1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*===-- flang/runtime/complex-reduction.h ---------------------------*- C -*-===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
* ===-----------------------------------------------------------------------===
*/
/* Wraps the C++-coded complex-valued SUM and PRODUCT reductions with
* C-coded wrapper functions returning _Complex values, to avoid problems
* with C++ build compilers that don't support C's _Complex.
*/
#ifndef FORTRAN_RUNTIME_COMPLEX_REDUCTION_H_
#define FORTRAN_RUNTIME_COMPLEX_REDUCTION_H_
#include "flang/Common/float128.h"
#include "flang/Runtime/entry-names.h"
#include <complex.h>
struct CppDescriptor; /* dummy type name for Fortran::runtime::Descriptor */
#if defined(_MSC_VER) && !(defined(__clang_major__) && __clang_major__ >= 12)
typedef _Fcomplex float_Complex_t;
typedef _Dcomplex double_Complex_t;
typedef _Lcomplex long_double_Complex_t;
#else
typedef float _Complex float_Complex_t;
typedef double _Complex double_Complex_t;
typedef long double _Complex long_double_Complex_t;
#endif
#define REDUCTION_ARGS \
const struct CppDescriptor *x, const char *source, int line, int dim /*=0*/, \
const struct CppDescriptor *mask /*=NULL*/
#define REDUCTION_ARG_NAMES x, source, line, dim, mask
float_Complex_t RTNAME(SumComplex2)(REDUCTION_ARGS);
float_Complex_t RTNAME(SumComplex3)(REDUCTION_ARGS);
float_Complex_t RTNAME(SumComplex4)(REDUCTION_ARGS);
double_Complex_t RTNAME(SumComplex8)(REDUCTION_ARGS);
long_double_Complex_t RTNAME(SumComplex10)(REDUCTION_ARGS);
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
CFloat128ComplexType RTNAME(SumComplex16)(REDUCTION_ARGS);
#endif
float_Complex_t RTNAME(ProductComplex2)(REDUCTION_ARGS);
float_Complex_t RTNAME(ProductComplex3)(REDUCTION_ARGS);
float_Complex_t RTNAME(ProductComplex4)(REDUCTION_ARGS);
double_Complex_t RTNAME(ProductComplex8)(REDUCTION_ARGS);
long_double_Complex_t RTNAME(ProductComplex10)(REDUCTION_ARGS);
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
CFloat128ComplexType RTNAME(ProductComplex16)(REDUCTION_ARGS);
#endif
#define DOT_PRODUCT_ARGS \
const struct CppDescriptor *x, const struct CppDescriptor *y, \
const char *source, int line, int dim /*=0*/, \
const struct CppDescriptor *mask /*=NULL*/
#define DOT_PRODUCT_ARG_NAMES x, y, source, line, dim, mask
float_Complex_t RTNAME(DotProductComplex2)(DOT_PRODUCT_ARGS);
float_Complex_t RTNAME(DotProductComplex3)(DOT_PRODUCT_ARGS);
float_Complex_t RTNAME(DotProductComplex4)(DOT_PRODUCT_ARGS);
double_Complex_t RTNAME(DotProductComplex8)(DOT_PRODUCT_ARGS);
long_double_Complex_t RTNAME(DotProductComplex10)(DOT_PRODUCT_ARGS);
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
CFloat128ComplexType RTNAME(DotProductComplex16)(DOT_PRODUCT_ARGS);
#endif
#define REDUCE_ARGS(T, OP) \
OP operation, const struct CppDescriptor *x, const struct CppDescriptor *y, \
const char *source, int line, int dim /*=0*/, \
const struct CppDescriptor *mask /*=NULL*/, const T *identity /*=NULL*/, \
_Bool ordered /*=true*/
#define REDUCE_ARG_NAMES \
operation, x, y, source, line, dim, mask, identity, ordered
typedef float_Complex_t (*float_Complex_t_ref_op)(
const float_Complex_t *, const float_Complex_t *);
typedef float_Complex_t (*float_Complex_t_value_op)(
float_Complex_t, float_Complex_t);
typedef double_Complex_t (*double_Complex_t_ref_op)(
const double_Complex_t *, const double_Complex_t *);
typedef double_Complex_t (*double_Complex_t_value_op)(
