1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
|
//===-- lib/Semantics/check-call.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-call.h"
#include "definable.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold-designator.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/tools.h"
#include <map>
#include <string>
using namespace Fortran::parser::literals;
namespace characteristics = Fortran::evaluate::characteristics;
namespace Fortran::semantics {
static void CheckImplicitInterfaceArg(evaluate::ActualArgument &arg,
parser::ContextualMessages &messages, evaluate::FoldingContext &context) {
auto restorer{
messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
if (auto kw{arg.keyword()}) {
messages.Say(*kw,
"Keyword '%s=' may not appear in a reference to a procedure with an implicit interface"_err_en_US,
*kw);
}
auto type{arg.GetType()};
if (type) {
if (type->IsAssumedType()) {
messages.Say(
"Assumed type actual argument requires an explicit interface"_err_en_US);
} else if (type->IsUnlimitedPolymorphic()) {
messages.Say(
"Unlimited polymorphic actual argument requires an explicit interface"_err_en_US);
} else if (const DerivedTypeSpec * derived{GetDerivedTypeSpec(type)}) {
if (!derived->parameters().empty()) {
messages.Say(
"Parameterized derived type actual argument requires an explicit interface"_err_en_US);
}
}
}
if (arg.isPercentVal() &&
(!type || !type->IsLengthlessIntrinsicType() || arg.Rank() != 0)) {
messages.Say(
"%VAL argument must be a scalar numeric or logical expression"_err_en_US);
}
if (const auto *expr{arg.UnwrapExpr()}) {
if (IsBOZLiteral(*expr)) {
messages.Say("BOZ argument requires an explicit interface"_err_en_US);
} else if (evaluate::IsNullPointer(*expr)) {
messages.Say(
"Null pointer argument requires an explicit interface"_err_en_US);
} else if (auto named{evaluate::ExtractNamedEntity(*expr)}) {
const Symbol &symbol{named->GetLastSymbol()};
if (symbol.Corank() > 0) {
messages.Say(
"Coarray argument requires an explicit interface"_err_en_US);
}
if (evaluate::IsAssumedRank(symbol)) {
messages.Say(
"Assumed rank argument requires an explicit interface"_err_en_US);
}
if (symbol.attrs().test(Attr::ASYNCHRONOUS)) {
messages.Say(
"ASYNCHRONOUS argument requires an explicit interface"_err_en_US);
}
if (symbol.attrs().test(Attr::VOLATILE)) {
messages.Say(
"VOLATILE argument requires an explicit interface"_err_en_US);
}
} else if (auto argChars{characteristics::DummyArgument::FromActual(
"actual argument", *expr, context,
/*forImplicitInterface=*/true)}) {
const auto *argProcDesignator{
std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
if (const auto *argProcSymbol{
argProcDesignator ? argProcDesignator->GetSymbol() : nullptr}) {
if (!argChars->IsTypelessIntrinsicDummy() && argProcDesignator &&
argProcDesignator->IsElemental()) { // C1533
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
} else if (const auto *subp{argProcSymbol->GetUltimate()
.detailsIf<SubprogramDetails>()}) {
if (subp->stmtFunction()) {
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Statement function '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
}
}
}
}
}
}
// F'2023 15.5.2.12p1: "Sequence association only applies when the dummy
// argument is an explicit-shape or assumed-size array."
static bool CanAssociateWithStorageSequence(
const characteristics::DummyDataObject &dummy) {
return !dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedRank) &&
!dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedShape) &&
!dummy.type.attrs().test(characteristics::TypeAndShape::Attr::Coarray) &&
!dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable) &&
!dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer);
}
// When a CHARACTER actual argument is known to be short,
// we extend it on the right with spaces and a warning if
// possible. When it is long, and not required to be equal,
// the usage conforms to the standard and no warning is needed.
static void CheckCharacterActual(evaluate::Expr<evaluate::SomeType> &actual,
const characteristics::DummyDataObject &dummy,
characteristics::TypeAndShape &actualType, SemanticsContext &context,
parser::ContextualMessages &messages, bool extentErrors,
const std::string &dummyName) {
if (dummy.type.type().category() == TypeCategory::Character &&
actualType.type().category() == TypeCategory::Character &&
dummy.type.type().kind() == actualType.type().kind() &&
!dummy.attrs.test(
characteristics::DummyDataObject::Attr::DeducedFromActual)) {
if (dummy.type.LEN() && actualType.LEN()) {
evaluate::FoldingContext &foldingContext{context.foldingContext()};
auto dummyLength{
ToInt64(Fold(foldingContext, common::Clone(*dummy.type.LEN())))};
auto actualLength{
ToInt64(Fold(foldingContext, common::Clone(*actualType.LEN())))};
if (dummyLength && actualLength) {
bool canAssociate{CanAssociateWithStorageSequence(dummy)};
if (dummy.type.Rank() > 0 && canAssociate) {
// Character storage sequence association (F'2023 15.5.2.12p4)
if (auto dummySize{evaluate::ToInt64(evaluate::Fold(
foldingContext, evaluate::GetSize(dummy.type.shape())))}) {
auto dummyChars{*dummySize * *dummyLength};
if (actualType.Rank() == 0) {
evaluate::DesignatorFolder folder{
context.foldingContext(), /*getLastComponent=*/true};
if (auto actualOffset{folder.FoldDesignator(actual)}) {
std::int64_t actualChars{*actualLength};
if (static_cast<std::size_t>(actualOffset->offset()) >=
actualOffset->symbol().size() ||
!evaluate::IsContiguous(
actualOffset->symbol(), foldingContext)) {
// If substring, take rest of substring
if (*actualLength > 0) {
actualChars -=
(actualOffset->offset() / actualType.type().kind()) %
*actualLength;
}
} else {
actualChars = (static_cast<std::int64_t>(
actualOffset->symbol().size()) -
actualOffset->offset()) /
actualType.type().kind();
}
if (actualChars < dummyChars &&
(extentErrors ||
context.ShouldWarn(
common::UsageWarning::ShortCharacterActual))) {
auto msg{
"Actual argument has fewer characters remaining in storage sequence (%jd) than %s (%jd)"_warn_en_US};
if (extentErrors) {
msg.set_severity(parser::Severity::Error);
}
messages.Say(std::move(msg),
static_cast<std::intmax_t>(actualChars), dummyName,
static_cast<std::intmax_t>(dummyChars));
}
}
} else { // actual.type.Rank() > 0
if (auto actualSize{evaluate::ToInt64(evaluate::Fold(
foldingContext, evaluate::GetSize(actualType.shape())))};
actualSize &&
*actualSize * *actualLength < *dummySize * *dummyLength &&
(extentErrors ||
context.ShouldWarn(
common::UsageWarning::ShortCharacterActual))) {
auto msg{
"Actual argument array has fewer characters (%jd) than %s array (%jd)"_warn_en_US};
if (extentErrors) {
msg.set_severity(parser::Severity::Error);
}
messages.Say(std::move(msg),
static_cast<std::intmax_t>(*actualSize * *actualLength),
dummyName,
static_cast<std::intmax_t>(*dummySize * *dummyLength));
}
}
}
} else if (*actualLength != *dummyLength) {
// Not using storage sequence association, and the lengths don't
// match.
if (!canAssociate) {
// F'2023 15.5.2.5 paragraph 4
messages.Say(
"Actual argument variable length '%jd' does not match the expected length '%jd'"_err_en_US,
*actualLength, *dummyLength);
} else if (*actualLength < *dummyLength) {
CHECK(dummy.type.Rank() == 0);
bool isVariable{evaluate::IsVariable(actual)};
if (context.ShouldWarn(
common::UsageWarning::ShortCharacterActual)) {
if (isVariable) {
messages.Say(
"Actual argument variable length '%jd' is less than expected length '%jd'"_warn_en_US,
*actualLength, *dummyLength);
} else {
messages.Say(
"Actual argument expression length '%jd' is less than expected length '%jd'"_warn_en_US,
*actualLength, *dummyLength);
}
}
if (!isVariable) {
auto converted{
ConvertToType(dummy.type.type(), std::move(actual))};
CHECK(converted);
actual = std::move(*converted);
actualType.set_LEN(SubscriptIntExpr{*dummyLength});
}
}
}
}
}
}
}
// Automatic conversion of different-kind INTEGER scalar actual
// argument expressions (not variables) to INTEGER scalar dummies.
// We return nonstandard INTEGER(8) results from intrinsic functions
// like SIZE() by default in order to facilitate the use of large
// arrays. Emit a warning when downconverting.
static void ConvertIntegerActual(evaluate::Expr<evaluate::SomeType> &actual,
const characteristics::TypeAndShape &dummyType,
characteristics::TypeAndShape &actualType,
parser::ContextualMessages &messages, SemanticsContext &semanticsContext) {
if (dummyType.type().category() == TypeCategory::Integer &&
actualType.type().category() == TypeCategory::Integer &&
dummyType.type().kind() != actualType.type().kind() &&
dummyType.Rank() == 0 && actualType.Rank() == 0 &&
!evaluate::IsVariable(actual)) {
auto converted{
evaluate::ConvertToType(dummyType.type(), std::move(actual))};
CHECK(converted);
actual = std::move(*converted);
if (dummyType.type().kind() < actualType.type().kind()) {
if (!semanticsContext.IsEnabled(
common::LanguageFeature::ActualIntegerConvertedToSmallerKind) ||
semanticsContext.ShouldWarn(
common::LanguageFeature::ActualIntegerConvertedToSmallerKind)) {
std::optional<parser::MessageFixedText> msg;
if (!semanticsContext.IsEnabled(
common::LanguageFeature::ActualIntegerConvertedToSmallerKind)) {
msg =
"Actual argument scalar expression of type INTEGER(%d) cannot beimplicitly converted to smaller dummy argument type INTEGER(%d)"_err_en_US;
} else if (semanticsContext.ShouldWarn(
common::LanguageFeature::ConvertedArgument)) {
msg =
"Actual argument scalar expression of type INTEGER(%d) was converted to smaller dummy argument type INTEGER(%d)"_port_en_US;
}
if (msg) {
messages.Say(std::move(msg.value()), actualType.type().kind(),
dummyType.type().kind());
}
}
}
actualType = dummyType;
}
}
// Automatic conversion of different-kind LOGICAL scalar actual argument
// expressions (not variables) to LOGICAL scalar dummies when the dummy is of
// default logical kind. This allows expressions in dummy arguments to work when
// the default logical kind is not the one used in LogicalResult. This will
// always be safe even when downconverting so no warning is needed.
