinsicRef(nullptr, *intrinsicEntry, callContext);
if (callContext.isStatementFunctionCall())
return genStmtFunctionRef(loc, callContext.converter, callContext.symMap,
callContext.stmtCtx, callContext.procRef);
Fortran::lower::CallerInterface caller(callContext.procRef,
callContext.converter);
mlir::FunctionType callSiteType = caller.genFunctionType();
const bool isElemental = callContext.isElementalProcWithArrayArgs();
Fortran::lower::PreparedActualArguments loweredActuals;
// Lower the actual arguments
for (const Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity &arg :
caller.getPassedArguments())
if (const auto *actual = arg.entity) {
const auto *expr = actual->UnwrapExpr();
if (!expr) {
// TYPE(*) actual argument.
const Fortran::evaluate::Symbol *assumedTypeSym =
actual->GetAssumedTypeDummy();
if (!assumedTypeSym)
fir::emitFatalError(
loc, "expected assumed-type symbol as actual argument");
std::optional<fir::FortranVariableOpInterface> var =
callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
if (!var)
fir::emitFatalError(loc, "assumed-type symbol was not lowered");
hlfir::Entity actual{*var};
std::optional<mlir::Value> isPresent;
if (arg.isOptional()) {
// Passing an optional TYPE(*) to an optional TYPE(*). Note that
// TYPE(*) cannot be ALLOCATABLE/POINTER (C709) so there is no
// need to cover the case of passing an ALLOCATABLE/POINTER to an
// OPTIONAL.
isPresent =
builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
.getResult();
}
loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
hlfir::Entity{*var}, isPresent});
continue;
}
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
if ((arg.passBy !=
Fortran::lower::CallerInterface::PassEntityBy::MutableBox) &&
(arg.passBy !=
Fortran::lower::CallerInterface::PassEntityBy::BoxProcRef)) {
assert(
arg.isOptional() &&
"NULL must be passed only to pointer, allocatable, or OPTIONAL");
// Trying to lower NULL() outside of any context would lead to
// trouble. NULL() here is equivalent to not providing the
// actual argument.
loweredActuals.emplace_back(std::nullopt);
continue;
}
}
if (isElemental && !arg.hasValueAttribute() &&
Fortran::evaluate::IsVariable(*expr) &&
Fortran::evaluate::HasVectorSubscript(*expr)) {
// Vector subscripted arguments are copied in calls, except in elemental
// calls without VALUE attribute where Fortran 2018 15.5.2.4 point 21
// does not apply and the address of each element must be passed.
hlfir::ElementalAddrOp elementalAddr =
Fortran::lower::convertVectorSubscriptedExprToElementalAddr(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{elementalAddr});
continue;
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
std::optional<mlir::Value> isPresent;
if (arg.isOptional())
isPresent = genIsPresentIfArgMaybeAbsent(
loc, loweredActual, *expr, callContext,
arg.passBy ==
Fortran::lower::CallerInterface::PassEntityBy::MutableBox);
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
} else {
// Optional dummy argument for which there is no actual argument.