static void ConvertLogicalActual(evaluate::Expr<evaluate::SomeType> &actual,
const characteristics::TypeAndShape &dummyType,
characteristics::TypeAndShape &actualType) {
if (dummyType.type().category() == TypeCategory::Logical &&
actualType.type().category() == TypeCategory::Logical &&
dummyType.type().kind() != actualType.type().kind() &&
!evaluate::IsVariable(actual)) {
auto converted{
evaluate::ConvertToType(dummyType.type(), std::move(actual))};
CHECK(converted);
actual = std::move(*converted);
actualType = dummyType;
}
}
static bool DefersSameTypeParameters(
const DerivedTypeSpec &actual, const DerivedTypeSpec &dummy) {
for (const auto &pair : actual.parameters()) {
const ParamValue &actualValue{pair.second};
const ParamValue *dummyValue{dummy.FindParameter(pair.first)};
if (!dummyValue || (actualValue.isDeferred() != dummyValue->isDeferred())) {
return false;
}
}
return true;
}
static void CheckExplicitDataArg(const characteristics::DummyDataObject &dummy,
const std::string &dummyName, evaluate::Expr<evaluate::SomeType> &actual,
characteristics::TypeAndShape &actualType, bool isElemental,
SemanticsContext &context, evaluate::FoldingContext &foldingContext,
const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic,
bool allowActualArgumentConversions, bool extentErrors,
const characteristics::Procedure &procedure,
const evaluate::ActualArgument &arg) {
// Basic type & rank checking
parser::ContextualMessages &messages{foldingContext.messages()};
CheckCharacterActual(
actual, dummy, actualType, context, messages, extentErrors, dummyName);
bool dummyIsAllocatable{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable)};
bool dummyIsPointer{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer)};
bool dummyIsAllocatableOrPointer{dummyIsAllocatable || dummyIsPointer};
allowActualArgumentConversions &= !dummyIsAllocatableOrPointer;
bool typesCompatibleWithIgnoreTKR{
(dummy.ignoreTKR.test(common::IgnoreTKR::Type) &&
(dummy.type.type().category() == TypeCategory::Derived ||
actualType.type().category() == TypeCategory::Derived ||
dummy.type.type().category() != actualType.type().category())) ||
(dummy.ignoreTKR.test(common::IgnoreTKR::Kind) &&
dummy.type.type().category() == actualType.type().category())};
allowActualArgumentConversions &= !typesCompatibleWithIgnoreTKR;
if (allowActualArgumentConversions) {
ConvertIntegerActual(actual, dummy.type, actualType, messages, context);
ConvertLogicalActual(actual, dummy.type, actualType);
}
bool typesCompatible{typesCompatibleWithIgnoreTKR ||
dummy.type.type().IsTkCompatibleWith(actualType.type())};
int dummyRank{dummy.type.Rank()};
if (typesCompatible) {
if (const auto *constantChar{
evaluate::UnwrapConstantValue<evaluate::Ascii>(actual)};
constantChar && constantChar->wasHollerith() &&
dummy.type.type().IsUnlimitedPolymorphic() &&
context.ShouldWarn(common::LanguageFeature::HollerithPolymorphic)) {
messages.Say(
"passing Hollerith to unlimited polymorphic as if it were CHARACTER"_port_en_US);
}
} else if (dummyRank == 0 && allowActualArgumentConversions) {
// Extension: pass Hollerith literal to scalar as if it had been BOZ
if (auto converted{evaluate::HollerithToBOZ(
foldingContext, actual, dummy.type.type())}) {
if (context.ShouldWarn(
common::LanguageFeature::HollerithOrCharacterAsBOZ)) {
messages.Say(
"passing Hollerith or character literal as if it were BOZ"_port_en_US);
}
actual = *converted;
actualType.type() = dummy.type.type();
typesCompatible = true;
}
}
bool dummyIsAssumedRank{dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedRank)};
if (typesCompatible) {
if (isElemental) {
} else if (dummyIsAssumedRank) {
} else if (dummy.ignoreTKR.test(common::IgnoreTKR::Rank)) {
} else if (dummyRank > 0 && !dummyIsAllocatableOrPointer &&
!dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedShape) &&
!dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::DeferredShape) &&
(actualType.Rank() > 0 || IsArrayElement(actual))) {
// Sequence association (15.5.2.11) applies -- rank need not match
// if the actual argument is an array or array element designator,
// and the dummy is an array, but not assumed-shape or an INTENT(IN)
// pointer that's standing in for an assumed-shape dummy.
} else if (dummy.type.shape() && actualType.shape()) {
// Let CheckConformance accept actual scalars; storage association
// cases are checked here below.
CheckConformance(messages, *dummy.type.shape(), *actualType.shape(),
dummyIsAllocatableOrPointer
? evaluate::CheckConformanceFlags::None
: evaluate::CheckConformanceFlags::RightScalarExpandable,
"dummy argument", "actual argument");
}
} else {
const auto &len{actualType.LEN()};
messages.Say(
"Actual argument type '%s' is not compatible with dummy argument type '%s'"_err_en_US,
actualType.type().AsFortran(len ? len->AsFortran() : ""),
dummy.type.type().AsFortran());
}
bool actualIsPolymorphic{actualType.type().IsPolymorphic()};
bool dummyIsPolymorphic{dummy.type.type().IsPolymorphic()};
bool actualIsCoindexed{ExtractCoarrayRef(actual).has_value()};
bool actualIsAssumedSize{actualType.attrs().test(
characteristics::TypeAndShape::Attr::AssumedSize)};
bool dummyIsAssumedSize{dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedSize)};
bool dummyIsAsynchronous{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Asynchronous)};
bool dummyIsVolatile{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Volatile)};
bool dummyIsValue{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Value)};
if (actualIsPolymorphic && dummyIsPolymorphic &&
actualIsCoindexed) { // 15.5.2.4(2)
messages.Say(
"Coindexed polymorphic object may not be associated with a polymorphic %s"_err_en_US,
dummyName);
}
if (actualIsPolymorphic && !dummyIsPolymorphic &&
actualIsAssumedSize) { // 15.5.2.4(2)
messages.Say(
"Assumed-size polymorphic array may not be associated with a monomorphic %s"_err_en_US,
dummyName);
}
// Derived type actual argument checks
const Symbol *actualFirstSymbol{evaluate::GetFirstSymbol(actual)};
bool actualIsAsynchronous{
actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::ASYNCHRONOUS)};
bool actualIsVolatile{
actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::VOLATILE)};
const auto *derived{evaluate::GetDerivedTypeSpec(actualType.type())};
if (derived && !derived->IsVectorType()) {
if (dummy.type.type().IsAssumedType()) {
if (!derived->parameters().empty()) { // 15.5.2.4(2)
messages.Say(
"Actual argument associated with TYPE(*) %s may not have a parameterized derived type"_err_en_US,
dummyName);
}
if (const Symbol *
tbp{FindImmediateComponent(*derived, [](const Symbol &symbol) {
return symbol.has<ProcBindingDetails>();
})}) { // 15.5.2.4(2)
evaluate::SayWithDeclaration(messages, *tbp,
"Actual argument associated with TYPE(*) %s may not have type-bound procedure '%s'"_err_en_US,
dummyName, tbp->name());
}
auto finals{FinalsForDerivedTypeInstantiation(*derived)};
if (!finals.empty()) { // 15.5.2.4(2)
SourceName name{finals.front()->name()};
if (auto *msg{messages.Say(
"Actual argument associated with TYPE(*) %s may not have derived type '%s' with FINAL subroutine '%s'"_err_en_US,
dummyName, derived->typeSymbol().name(), name)}) {
msg->Attach(name, "FINAL subroutine '%s' in derived type '%s'"_en_US,
name, derived->typeSymbol().name());
}
}
}
if (actualIsCoindexed) {
if (dummy.intent != common::Intent::In && !dummyIsValue) {
if (auto bad{
FindAllocatableUltimateComponent(*derived)}) { // 15.5.2.4(6)
evaluate::SayWithDeclaration(messages, *bad,
"Coindexed actual argument with ALLOCATABLE ultimate component '%s' must be associated with a %s with VALUE or INTENT(IN) attributes"_err_en_US,
bad.BuildResultDesignatorName(), dummyName);
}
}
if (auto coarrayRef{evaluate::ExtractCoarrayRef(actual)}) { // C1537
const Symbol &coarray{coarrayRef->GetLastSymbol()};
if (const DeclTypeSpec * type{coarray.GetType()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (auto bad{semantics::FindPointerUltimateComponent(*derived)}) {
evaluate::SayWithDeclaration(messages, coarray,
"Coindexed object '%s' with POINTER ultimate component '%s' cannot be associated with %s"_err_en_US,
coarray.name(), bad.BuildResultDesignatorName(), dummyName);
}
}
}
}
}
if (actualIsVolatile != dummyIsVolatile) { // 15.5.2.4(22)
if (auto bad{semantics::FindCoarrayUltimateComponent(*derived)}) {
evaluate::SayWithDeclaration(messages, *bad,
"VOLATILE attribute must match for %s when actual argument has a coarray ultimate component '%s'"_err_en_US,
dummyName, bad.BuildResultDesignatorName());
}
}
}
// Rank and shape checks
const auto *actualLastSymbol{evaluate::GetLastSymbol(actual)};
if (actualLastSymbol) {
actualLastSymbol = &ResolveAssociations(*actualLastSymbol);
}
const ObjectEntityDetails *actualLastObject{actualLastSymbol
? actualLastSymbol->detailsIf<ObjectEntityDetails>()
: nullptr};
int actualRank{actualType.Rank()};
bool actualIsPointer{evaluate::IsObjectPointer(actual)};
bool actualIsAssumedRank{evaluate::IsAssumedRank(actual)};
if (dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedShape)) {
// 15.5.2.4(16)
if (actualIsAssumedRank) {
messages.Say(
"Assumed-rank actual argument may not be associated with assumed-shape %s"_err_en_US,
dummyName);
} else if (actualRank == 0) {
messages.Say(
"Scalar actual argument may not be associated with assumed-shape %s"_err_en_US,
dummyName);
} else if (actualIsAssumedSize && actualLastSymbol) {
evaluate::SayWithDeclaration(messages, *actualLastSymbol,
"Assumed-size array may not be associated with assumed-shape %s"_err_en_US,
dummyName);
}
} else if (dummyRank > 0) {
bool basicError{false};
if (actualRank == 0 && !actualIsAssumedRank &&
!dummyIsAllocatableOrPointer) {
// Actual is scalar, dummy is an array. F'2023 15.5.2.5p14
if (actualIsCoindexed) {
basicError = true;
messages.Say(
"Coindexed scalar actual argument must be associated with a scalar %s"_err_en_US,
dummyName);
}
bool actualIsArrayElement{IsArrayElement(actual)};
bool actualIsCKindCharacter{
actualType.type().category() == TypeCategory::Character &&
actualType.type().kind() == 1};
if (!actualIsCKindCharacter) {
if (!actualIsArrayElement &&
!(dummy.type.type().IsAssumedType() && dummyIsAssumedSize) &&
!dummyIsAssumedRank &&
!dummy.ignoreTKR.test(common::IgnoreTKR::Rank)) {
basicError = true;
messages.Say(
"Whole scalar actual argument may not be associated with a %s array"_err_en_US,
dummyName);
}
if (actualIsPolymorphic) {
basicError = true;
messages.Say(
"Polymorphic scalar may not be associated with a %s array"_err_en_US,
dummyName);
}
if (actualIsArrayElement && actualLastSymbol &&
!evaluate::IsContiguous(*actualLastSymbol, foldingContext) &&
!dummy.ignoreTKR.test(common::IgnoreTKR::Contiguous)) {
if (IsPointer(*actualLastSymbol)) {
basicError = true;
messages.Say(
"Element of pointer array may not be associated with a %s array"_err_en_US,
dummyName);
} else if (IsAssumedShape(*actualLastSymbol) &&
!dummy.ignoreTKR.test(common::IgnoreTKR::Contiguous)) {
basicError = true;
messages.Say(
"Element of assumed-shape array may not be associated with a %s array"_err_en_US,
dummyName);
}
}
}
}
// Storage sequence association (F'2023 15.5.2.12p3) checks.
// Character storage sequence association is checked in
// CheckCharacterActual().
if (!basicError &&
actualType.type().category() != TypeCategory::Character &&
CanAssociateWithStorageSequence(dummy) &&
!dummy.attrs.test(
characteristics::DummyDataObject::Attr::DeducedFromActual)) {
if (auto dummySize{evaluate::ToInt64(evaluate::Fold(
foldingContext, evaluate::GetSize(dummy.type.shape())))}) {
if (actualRank == 0 && !actualIsAssumedRank) {
if (evaluate::IsArrayElement(actual)) {
// Actual argument is a scalar array element
evaluate::DesignatorFolder folder{
context.foldingContext(), /*getLastComponent=*/true};
if (auto actualOffset{folder.FoldDesignator(actual)}) {
std::optional<std::int64_t> actualElements;
if (static_cast<std::size_t>(actualOffset->offset()) >=
actualOffset->symbol().size() ||
!evaluate::IsContiguous(
actualOffset->symbol(), foldingContext)) {
actualElements = 1;
} else if (auto actualSymType{evaluate::DynamicType::From(
actualOffset->symbol())}) {
if (auto actualSymTypeBytes{
evaluate::ToInt64(evaluate::Fold(foldingContext,
actualSymType->MeasureSizeInBytes(
foldingContext, false)))};
actualSymTypeBytes && *actualSymTypeBytes > 0) {
actualElements = (static_cast<std::int64_t>(
actualOffset->symbol().size()) -
actualOffset->offset()) /
*actualSymTypeBytes;
}
}
if (actualElements && *actualElements < *dummySize &&
(extentErrors ||
context.ShouldWarn(
common::UsageWarning::ShortArrayActual))) {
auto msg{
"Actual argument has fewer elements remaining in storage sequence (%jd) than %s array (%jd)"_warn_en_US};
if (extentErrors) {
msg.set_severity(parser::Severity::Error);
}
messages.Say(std::move(msg),
static_cast<std::intmax_t>(*actualElements), dummyName,
static_cast<std::intmax_t>(*dummySize));
}
}
}
} else { // actualRank > 0 || actualIsAssumedRank
if (auto actualSize{evaluate::ToInt64(evaluate::Fold(
foldingContext, evaluate::GetSize(actualType.shape())))};
actualSize && *actualSize < *dummySize &&
(extentErrors ||
context.ShouldWarn(common::UsageWarning::ShortArrayActual))) {
auto msg{
"Actual argument array has fewer elements (%jd) than %s array (%jd)"_warn_en_US};
if (extentErrors) {
msg.set_severity(parser::Severity::Error);
}
messages.Say(std::move(msg),
static_cast<std::intmax_t>(*actualSize), dummyName,
static_cast<std::intmax_t>(*dummySize));
}
}
}
}
}
if (actualLastObject && actualLastObject->IsCoarray() &&
IsAllocatable(*actualLastSymbol) && dummy.intent == common::Intent::Out &&
!(intrinsic &&
evaluate::AcceptsIntentOutAllocatableCoarray(
intrinsic->name))) { // C846
messages.Say(
"ALLOCATABLE coarray '%s' may not be associated with INTENT(OUT) %s"_err_en_US,
actualLastSymbol->name(), dummyName);
}
// Definability
bool actualIsVariable{evaluate::IsVariable(actual)};
if (scope) {
std::optional<parser::MessageFixedText> undefinableMessage;
if (dummy.intent == common::Intent::Out) {
undefinableMessage =
"Actual argument associated with INTENT(OUT) %s is not definable"_err_en_US;
} else if (dummy.intent == common::Intent::InOut) {
undefinableMessage =
"Actual argument associated with INTENT(IN OUT) %s is not definable"_err_en_US;
} else if (context.ShouldWarn(common::LanguageFeature::
UndefinableAsynchronousOrVolatileActual)) {
if (dummy.attrs.test(
characteristics::DummyDataObject::Attr::Asynchronous)) {
undefinableMessage =
"Actual argument associated with ASYNCHRONOUS %s is not definable"_warn_en_US;
} else if (dummy.attrs.test(
characteristics::DummyDataObject::Attr::Volatile)) {
undefinableMessage =
"Actual argument associated with VOLATILE %s is not definable"_warn_en_US;
}
}
if (undefinableMessage) {
// Problems with polymorphism are caught in the callee's definition.
DefinabilityFlags flags{DefinabilityFlag::PolymorphicOkInPure};
if (isElemental) { // 15.5.2.4(21)
flags.set(DefinabilityFlag::VectorSubscriptIsOk);
}
if (actualIsPointer && dummyIsPointer) { // 19.6.8
flags.set(DefinabilityFlag::PointerDefinition);
}
if (auto whyNot{WhyNotDefinable(messages.at(), *scope, flags, actual)}) {
if (whyNot->IsFatal()) {
if (auto *msg{
messages.Say(std::move(*undefinableMessage), dummyName)}) {
msg->Attach(
std::move(whyNot->set_severity(parser::Severity::Because)));
}
} else {
messages.Say(std::move(*whyNot));
}
}
}
}
// Cases when temporaries might be needed but must not be permitted.
bool actualIsContiguous{IsSimplyContiguous(actual, foldingContext)};
bool dummyIsAssumedShape{dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedShape)};
bool dummyIsContiguous{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Contiguous)};
if ((actualIsAsynchronous || actualIsVolatile) &&
(dummyIsAsynchronous || dummyIsVolatile) && !dummyIsValue) {
if (actualIsCoindexed) { // C1538
messages.Say(
"Coindexed ASYNCHRONOUS or VOLATILE actual argument may not be associated with %s with ASYNCHRONOUS or VOLATILE attributes unless VALUE"_err_en_US,
dummyName);
}
if ((actualRank > 0 || actualIsAssumedRank) && !actualIsContiguous) {
if (dummyIsContiguous ||
!(dummyIsAssumedShape || dummyIsAssumedRank ||
(actualIsPointer && dummyIsPointer))) { // C1539 & C1540
messages.Say(
"ASYNCHRONOUS or VOLATILE actual argument that is not simply contiguous may not be associated with a contiguous ASYNCHRONOUS or VOLATILE %s"_err_en_US,
dummyName);
}
}
}
// 15.5.2.6 -- dummy is ALLOCATABLE
bool actualIsAllocatable{evaluate::IsAllocatableDesignator(actual)};
bool dummyIsOptional{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Optional)};
bool actualIsNull{evaluate::IsNullPointer(actual)};
if (dummyIsAllocatable) {
if (actualIsAllocatable) {
if (actualIsCoindexed && dummy.intent != common::Intent::In) {
messages.Say(
"ALLOCATABLE %s must have INTENT(IN) to be associated with a coindexed actual argument"_err_en_US,
dummyName);
}
} else if (actualIsNull) {
if (dummyIsOptional) {
} else if (dummy.intent == common::Intent::In) {
// Extension (Intel, NAG, XLF): a NULL() pointer is an acceptable
// actual argument for an INTENT(IN) allocatable dummy, and it
// is treated as an unassociated allocatable.
if (context.ShouldWarn(
common::LanguageFeature::NullActualForAllocatable)) {
messages.Say(
"Allocatable %s is associated with a null pointer"_port_en_US,
dummyName);
}
} else {
messages.Say(
"A null pointer may not be associated with allocatable %s without INTENT(IN)"_err_en_US,
dummyName);
}
} else {
messages.Say(
"ALLOCATABLE %s must be associated with an ALLOCATABLE actual argument"_err_en_US,
dummyName);
}
if (!actualIsCoindexed && actualLastSymbol &&
actualLastSymbol->Corank() != dummy.type.corank()) {
messages.Say(
"ALLOCATABLE %s has corank %d but actual argument has corank %d"_err_en_US,
dummyName, dummy.type.corank(), actualLastSymbol->Corank());
}
}
// 15.5.2.7 -- dummy is POINTER
if (dummyIsPointer) {
if (actualIsPointer || dummy.intent == common::Intent::In) {
if (scope) {
semantics::CheckPointerAssignment(context, messages.at(), dummyName,
dummy, actual, *scope,
/*isAssumedRank=*/dummyIsAssumedRank);
}
} else if (!actualIsPointer) {
messages.Say(
"Actual argument associated with POINTER %s must also be POINTER unless INTENT(IN)"_err_en_US,
dummyName);
}
}
// 15.5.2.5 -- actual & dummy are both POINTER or both ALLOCATABLE
// For INTENT(IN), and for a polymorphic actual being associated with a
// monomorphic dummy, we relax two checks that are in Fortran to
// prevent the callee from changing the type or to avoid having
// to use a descriptor.