loweredActuals.emplace_back(std::nullopt);
}
if (isElemental) {
bool isImpure = false;
if (const Fortran::semantics::Symbol *procSym =
callContext.procRef.proc().GetSymbol())
isImpure = !Fortran::semantics::IsPureProcedure(*procSym);
return ElementalUserCallBuilder{caller, callSiteType}.genElementalCall(
loweredActuals, isImpure, callContext);
}
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
hlfir::Entity Fortran::lower::PreparedActualArgument::getActual(
mlir::Location loc, fir::FirOpBuilder &builder) const {
if (auto *actualEntity = std::get_if<hlfir::Entity>(&actual)) {
if (oneBasedElementalIndices)
return hlfir::getElementAt(loc, builder, *actualEntity,
*oneBasedElementalIndices);
return *actualEntity;
}
assert(oneBasedElementalIndices && "expect elemental context");
hlfir::ElementalAddrOp elementalAddr =
std::get<hlfir::ElementalAddrOp>(actual);
mlir::IRMapping mapper;
auto alwaysFalse = [](hlfir::ElementalOp) -> bool { return false; };
mlir::Value addr = hlfir::inlineElementalOp(
loc, builder, elementalAddr, *oneBasedElementalIndices, mapper,
/*mustRecursivelyInline=*/alwaysFalse);
assert(elementalAddr.getCleanup().empty() && "no clean-up expected");
elementalAddr.erase();
return hlfir::Entity{addr};
}
bool Fortran::lower::isIntrinsicModuleProcRef(
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
if (!symbol)
return false;
const Fortran::semantics::Symbol *module =
symbol->GetUltimate().owner().GetSymbol();
return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC);
}
static bool isInWhereMaskedExpression(fir::FirOpBuilder &builder) {
// The MASK of the outer WHERE is not masked itself.
mlir::Operation *op = builder.getRegion().getParentOp();
return op && op->getParentOfType<hlfir::WhereOp>();
}
std::optional<hlfir::EntityWithAttributes> Fortran::lower::convertCallToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef, std::optional<mlir::Type> resultType,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
if (resultType && !procRef.IsElemental() &&
isInWhereMaskedExpression(builder) &&
!builder.getRegion().getParentOfType<hlfir::ExactlyOnceOp>()) {
// Non elemental calls inside a where-assignment-stmt must be executed
// exactly once without mask control. Lower them in a special region so that
// this can be enforced whenscheduling forall/where expression evaluations.
Fortran::lower::StatementContext localStmtCtx;
mlir::Type bogusType = builder.getIndexType();
auto exactlyOnce = builder.create<hlfir::ExactlyOnceOp>(loc, bogusType);
mlir::Block *block = builder.createBlock(&exactlyOnce.getBody());
builder.setInsertionPointToStart(block);
CallContext callContext(procRef, resultType, loc, converter, symMap,
localStmtCtx);
std::optional<hlfir::EntityWithAttributes> res =
genProcedureRef(callContext);
assert(res.has_value() && "must be a function");
auto yield = builder.create<hlfir::YieldOp>(loc, *res);
Fortran::lower::genCleanUpInRegionIfAny(loc, builder, yield.getCleanup(),
localStmtCtx);
builder.setInsertionPointAfter(exactlyOnce);
exactlyOnce->getResult(0).setType(res->getType());
if (hlfir::isFortranValue(exactlyOnce.getResult()))
return hlfir::EntityWithAttributes{exactlyOnce.getResult()};
// Create hlfir.declare for the result to satisfy
// hlfir::EntityWithAttributes requirements.
auto [exv, cleanup] = hlfir::translateToExtendedValue(
loc, builder, hlfir::Entity{exactlyOnce});
assert(!cleanup && "resut is a variable");
return hlfir::genDeclare(loc, builder, exv, ".func.pointer.result",
fir::FortranVariableFlagsAttr{});
}
CallContext callContext(procRef, resultType, loc, converter, symMap, stmtCtx);
return genProcedureRef(callContext);
}
void Fortran::lower::convertUserDefinedAssignmentToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef, hlfir::Entity lhs, hlfir::Entity rhs,
Fortran::lower::SymMap &symMap) {
Fortran::lower::StatementContext definedAssignmentContext;
CallContext callContext(procRef, /*resultType=*/std::nullopt, loc, converter,
symMap, definedAssignmentContext);
Fortran::lower::CallerInterface caller(procRef, converter);
mlir::FunctionType callSiteType = caller.genFunctionType();
PreparedActualArgument preparedLhs{lhs, /*isPresent=*/std::nullopt};
PreparedActualArgument preparedRhs{rhs, /*isPresent=*/std::nullopt};
PreparedActualArguments loweredActuals{preparedLhs, preparedRhs};
genUserCall(loweredActuals, caller, callSiteType, callContext);
return;
}
|