if (!typesCompatible) {
// Don't pile on the errors emitted above
} else if ((actualIsPointer && dummyIsPointer) ||
(actualIsAllocatable && dummyIsAllocatable)) {
bool actualIsUnlimited{actualType.type().IsUnlimitedPolymorphic()};
bool dummyIsUnlimited{dummy.type.type().IsUnlimitedPolymorphic()};
bool checkTypeCompatibility{true};
if (actualIsUnlimited != dummyIsUnlimited) {
checkTypeCompatibility = false;
if (dummyIsUnlimited && dummy.intent == common::Intent::In &&
context.IsEnabled(common::LanguageFeature::RelaxedIntentInChecking)) {
if (context.ShouldWarn(
common::LanguageFeature::RelaxedIntentInChecking)) {
messages.Say(
"If a POINTER or ALLOCATABLE dummy or actual argument is unlimited polymorphic, both should be so"_port_en_US);
}
} else {
messages.Say(
"If a POINTER or ALLOCATABLE dummy or actual argument is unlimited polymorphic, both must be so"_err_en_US);
}
} else if (dummyIsPolymorphic != actualIsPolymorphic) {
if (dummyIsPolymorphic && dummy.intent == common::Intent::In &&
context.IsEnabled(common::LanguageFeature::RelaxedIntentInChecking)) {
if (context.ShouldWarn(
common::LanguageFeature::RelaxedIntentInChecking)) {
messages.Say(
"If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both should be so"_port_en_US);
}
} else if (actualIsPolymorphic &&
context.IsEnabled(common::LanguageFeature::
PolymorphicActualAllocatableOrPointerToMonomorphicDummy)) {
if (context.ShouldWarn(common::LanguageFeature::
PolymorphicActualAllocatableOrPointerToMonomorphicDummy)) {
messages.Say(
"If a POINTER or ALLOCATABLE actual argument is polymorphic, the corresponding dummy argument should also be so"_port_en_US);
}
} else {
checkTypeCompatibility = false;
messages.Say(
"If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both must be so"_err_en_US);
}
}
if (checkTypeCompatibility && !actualIsUnlimited) {
if (!actualType.type().IsTkCompatibleWith(dummy.type.type())) {
if (dummy.intent == common::Intent::In &&
context.IsEnabled(
common::LanguageFeature::RelaxedIntentInChecking)) {
if (context.ShouldWarn(
common::LanguageFeature::RelaxedIntentInChecking)) {
messages.Say(
"POINTER or ALLOCATABLE dummy and actual arguments should have the same declared type and kind"_port_en_US);
}
} else {
messages.Say(
"POINTER or ALLOCATABLE dummy and actual arguments must have the same declared type and kind"_err_en_US);
}
}
// 15.5.2.5(4)
const auto *derived{evaluate::GetDerivedTypeSpec(actualType.type())};
if ((derived &&
!DefersSameTypeParameters(*derived,
*evaluate::GetDerivedTypeSpec(dummy.type.type()))) ||
dummy.type.type().HasDeferredTypeParameter() !=
actualType.type().HasDeferredTypeParameter()) {
messages.Say(
"Dummy and actual arguments must defer the same type parameters when POINTER or ALLOCATABLE"_err_en_US);
}
}
}
// 15.5.2.8 -- coarray dummy arguments
if (dummy.type.corank() > 0) {
if (actualType.corank() == 0) {
messages.Say(
"Actual argument associated with coarray %s must be a coarray"_err_en_US,
dummyName);
}
if (dummyIsVolatile) {
if (!actualIsVolatile) {
messages.Say(
"non-VOLATILE coarray may not be associated with VOLATILE coarray %s"_err_en_US,
dummyName);
}
} else {
if (actualIsVolatile) {
messages.Say(
"VOLATILE coarray may not be associated with non-VOLATILE coarray %s"_err_en_US,
dummyName);
}
}
if (actualRank == dummyRank && !actualIsContiguous) {
if (dummyIsContiguous) {
messages.Say(
"Actual argument associated with a CONTIGUOUS coarray %s must be simply contiguous"_err_en_US,
dummyName);
} else if (!dummyIsAssumedShape && !dummyIsAssumedRank) {
messages.Say(
"Actual argument associated with coarray %s (not assumed shape or rank) must be simply contiguous"_err_en_US,
dummyName);
}
}
}
// NULL(MOLD=) checking for non-intrinsic procedures
if (!intrinsic && !dummyIsAllocatableOrPointer && !dummyIsOptional &&
actualIsNull) {
messages.Say(
"Actual argument associated with %s may not be null pointer %s"_err_en_US,
dummyName, actual.AsFortran());
}
// Warn about dubious actual argument association with a TARGET dummy
// argument
if (dummy.attrs.test(characteristics::DummyDataObject::Attr::Target) &&
context.ShouldWarn(common::UsageWarning::NonTargetPassedToTarget)) {
bool actualIsTemp{!actualIsVariable || HasVectorSubscript(actual) ||
evaluate::ExtractCoarrayRef(actual)};
if (actualIsTemp) {
messages.Say(
"Any pointer associated with TARGET %s during this call will not be associated with the value of '%s' afterwards"_warn_en_US,
dummyName, actual.AsFortran());
} else {
auto actualSymbolVector{GetSymbolVector(actual)};
if (!evaluate::GetLastTarget(actualSymbolVector)) {
messages.Say(
"Any pointer associated with TARGET %s during this call must not be used afterwards, as '%s' is not a target"_warn_en_US,
dummyName, actual.AsFortran());
}
}
}
// CUDA specific checks
// TODO: These are disabled in OpenACC constructs, which may not be
// correct when the target is not a GPU.
if (!intrinsic &&
!dummy.attrs.test(characteristics::DummyDataObject::Attr::Value) &&
!FindOpenACCConstructContaining(scope)) {
std::optional<common::CUDADataAttr> actualDataAttr, dummyDataAttr;
if (const auto *actualObject{actualLastSymbol
? actualLastSymbol->detailsIf<ObjectEntityDetails>()
: nullptr}) {
actualDataAttr = actualObject->cudaDataAttr();
}
dummyDataAttr = dummy.cudaDataAttr;
// Treat MANAGED like DEVICE for nonallocatable nonpointer arguments to
// device subprograms
if (procedure.cudaSubprogramAttrs.value_or(
common::CUDASubprogramAttrs::Host) !=
common::CUDASubprogramAttrs::Host &&
!dummy.attrs.test(
characteristics::DummyDataObject::Attr::Allocatable) &&
!dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer)) {
if (!dummyDataAttr || *dummyDataAttr == common::CUDADataAttr::Managed) {
dummyDataAttr = common::CUDADataAttr::Device;
}
if ((!actualDataAttr && FindCUDADeviceContext(scope)) ||
(actualDataAttr &&
*actualDataAttr == common::CUDADataAttr::Managed)) {
actualDataAttr = common::CUDADataAttr::Device;
}
}
if (!common::AreCompatibleCUDADataAttrs(dummyDataAttr, actualDataAttr,
dummy.ignoreTKR,
/*allowUnifiedMatchingRule=*/true, &context.languageFeatures())) {
auto toStr{[](std::optional<common::CUDADataAttr> x) {
return x ? "ATTRIBUTES("s +
parser::ToUpperCaseLetters(common::EnumToString(*x)) + ")"s
: "no CUDA data attribute"s;
}};
messages.Say(
"%s has %s but its associated actual argument has %s"_err_en_US,
dummyName, toStr(dummyDataAttr), toStr(actualDataAttr));
}
}
// Warning for breaking F'2023 change with character allocatables
if (intrinsic && dummy.intent != common::Intent::In) {
WarnOnDeferredLengthCharacterScalar(
context, &actual, messages.at(), dummyName.c_str());
}
// %VAL() and %REF() checking for explicit interface
if ((arg.isPercentRef() || arg.isPercentVal()) &&
dummy.IsPassedByDescriptor(procedure.IsBindC())) {
messages.Say(
"%%VAL or %%REF are not allowed for %s that must be passed by means of a descriptor"_err_en_US,
dummyName);
}
if (arg.isPercentVal() &&
(!actualType.type().IsLengthlessIntrinsicType() ||
actualType.Rank() != 0)) {
messages.Say(
"%VAL argument must be a scalar numeric or logical expression"_err_en_US);
}
}
static void CheckProcedureArg(evaluate::ActualArgument &arg,
const characteristics::Procedure &proc,
const characteristics::DummyProcedure &dummy, const std::string &dummyName,
SemanticsContext &context, bool ignoreImplicitVsExplicit) {
evaluate::FoldingContext &foldingContext{context.foldingContext()};
parser::ContextualMessages &messages{foldingContext.messages()};
auto restorer{
messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
const characteristics::Procedure &interface { dummy.procedure.value() };
if (const auto *expr{arg.UnwrapExpr()}) {
bool dummyIsPointer{
dummy.attrs.test(characteristics::DummyProcedure::Attr::Pointer)};
const auto *argProcDesignator{
std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
const auto *argProcSymbol{
argProcDesignator ? argProcDesignator->GetSymbol() : nullptr};
if (argProcSymbol) {
if (const auto *subp{
argProcSymbol->GetUltimate().detailsIf<SubprogramDetails>()}) {
if (subp->stmtFunction()) {
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Statement function '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
return;
}
} else if (argProcSymbol->has<ProcBindingDetails>()) {
if (!context.IsEnabled(common::LanguageFeature::BindingAsProcedure) ||
context.ShouldWarn(common::LanguageFeature::BindingAsProcedure)) {
parser::MessageFixedText msg{
"Procedure binding '%s' passed as an actual argument"_port_en_US};
if (!context.IsEnabled(common::LanguageFeature::BindingAsProcedure)) {
msg.set_severity(parser::Severity::Error);
}
evaluate::SayWithDeclaration(
messages, *argProcSymbol, std::move(msg), argProcSymbol->name());
}
}
}
if (auto argChars{characteristics::DummyArgument::FromActual(
"actual argument", *expr, foldingContext,
/*forImplicitInterface=*/true)}) {
if (!argChars->IsTypelessIntrinsicDummy()) {
if (auto *argProc{
std::get_if<characteristics::DummyProcedure>(&argChars->u)}) {
characteristics::Procedure &argInterface{argProc->procedure.value()};
argInterface.attrs.reset(
characteristics::Procedure::Attr::NullPointer);
if (!argProcSymbol || argProcSymbol->attrs().test(Attr::INTRINSIC)) {
// It's ok to pass ELEMENTAL unrestricted intrinsic functions.
argInterface.attrs.reset(
characteristics::Procedure::Attr::Elemental);
} else if (argInterface.attrs.test(
characteristics::Procedure::Attr::Elemental)) {
if (argProcSymbol) { // C1533
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
return; // avoid piling on with checks below
} else {
argInterface.attrs.reset(
characteristics::Procedure::Attr::NullPointer);
}
}
if (interface.HasExplicitInterface()) {
std::string whyNot;
std::optional<std::string> warning;
if (!interface.IsCompatibleWith(argInterface,
ignoreImplicitVsExplicit, &whyNot,
/*specificIntrinsic=*/nullptr, &warning)) {
// 15.5.2.9(1): Explicit interfaces must match
if (argInterface.HasExplicitInterface()) {
messages.Say(
"Actual procedure argument has interface incompatible with %s: %s"_err_en_US,
dummyName, whyNot);
return;
} else if (proc.IsPure()) {
messages.Say(
"Actual procedure argument for %s of a PURE procedure must have an explicit interface"_err_en_US,
dummyName);
} else if (context.ShouldWarn(
common::UsageWarning::ImplicitInterfaceActual)) {
messages.Say(
"Actual procedure argument has an implicit interface which is not known to be compatible with %s which has an explicit interface"_warn_en_US,
dummyName);
}
} else if (warning &&
context.ShouldWarn(common::UsageWarning::ProcDummyArgShapes)) {
messages.Say(
"Actual procedure argument has possible interface incompatibility with %s: %s"_warn_en_US,
dummyName, std::move(*warning));
}
} else { // 15.5.2.9(2,3)
if (interface.IsSubroutine() && argInterface.IsFunction()) {
messages.Say(
"Actual argument associated with procedure %s is a function but must be a subroutine"_err_en_US,
dummyName);
} else if (interface.IsFunction()) {
if (argInterface.IsFunction()) {
std::string whyNot;
if (!interface.functionResult->IsCompatibleWith(
*argInterface.functionResult, &whyNot)) {
messages.Say(
"Actual argument function associated with procedure %s is not compatible: %s"_err_en_US,
dummyName, whyNot);
}
} else if (argInterface.IsSubroutine()) {
messages.Say(
"Actual argument associated with procedure %s is a subroutine but must be a function"_err_en_US,
dummyName);
}
}
}
} else {
messages.Say(
"Actual argument associated with procedure %s is not a procedure"_err_en_US,
dummyName);
}
} else if (IsNullPointer(*expr)) {
if (!dummyIsPointer &&
!dummy.attrs.test(
characteristics::DummyProcedure::Attr::Optional)) {
messages.Say(
"Actual argument associated with procedure %s is a null pointer"_err_en_US,
dummyName);
}
} else {
messages.Say(
"Actual argument associated with procedure %s is typeless"_err_en_US,
dummyName);
}
}
if (dummyIsPointer && dummy.intent != common::Intent::In) {
const Symbol *last{GetLastSymbol(*expr)};
if (last && IsProcedurePointer(*last)) {
if (dummy.intent != common::Intent::Default &&
IsIntentIn(last->GetUltimate())) { // 19.6.8
messages.Say(
"Actual argument associated with procedure pointer %s may not be INTENT(IN)"_err_en_US,
dummyName);
}
} else if (!(dummy.intent == common::Intent::Default &&
IsNullProcedurePointer(*expr))) {
// 15.5.2.9(5) -- dummy procedure POINTER
// Interface compatibility has already been checked above
messages.Say(
"Actual argument associated with procedure pointer %s must be a pointer unless INTENT(IN)"_err_en_US,
dummyName);
}
}
} else {
messages.Say(
"Assumed-type argument may not be forwarded as procedure %s"_err_en_US,
dummyName);
}
}
// Allow BOZ literal actual arguments when they can be converted to a known
// dummy argument type
static void ConvertBOZLiteralArg(
evaluate::ActualArgument &arg, const evaluate::DynamicType &type) {
if (auto *expr{arg.UnwrapExpr()}) {
if (IsBOZLiteral(*expr)) {
if (auto converted{evaluate::ConvertToType(type, SomeExpr{*expr})}) {
arg = std::move(*converted);
}
}
}
}
static void CheckExplicitInterfaceArg(evaluate::ActualArgument &arg,
const characteristics::DummyArgument &dummy,
const characteristics::Procedure &proc, SemanticsContext &context,
const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic,
bool allowActualArgumentConversions, bool extentErrors,
bool ignoreImplicitVsExplicit) {
evaluate::FoldingContext &foldingContext{context.foldingContext()};
auto &messages{foldingContext.messages()};
std::string dummyName{"dummy argument"};
if (!dummy.name.empty()) {
dummyName += " '"s + parser::ToLowerCaseLetters(dummy.name) + "='";
}
auto restorer{
messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
auto CheckActualArgForLabel = [&](evaluate::ActualArgument &arg) {
if (arg.isAlternateReturn()) {
messages.Say(
"Alternate return label '%d' cannot be associated with %s"_err_en_US,
arg.GetLabel(), dummyName);
return false;
} else {
return true;
}
};
common::visit(
common::visitors{
[&](const characteristics::DummyDataObject &object) {
if (CheckActualArgForLabel(arg)) {
ConvertBOZLiteralArg(arg, object.type.type());
if (auto *expr{arg.UnwrapExpr()}) {
if (auto type{characteristics::TypeAndShape::Characterize(
*expr, foldingContext)}) {
arg.set_dummyIntent(object.intent);
bool isElemental{
object.type.Rank() == 0 && proc.IsElemental()};
CheckExplicitDataArg(object, dummyName, *expr, *type,
isElemental, context, foldingContext, scope, intrinsic,
allowActualArgumentConversions, extentErrors, proc, arg);
} else if (object.type.type().IsTypelessIntrinsicArgument() &&
IsBOZLiteral(*expr)) {
// ok
} else if (object.type.type().IsTypelessIntrinsicArgument() &&
evaluate::IsNullObjectPointer(*expr)) {
// ok, ASSOCIATED(NULL(without MOLD=))
} else if (object.type.attrs().test(characteristics::
TypeAndShape::Attr::AssumedRank) &&
evaluate::IsNullObjectPointer(*expr) &&
(object.attrs.test(
characteristics::DummyDataObject::Attr::Allocatable) ||
object.attrs.test(
characteristics::DummyDataObject::Attr::Pointer) ||
!object.attrs.test(characteristics::DummyDataObject::
Attr::Optional))) {
messages.Say(
"NULL() without MOLD= must not be associated with an assumed-rank dummy argument that is ALLOCATABLE, POINTER, or non-OPTIONAL"_err_en_US);
} else if ((object.attrs.test(characteristics::DummyDataObject::
Attr::Pointer) ||
object.attrs.test(characteristics::
DummyDataObject::Attr::Optional)) &&
evaluate::IsNullObjectPointer(*expr)) {
// FOO(NULL(without MOLD=))
if (object.type.type().IsAssumedLengthCharacter()) {
messages.Say(
"Actual argument associated with %s is a NULL() pointer without a MOLD= to provide a character length"_err_en_US,
dummyName);
} else if (const DerivedTypeSpec *
derived{GetDerivedTypeSpec(object.type.type())}) {
for (const auto &[pName, pValue] : derived->parameters()) {
if (pValue.isAssumed()) {
messages.Say(
"Actual argument associated with %s is a NULL() pointer without a MOLD= to provide a value for the assumed type parameter '%s'"_err_en_US,
dummyName, pName.ToString());
break;
}
}
}
} else if (object.attrs.test(characteristics::DummyDataObject::
Attr::Allocatable) &&
evaluate::IsNullPointer(*expr)) {
if (object.intent == common::Intent::In) {
// Extension (Intel, NAG, XLF); see CheckExplicitDataArg.
if (context.ShouldWarn(common::LanguageFeature::
NullActualForAllocatable)) {
messages.Say(
"Allocatable %s is associated with NULL()"_port_en_US,
dummyName);
}
} else {
messages.Say(
"NULL() actual argument '%s' may not be associated with allocatable %s without INTENT(IN)"_err_en_US,
expr->AsFortran(), dummyName);
}
} else {
messages.Say(
"Actual argument '%s' associated with %s is not a variable or typed expression"_err_en_US,
expr->AsFortran(), dummyName);
}
} else {
const Symbol &assumed{DEREF(arg.GetAssumedTypeDummy())};
if (!object.type.type().IsAssumedType()) {
messages.Say(
"Assumed-type '%s' may be associated only with an assumed-type %s"_err_en_US,
assumed.name(), dummyName);
} else if (object.type.attrs().test(characteristics::
TypeAndShape::Attr::AssumedRank) &&
!IsAssumedShape(assumed) &&
!evaluate::IsAssumedRank(assumed)) {
messages.Say( // C711
"Assumed-type '%s' must be either assumed shape or assumed rank to be associated with assumed rank %s"_err_en_US,
assumed.name(), dummyName);
}
}
}
},
[&](const characteristics::DummyProcedure &dummy) {
if (CheckActualArgForLabel(arg)) {
CheckProcedureArg(arg, proc, dummy, dummyName, context,
ignoreImplicitVsExplicit);
}
},
[&](const characteristics::AlternateReturn &) {
// All semantic checking is done elsewhere
},
},
dummy.u);
}
static void RearrangeArguments(const characteristics::Procedure &proc,
evaluate::ActualArguments &actuals, parser::ContextualMessages &messages) {
CHECK(proc.HasExplicitInterface());
if (actuals.size() < proc.dummyArguments.size()) {
actuals.resize(proc.dummyArguments.size());
} else if (actuals.size() > proc.dummyArguments.size()) {
messages.Say(
"Too many actual arguments (%zd) passed to procedure that expects only %zd"_err_en_US,
actuals.size(), proc.dummyArguments.size());
}
std::map<std::string, evaluate::ActualArgument> kwArgs;
bool anyKeyword{false};
int which{1};
for (auto &x : actuals) {
if (!x) {
} else if (x->keyword()) {
auto emplaced{
kwArgs.try_emplace(x->keyword()->ToString(), std::move(*x))};
if (!emplaced.second) {
messages.Say(*x->keyword(),
"Argument keyword '%s=' appears on more than one effective argument in this procedure reference"_err_en_US,
*x->keyword());
}
x.reset();
anyKeyword = true;
} else if (anyKeyword) {
messages.Say(x ? x->sourceLocation() : std::nullopt,
"Actual argument #%d without a keyword may not follow any actual argument with a keyword"_err_en_US,
which);
}
++which;
}
if (!kwArgs.empty()) {
int index{0};
for (const auto &dummy : proc.dummyArguments) {
if (!dummy.name.empty()) {
auto iter{kwArgs.find(dummy.name)};
if (iter != kwArgs.end()) {
evaluate::ActualArgument &x{iter->second};
if (actuals[index]) {
messages.Say(*x.keyword(),
"Keyword argument '%s=' has already been specified positionally (#%d) in this procedure reference"_err_en_US,
*x.keyword(), index + 1);
} else {
actuals[index] = std::move(x);
}
kwArgs.erase(iter);
}
}
++index;
}
for (auto &bad : kwArgs) {
evaluate::ActualArgument &x{bad.second};
messages.Say(*x.keyword(),
"Argument keyword '%s=' is not recognized for this procedure reference"_err_en_US,
*x.keyword());
}
}
}
// 15.8.1(3) -- In a reference to an elemental procedure, if any argument is an
// array, each actual argument that corresponds to an INTENT(OUT) or
// INTENT(INOUT) dummy argument shall be an array. The actual argument to an
// ELEMENTAL procedure must conform.
static bool CheckElementalConformance(parser::ContextualMessages &messages,
const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
evaluate::FoldingContext &context) {
std::optional<evaluate::Shape> shape;
std::string shapeName;
int index{0};
bool hasArrayArg{false};
for (const auto &arg : actuals) {
if (arg && !arg->isAlternateReturn() && arg->Rank() > 0) {
hasArrayArg = true;
break;
}
}
for (const auto &arg : actuals) {
const auto &dummy{proc.dummyArguments.at(index++)};
if (arg) {
if (const auto *expr{arg->UnwrapExpr()}) {
if (auto argShape{evaluate::GetShape(context, *expr)}) {
if (GetRank(*argShape) > 0) {
std::string argName{"actual argument ("s + expr->AsFortran() +
") corresponding to dummy argument #" + std::to_string(index) +
" ('" + dummy.name + "')"};
if (shape) {
auto tristate{evaluate::CheckConformance(messages, *shape,
*argShape, evaluate::CheckConformanceFlags::None,
shapeName.c_str(), argName.c_str())};
if (tristate && !*tristate) {
return false;
}
} else {
shape = std::move(argShape);
shapeName = argName;
}
} else if ((dummy.GetIntent() == common::Intent::Out ||
dummy.GetIntent() == common::Intent::InOut) &&
hasArrayArg) {
messages.Say(
"In an elemental procedure reference with at least one array argument, actual argument %s that corresponds to an INTENT(OUT) or INTENT(INOUT) dummy argument must be an array"_err_en_US,
expr->AsFortran());
}
}
}
}
}
return true;
}
// ASSOCIATED (16.9.16)
static void CheckAssociated(evaluate::ActualArguments &arguments,
SemanticsContext &semanticsContext, const Scope *scope) {
evaluate::FoldingContext &foldingContext{semanticsContext.foldingContext()};
parser::ContextualMessages &messages{foldingContext.messages()};
bool ok{true};
if (arguments.size() < 2) {
return;
}
if (const auto &pointerArg{arguments[0]}) {
if (const auto *pointerExpr{pointerArg->UnwrapExpr()}) {
if (!IsPointer(*pointerExpr)) {
messages.Say(pointerArg->sourceLocation(),
"POINTER= argument of ASSOCIATED() must be a pointer"_err_en_US);
return;
}
if (const auto &targetArg{arguments[1]}) {
// The standard requires that the TARGET= argument, when present,
// be a valid RHS for a pointer assignment that has the POINTER=
// argument as its LHS. Some popular compilers misinterpret this
// requirement more strongly than necessary, and actually validate
// the POINTER= argument as if it were serving as the LHS of a pointer
// assignment. This, perhaps unintentionally, excludes function
// results, including NULL(), from being used there, as well as
// INTENT(IN) dummy pointers. Detect these conditions and emit
// portability warnings.
if (semanticsContext.ShouldWarn(common::UsageWarning::Portability)) {
if (!evaluate::ExtractDataRef(*pointerExpr) &&
!evaluate::IsProcedurePointer(*pointerExpr)) {
messages.Say(pointerArg->sourceLocation(),
"POINTER= argument of ASSOCIATED() is required by some other compilers to be a pointer"_port_en_US);
} else if (scope && !evaluate::UnwrapProcedureRef(*pointerExpr)) {
if (auto whyNot{WhyNotDefinable(
pointerArg->sourceLocation().value_or(messages.at()),
*scope,
DefinabilityFlags{DefinabilityFlag::PointerDefinition},
*pointerExpr)}) {
if (whyNot->IsFatal()) {
if (auto *msg{messages.Say(pointerArg->sourceLocation(),
"POINTER= argument of ASSOCIATED() is required by some other compilers to be a valid left-hand side of a pointer assignment statement"_port_en_US)}) {
msg->Attach(std::move(
whyNot->set_severity(parser::Severity::Because)));
}
} else {
messages.Say(std::move(*whyNot));
}
}
}
}
if (const auto *targetExpr{targetArg->UnwrapExpr()}) {
if (IsProcedurePointer(*pointerExpr) &&
!IsBareNullPointer(pointerExpr)) { // POINTER= is a procedure
if (auto pointerProc{characteristics::Procedure::Characterize(
*pointerExpr, foldingContext)}) {
if (IsBareNullPointer(targetExpr)) {
} else if (IsProcedurePointerTarget(*targetExpr)) {
if (auto targetProc{characteristics::Procedure::Characterize(
*targetExpr, foldingContext)}) {
bool isCall{!!UnwrapProcedureRef(*targetExpr)};
std::string whyNot;
std::optional<std::string> warning;
const auto *targetProcDesignator{
evaluate::UnwrapExpr<evaluate::ProcedureDesignator>(
*targetExpr)};
const evaluate::SpecificIntrinsic *specificIntrinsic{
targetProcDesignator
? targetProcDesignator->GetSpecificIntrinsic()
: nullptr};
std::optional<parser::MessageFixedText> msg{
CheckProcCompatibility(isCall, pointerProc, &*targetProc,
specificIntrinsic, whyNot, warning,
/*ignoreImplicitVsExplicit=*/false)};
if (!msg && warning &&
semanticsContext.ShouldWarn(
common::UsageWarning::ProcDummyArgShapes)) {
msg =
"Procedures '%s' and '%s' may not be completely compatible: %s"_warn_en_US;
whyNot = std::move(*warning);
} else if (msg &&
msg->severity() != parser::Severity::Error &&
!semanticsContext.ShouldWarn(
common::UsageWarning::ProcPointerCompatibility)) {
msg.reset();
}
if (msg) {
msg->set_severity(parser::Severity::Warning);
messages.Say(std::move(*msg),
"pointer '" + pointerExpr->AsFortran() + "'",
targetExpr->AsFortran(), whyNot);
}
}
} else if (!IsNullProcedurePointer(*targetExpr)) {
messages.Say(
"POINTER= argument '%s' is a procedure pointer but the TARGET= argument '%s' is not a procedure or procedure pointer"_err_en_US,
pointerExpr->AsFortran(), targetExpr->AsFortran());
}
}
} else if (IsVariable(*targetExpr) || IsNullPointer(*targetExpr)) {
// Object pointer and target
if (ExtractDataRef(*targetExpr)) {
if (SymbolVector symbols{GetSymbolVector(*targetExpr)};
!evaluate::GetLastTarget(symbols)) {
parser::Message *msg{messages.Say(targetArg->sourceLocation(),
"TARGET= argument '%s' must have either the POINTER or the TARGET attribute"_err_en_US,
targetExpr->AsFortran())};
for (SymbolRef ref : symbols) {
msg = evaluate::AttachDeclaration(msg, *ref);
}
} else if (HasVectorSubscript(*targetExpr) ||
ExtractCoarrayRef(*targetExpr)) {
messages.Say(targetArg->sourceLocation(),
"TARGET= argument '%s' may not have a vector subscript or coindexing"_err_en_US,
targetExpr->AsFortran());
}
}
if (const auto pointerType{pointerArg->GetType()}) {
if (const auto targetType{targetArg->GetType()}) {
ok = pointerType->IsTkCompatibleWith(*targetType);
}
}
} else {
messages.Say(
"POINTER= argument '%s' is an object pointer but the TARGET= argument '%s' is not a variable"_err_en_US,
pointerExpr->AsFortran(), targetExpr->AsFortran());
}
if (!IsAssumedRank(*pointerExpr)) {
if (IsAssumedRank(*targetExpr)) {
messages.Say(
"TARGET= argument '%s' may not be assumed-rank when POINTER= argument is not"_err_en_US,
pointerExpr->AsFortran());
} else if (pointerExpr->Rank() != targetExpr->Rank()) {
messages.Say(
"POINTER= argument and TARGET= argument have incompatible ranks %d and %d"_err_en_US,
pointerExpr->Rank(), targetExpr->Rank());
}
}
}
}
}
} else {
// No arguments to ASSOCIATED()
ok = false;
}
if (!ok) {
messages.Say(
"Arguments of ASSOCIATED() must be a pointer and an optional valid target"_err_en_US);
}
}
// IMAGE_INDEX (F'2023 16.9.107)
static void CheckImage_Index(evaluate::ActualArguments &arguments,
parser::ContextualMessages &messages) {
if (arguments[1] && arguments[0]) {
if (const auto subArrShape{
evaluate::GetShape(arguments[1]->UnwrapExpr())}) {
if (const auto *coarrayArgSymbol{UnwrapWholeSymbolOrComponentDataRef(
arguments[0]->UnwrapExpr())}) {
const auto coarrayArgCorank = coarrayArgSymbol->Corank();
if (const auto subArrSize = evaluate::ToInt64(*subArrShape->front())) {
if (subArrSize != coarrayArgCorank) {
messages.Say(arguments[1]->sourceLocation(),
"The size of 'SUB=' (%jd) for intrinsic 'image_index' must be equal to the corank of 'COARRAY=' (%d)"_err_en_US,
static_cast<std::int64_t>(*subArrSize), coarrayArgCorank);
}
}
}
}
}
}
// Ensure that any optional argument that might be absent at run time
// does not require data conversion.
static void CheckMaxMin(const characteristics::Procedure &proc,
evaluate::ActualArguments &arguments,
parser::ContextualMessages &messages) {
if (proc.functionResult) {
if (const auto *typeAndShape{proc.functionResult->GetTypeAndShape()}) {
for (std::size_t j{2}; j < arguments.size(); ++j) {
if (arguments[j]) {
if (const auto *expr{arguments[j]->UnwrapExpr()};
expr && evaluate::MayBePassedAsAbsentOptional(*expr)) {
if (auto thisType{expr->GetType()}) {
if (thisType->category() == TypeCategory::Character &&
typeAndShape->type().category() == TypeCategory::Character &&
thisType->kind() == typeAndShape->type().kind()) {
// don't care about lengths
} else if (*thisType != typeAndShape->type()) {
messages.Say(arguments[j]->sourceLocation(),
"An actual argument to MAX/MIN requiring data conversion may not be OPTIONAL, POINTER, or ALLOCATABLE"_err_en_US);
}
}
}
}
}
}
}
}
// MOVE_ALLOC (F'2023 16.9.147)
static void CheckMove_Alloc(evaluate::ActualArguments &arguments,
parser::ContextualMessages &messages) {
if (arguments.size() >= 1) {
evaluate::CheckForCoindexedObject(
messages, arguments[0], "move_alloc", "from");
}
if (arguments.size() >= 2) {
evaluate::CheckForCoindexedObject(
messages, arguments[1], "move_alloc", "to");
}
if (arguments.size() >= 3) {
evaluate::CheckForCoindexedObject(
messages, arguments[2], "move_alloc", "stat");
}
if (arguments.size() >= 4) {
evaluate::CheckForCoindexedObject(
messages, arguments[3], "move_alloc", "errmsg");
}
if (arguments.size() >= 2 && arguments[0] && arguments[1]) {
for (int j{0}; j < 2; ++j) {
if (const Symbol *
whole{UnwrapWholeSymbolOrComponentDataRef(arguments[j])};
!whole || !IsAllocatable(whole->GetUltimate())) {
messages.Say(*arguments[j]->sourceLocation(),
"Argument #%d to MOVE_ALLOC must be allocatable"_err_en_US, j + 1);
}
}
auto type0{arguments[0]->GetType()};
auto type1{arguments[1]->GetType()};
if (type0 && type1 && type0->IsPolymorphic() && !type1->IsPolymorphic()) {
messages.Say(arguments[1]->sourceLocation(),
"When MOVE_ALLOC(FROM=) is polymorphic, TO= must also be polymorphic"_err_en_US);
}
}
}
// PRESENT (F'2023 16.9.163)
static void CheckPresent(evaluate::ActualArguments &arguments,
parser::ContextualMessages &messages) {
if (arguments.size() == 1) {
if (const auto &arg{arguments[0]}; arg) {
const Symbol *symbol{nullptr};
if (const auto *expr{arg->UnwrapExpr()}) {
if (const auto *proc{
std::get_if<evaluate::ProcedureDesignator>(&expr->u)}) {
symbol = proc->GetSymbol();
} else {
symbol = evaluate::UnwrapWholeSymbolDataRef(*expr);
}
} else {
symbol = arg->GetAssumedTypeDummy();
}
if (!symbol || !symbol->attrs().test(semantics::Attr::OPTIONAL)) {
messages.Say(arg ? arg->sourceLocation() : messages.at(),
"Argument of PRESENT() must be the name of a whole OPTIONAL dummy argument"_err_en_US);
}
}
}
}
// REDUCE (F'2023 16.9.173)
static void CheckReduce(
evaluate::ActualArguments &arguments, evaluate::FoldingContext &context) {
std::optional<evaluate::DynamicType> arrayType;
parser::ContextualMessages &messages{context.messages()};
if (const auto &array{arguments[0]}) {
arrayType = array->GetType();
if (!arguments[/*identity=*/4]) {
if (const auto *expr{array->UnwrapExpr()}) {
if (auto shape{
evaluate::GetShape(context, *expr, /*invariantOnly=*/false)}) {
if (const auto &dim{arguments[2]}; dim && array->Rank() > 1) {
// Partial reduction
auto dimVal{evaluate::ToInt64(dim->UnwrapExpr())};
std::int64_t j{0};
int zeroDims{0};
bool isSelectedDimEmpty{false};
for (const auto &extent : *shape) {
++j;
if (evaluate::ToInt64(extent) == 0) {
++zeroDims;
isSelectedDimEmpty |= dimVal && j == *dimVal;
}
}
if (isSelectedDimEmpty && zeroDims == 1) {
messages.Say(
"IDENTITY= must be present when DIM=%d and the array has zero extent on that dimension"_err_en_US,
static_cast<int>(dimVal.value()));
}
} else { // no DIM= or DIM=1 on a vector: total reduction
for (const auto &extent : *shape) {
if (evaluate::ToInt64(extent) == 0) {
messages.Say(
"IDENTITY= must be present when the array is empty and the result is scalar"_err_en_US);
break;
}
}
}
}
}
}
}
std::optional<characteristics::Procedure> procChars;
if (const auto &operation{arguments[1]}) {
if (const auto *expr{operation->UnwrapExpr()}) {
if (const auto *designator{
std::get_if<evaluate::ProcedureDesignator>(&expr->u)}) {
procChars = characteristics::Procedure::Characterize(
*designator, context, /*emitError=*/true);
} else if (const auto *ref{
std::get_if<evaluate::ProcedureRef>(&expr->u)}) {
procChars = characteristics::Procedure::Characterize(*ref, context);
}
}
}
const auto *result{
procChars ? procChars->functionResult->GetTypeAndShape() : nullptr};
if (!procChars || !procChars->IsPure() ||
procChars->dummyArguments.size() != 2 || !procChars->functionResult) {
messages.Say(
"OPERATION= argument of REDUCE() must be a pure function of two data arguments"_err_en_US);
} else if (procChars->attrs.test(characteristics::Procedure::Attr::BindC)) {
messages.Say(
"A BIND(C) OPERATION= argument of REDUCE() is not supported"_err_en_US);
} else if (!result || result->Rank() != 0) {
messages.Say(
"OPERATION= argument of REDUCE() must be a scalar function"_err_en_US);
} else if (result->type().IsPolymorphic() ||
(arrayType && !arrayType->IsTkLenCompatibleWith(result->type()))) {
messages.Say(
"OPERATION= argument of REDUCE() must have the same type as ARRAY="_err_en_US);
} else {
const characteristics::DummyDataObject *data[2]{};
for (int j{0}; j < 2; ++j) {
const auto &dummy{procChars->dummyArguments.at(j)};
data[j] = std::get_if<characteristics::DummyDataObject>(&dummy.u);
}
if (!data[0] || !data[1]) {
messages.Say(
"OPERATION= argument of REDUCE() may not have dummy procedure arguments"_err_en_US);
} else {
for (int j{0}; j < 2; ++j) {
if (data[j]->attrs.test(
characteristics::DummyDataObject::Attr::Optional) ||
data[j]->attrs.test(
characteristics::DummyDataObject::Attr::Allocatable) ||
data[j]->attrs.test(
characteristics::DummyDataObject::Attr::Pointer) ||
data[j]->type.Rank() != 0 || data[j]->type.type().IsPolymorphic() ||
(arrayType &&
!data[j]->type.type().IsTkCompatibleWith(*arrayType))) {
messages.Say(
"Arguments of OPERATION= procedure of REDUCE() must be both scalar of the same type as ARRAY=, and neither allocatable, pointer, polymorphic, nor optional"_err_en_US);
}
}
static constexpr characteristics::DummyDataObject::Attr attrs[]{
characteristics::DummyDataObject::Attr::Asynchronous,
characteristics::DummyDataObject::Attr::Target,
characteristics::DummyDataObject::Attr::Value,
};
for (std::size_t j{0}; j < sizeof attrs / sizeof *attrs; ++j) {
if (data[0]->attrs.test(attrs[j]) != data[1]->attrs.test(attrs[j])) {
messages.Say(
"If either argument of the OPERATION= procedure of REDUCE() has the ASYNCHRONOUS, TARGET, or VALUE attribute, both must have that attribute"_err_en_US);
break;
}
}
}
}
// When the MASK= is present and has no .TRUE. element, and there is
// no IDENTITY=, it's an error.
if (const auto &mask{arguments[3]}; mask && !arguments[/*identity*/ 4]) {
if (const auto *expr{mask->UnwrapExpr()}) {
if (const auto *logical{
std::get_if<evaluate::Expr<evaluate::SomeLogical>>(&expr->u)}) {
if (common::visit(
[](const auto &kindExpr) {
using KindExprType = std::decay_t<decltype(kindExpr)>;
using KindLogical = typename KindExprType::Result;
if (const auto *c{evaluate::UnwrapConstantValue<KindLogical>(
kindExpr)}) {
for (const auto &element : c->values()) {
if (element.IsTrue()) {
return false;
}
}
return true;
}
return false;
},
logical->u)) {
messages.Say(
"MASK= has no .TRUE. element, so IDENTITY= must be present"_err_en_US);
}
}
}
}
}
// TRANSFER (16.9.193)
static void CheckTransferOperandType(SemanticsContext &context,
const evaluate::DynamicType &type, const char *which) {
if (type.IsPolymorphic() &&
context.ShouldWarn(common::UsageWarning::PolymorphicTransferArg)) {
context.foldingContext().messages().Say(
"%s of TRANSFER is polymorphic"_warn_en_US, which);
} else if (!type.IsUnlimitedPolymorphic() &&
type.category() == TypeCategory::Derived &&
context.ShouldWarn(common::UsageWarning::PointerComponentTransferArg)) {
DirectComponentIterator directs{type.GetDerivedTypeSpec()};
if (auto bad{std::find_if(directs.begin(), directs.end(), IsDescriptor)};
bad != directs.end()) {
evaluate::SayWithDeclaration(context.foldingContext().messages(), *bad,
"%s of TRANSFER contains allocatable or pointer component %s"_warn_en_US,
which, bad.BuildResultDesignatorName());
}
}
}
static void CheckTransfer(evaluate::ActualArguments &arguments,
SemanticsContext &context, const Scope *scope) {
evaluate::FoldingContext &foldingContext{context.foldingContext()};
parser::ContextualMessages &messages{foldingContext.messages()};
if (arguments.size() >= 2) {
if (auto source{characteristics::TypeAndShape::Characterize(
arguments[0], foldingContext)}) {
CheckTransferOperandType(context, source->type(), "Source");
if (auto mold{characteristics::TypeAndShape::Characterize(
arguments[1], foldingContext)}) {
CheckTransferOperandType(context, mold->type(), "Mold");
if (mold->Rank() > 0 &&
evaluate::ToInt64(
evaluate::Fold(foldingContext,
mold->MeasureElementSizeInBytes(foldingContext, false)))
.value_or(1) == 0) {
if (auto sourceSize{evaluate::ToInt64(evaluate::Fold(foldingContext,
source->MeasureSizeInBytes(foldingContext)))}) {
if (*sourceSize > 0) {
messages.Say(
"Element size of MOLD= array may not be zero when SOURCE= is not empty"_err_en_US);
}
} else if (context.ShouldWarn(common::UsageWarning::VoidMold)) {
messages.Say(
"Element size of MOLD= array may not be zero unless SOURCE= is empty"_warn_en_US);
}
}
}
}
if (arguments.size() > 2) { // SIZE=
if (const Symbol *
whole{UnwrapWholeSymbolOrComponentDataRef(arguments[2])}) {
if (IsOptional(*whole)) {
messages.Say(
"SIZE= argument may not be the optional dummy argument '%s'"_err_en_US,
whole->name());
} else if (context.ShouldWarn(
common::UsageWarning::TransferSizePresence) &&
IsAllocatableOrObjectPointer(whole)) {
messages.Say(
"SIZE= argument that is allocatable or pointer must be present at execution; parenthesize to silence this warning"_warn_en_US);
}
}
}
}
}
static void CheckSpecificIntrinsic(const characteristics::Procedure &proc,
evaluate::ActualArguments &arguments, SemanticsContext &context,
const Scope *scope, const evaluate::SpecificIntrinsic &intrinsic) {
if (intrinsic.name == "associated") {
CheckAssociated(arguments, context, scope);
} else if (intrinsic.name == "image_index") {
CheckImage_Index(arguments, context.foldingContext().messages());
} else if (intrinsic.name == "max" || intrinsic.name == "min") {
CheckMaxMin(proc, arguments, context.foldingContext().messages());
} else if (intrinsic.name == "move_alloc") {
CheckMove_Alloc(arguments, context.foldingContext().messages());
} else if (intrinsic.name == "present") {
CheckPresent(arguments, context.foldingContext().messages());
} else if (intrinsic.name == "reduce") {
CheckReduce(arguments, context.foldingContext());
} else if (intrinsic.name == "transfer") {
CheckTransfer(arguments, context, scope);
}
}
static parser::Messages CheckExplicitInterface(
const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
SemanticsContext &context, const Scope *scope,
const evaluate::SpecificIntrinsic *intrinsic,
bool allowActualArgumentConversions, bool extentErrors,
bool ignoreImplicitVsExplicit) {
evaluate::FoldingContext &foldingContext{context.foldingContext()};
parser::ContextualMessages &messages{foldingContext.messages()};
parser::Messages buffer;
auto restorer{messages.SetMessages(buffer)};
RearrangeArguments(proc, actuals, messages);
if (!buffer.empty()) {
return buffer;
}
int index{0};
for (auto &actual : actuals) {
const auto &dummy{proc.dummyArguments.at(index++)};
if (actual) {
CheckExplicitInterfaceArg(*actual, dummy, proc, context, scope, intrinsic,
allowActualArgumentConversions, extentErrors,
ignoreImplicitVsExplicit);
} else if (!dummy.IsOptional()) {
if (dummy.name.empty()) {
messages.Say(
"Dummy argument #%d is not OPTIONAL and is not associated with "
"an actual argument in this procedure reference"_err_en_US,
index);
} else {
messages.Say("Dummy argument '%s=' (#%d) is not OPTIONAL and is not "
"associated with an actual argument in this procedure "
"reference"_err_en_US,
dummy.name, index);
}
}
}
if (proc.IsElemental() && !buffer.AnyFatalError()) {
CheckElementalConformance(messages, proc, actuals, foldingContext);
}
if (intrinsic) {
CheckSpecificIntrinsic(proc, actuals, context, scope, *intrinsic);
}
return buffer;
}
bool CheckInterfaceForGeneric(const characteristics::Procedure &proc,
evaluate::ActualArguments &actuals, SemanticsContext &context,
bool allowActualArgumentConversions) {
return proc.HasExplicitInterface() &&
!CheckExplicitInterface(proc, actuals, context, nullptr, nullptr,
allowActualArgumentConversions, /*extentErrors=*/false,
/*ignoreImplicitVsExplicit=*/false)
.AnyFatalError();
}
bool CheckArgumentIsConstantExprInRange(
const evaluate::ActualArguments &actuals, int index, int lowerBound,
int upperBound, parser::ContextualMessages &messages) {
CHECK(index >= 0 && static_cast<unsigned>(index) < actuals.size());
const std::optional<evaluate::ActualArgument> &argOptional{actuals[index]};
if (!argOptional) {
DIE("Actual argument should have value");
return false;
}
const evaluate::ActualArgument &arg{argOptional.value()};
const evaluate::Expr<evaluate::SomeType> *argExpr{arg.UnwrapExpr()};
CHECK(argExpr != nullptr);
if (!IsConstantExpr(*argExpr)) {
messages.Say("Actual argument #%d must be a constant expression"_err_en_US,
index + 1);
return false;
}
// This does not imply that the kind of the argument is 8. The kind
// for the intrinsic's argument should have been check prior. This is just
// a conversion so that we can read the constant value.
auto scalarValue{evaluate::ToInt64(argExpr)};
CHECK(scalarValue.has_value());
if (*scalarValue < lowerBound || *scalarValue > upperBound) {
messages.Say(
"Argument #%d must be a constant expression in range %d to %d"_err_en_US,
index + 1, lowerBound, upperBound);
return false;
}
return true;
}
bool CheckPPCIntrinsic(const Symbol &generic, const Symbol &specific,
const evaluate::ActualArguments &actuals,
evaluate::FoldingContext &context) {
parser::ContextualMessages &messages{context.messages()};
if (specific.name() == "__ppc_mtfsf") {
return CheckArgumentIsConstantExprInRange(actuals, 0, 0, 7, messages);
}
if (specific.name() == "__ppc_mtfsfi") {
return CheckArgumentIsConstantExprInRange(actuals, 0, 0, 7, messages) &&
CheckArgumentIsConstantExprInRange(actuals, 1, 0, 15, messages);
}
if (specific.name().ToString().compare(0, 14, "__ppc_vec_sld_") == 0) {
return CheckArgumentIsConstantExprInRange(actuals, 2, 0, 15, messages);
}
if (specific.name().ToString().compare(0, 15, "__ppc_vec_sldw_") == 0) {
return CheckArgumentIsConstantExprInRange(actuals, 2, 0, 3, messages);
}
if (specific.name().ToString().compare(0, 14, "__ppc_vec_ctf_") == 0) {
return CheckArgumentIsConstantExprInRange(actuals, 1, 0, 31, messages);
}
if (specific.name().ToString().compare(0, 16, "__ppc_vec_permi_") == 0) {
return CheckArgumentIsConstantExprInRange(actuals, 2, 0, 3, messages);
}
if (specific.name().ToString().compare(0, 21, "__ppc_vec_splat_s32__") == 0) {
return CheckArgumentIsConstantExprInRange(actuals, 0, -16, 15, messages);
}
if (specific.name().ToString().compare(0, 16, "__ppc_vec_splat_") == 0) {
// The value of arg2 in vec_splat must be a constant expression that is
// greater than or equal to 0, and less than the number of elements in arg1.
auto *expr{actuals[0].value().UnwrapExpr()};
auto type{characteristics::TypeAndShape::Characterize(*expr, context)};
assert(type && "unknown type");
const auto *derived{evaluate::GetDerivedTypeSpec(type.value().type())};
if (derived && derived->IsVectorType()) {
for (const auto &pair : derived->parameters()) {
if (pair.first == "element_kind") {
auto vecElemKind{Fortran::evaluate::ToInt64(pair.second.GetExplicit())
.value_or(0)};
auto numElem{vecElemKind == 0 ? 0 : (16 / vecElemKind)};
return CheckArgumentIsConstantExprInRange(
actuals, 1, 0, numElem - 1, messages);
}
}
} else
assert(false && "vector type is expected");
}
return false;
}
bool CheckArguments(const characteristics::Procedure &proc,
evaluate::ActualArguments &actuals, SemanticsContext &context,
const Scope &scope, bool treatingExternalAsImplicit,
bool ignoreImplicitVsExplicit,
const evaluate::SpecificIntrinsic *intrinsic) {
bool explicitInterface{proc.HasExplicitInterface()};
evaluate::FoldingContext foldingContext{context.foldingContext()};
parser::ContextualMessages &messages{foldingContext.messages()};
bool allowArgumentConversions{true};
if (!explicitInterface || treatingExternalAsImplicit) {
parser::Messages buffer;
{
auto restorer{messages.SetMessages(buffer)};
for (auto &actual : actuals) {
if (actual) {
CheckImplicitInterfaceArg(*actual, messages, foldingContext);
}
}
}
if (!buffer.empty()) {
if (auto *msgs{messages.messages()}) {
msgs->Annex(std::move(buffer));
}
return false; // don't pile on
}
allowArgumentConversions = false;
}
if (explicitInterface) {
auto buffer{CheckExplicitInterface(proc, actuals, context, &scope,
intrinsic, allowArgumentConversions,
/*extentErrors=*/true, ignoreImplicitVsExplicit)};
if (!buffer.empty()) {
if (treatingExternalAsImplicit) {
if (context.ShouldWarn(
common::UsageWarning::KnownBadImplicitInterface)) {
if (auto *msg{messages.Say(
"If the procedure's interface were explicit, this reference would be in error"_warn_en_US)}) {
buffer.AttachTo(*msg, parser::Severity::Because);
}
} else {
buffer.clear();
}
}
if (auto *msgs{messages.messages()}) {
msgs->Annex(std::move(buffer));
}
return false;
}
}
return true;
}
} // namespace Fortran::semantics
|