double_Complex_t, double_Complex_t);
typedef long_double_Complex_t (*long_double_Complex_t_ref_op)(
const long_double_Complex_t *, const long_double_Complex_t *);
typedef long_double_Complex_t (*long_double_Complex_t_value_op)(
long_double_Complex_t, long_double_Complex_t);
float_Complex_t RTNAME(ReduceComplex2Ref)(
REDUCE_ARGS(float_Complex_t, float_Complex_t_ref_op));
float_Complex_t RTNAME(ReduceComplex2Value)(
REDUCE_ARGS(float_Complex_t, float_Complex_t_value_op));
float_Complex_t RTNAME(ReduceComplex3Ref)(
REDUCE_ARGS(float_Complex_t, float_Complex_t_ref_op));
float_Complex_t RTNAME(ReduceComplex3Value)(
REDUCE_ARGS(float_Complex_t, float_Complex_t_value_op));
float_Complex_t RTNAME(ReduceComplex4Ref)(
REDUCE_ARGS(float_Complex_t, float_Complex_t_ref_op));
float_Complex_t RTNAME(ReduceComplex4Value)(
REDUCE_ARGS(float_Complex_t, float_Complex_t_value_op));
double_Complex_t RTNAME(ReduceComplex8Ref)(
REDUCE_ARGS(double_Complex_t, double_Complex_t_ref_op));
double_Complex_t RTNAME(ReduceComplex8Value)(
REDUCE_ARGS(double_Complex_t, double_Complex_t_value_op));
long_double_Complex_t RTNAME(ReduceComplex10Ref)(
REDUCE_ARGS(long_double_Complex_t, long_double_Complex_t_ref_op));
long_double_Complex_t RTNAME(ReduceComplex10Value)(
REDUCE_ARGS(long_double_Complex_t, long_double_Complex_t_value_op));
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
typedef CFloat128ComplexType (*CFloat128ComplexType_ref_op)(
const CFloat128ComplexType *, const CFloat128ComplexType *);
typedef CFloat128ComplexType (*CFloat128ComplexType_value_op)(
CFloat128ComplexType, CFloat128ComplexType);
CFloat128ComplexType RTNAME(ReduceComplex16Ref)(
REDUCE_ARGS(CFloat128ComplexType, CFloat128ComplexType_ref_op));
CFloat128ComplexType RTNAME(ReduceComplex16Value)(
REDUCE_ARGS(CFloat128ComplexType, CFloat128ComplexType_value_op));
#endif
#define REDUCE_DIM_ARGS(T, OP) \
struct CppDescriptor *result, OP operation, const struct CppDescriptor *x, \
const struct CppDescriptor *y, const char *source, int line, int dim, \
const struct CppDescriptor *mask /*=NULL*/, const T *identity /*=NULL*/, \
_Bool ordered /*=true*/
#define REDUCE_DIM_ARG_NAMES \
result, operation, x, y, source, line, dim, mask, identity, ordered
void RTNAME(ReduceComplex2DimRef)(
REDUCE_DIM_ARGS(float_Complex_t, float_Complex_t_ref_op));
void RTNAME(ReduceComplex2DimValue)(
REDUCE_DIM_ARGS(float_Complex_t, float_Complex_t_value_op));
void RTNAME(ReduceComplex3DimRef)(
REDUCE_DIM_ARGS(float_Complex_t, float_Complex_t_ref_op));
void RTNAME(ReduceComplex3DimValue)(
REDUCE_DIM_ARGS(float_Complex_t, float_Complex_t_value_op));
void RTNAME(ReduceComplex4DimRef)(
REDUCE_DIM_ARGS(float_Complex_t, float_Complex_t_ref_op));
void RTNAME(ReduceComplex4DimValue)(
REDUCE_DIM_ARGS(float_Complex_t, float_Complex_t_value_op));
void RTNAME(ReduceComplex8DimRef)(
REDUCE_DIM_ARGS(double_Complex_t, double_Complex_t_ref_op));
void RTNAME(ReduceComplex8DimValue)(
REDUCE_DIM_ARGS(double_Complex_t, double_Complex_t_value_op));
void RTNAME(ReduceComplex10DimRef)(
REDUCE_DIM_ARGS(long_double_Complex_t, long_double_Complex_t_ref_op));
void RTNAME(ReduceComplex10DimValue)(
REDUCE_DIM_ARGS(long_double_Complex_t, long_double_Complex_t_value_op));
#if LDBL_MANT_DIG == 113 || HAS_FLOAT128
void RTNAME(ReduceComplex16DimRef)(
REDUCE_DIM_ARGS(CFloat128ComplexType, CFloat128ComplexType_ref_op));
void RTNAME(ReduceComplex16DimValue)(
REDUCE_DIM_ARGS(CFloat128ComplexType, CFloat128ComplexType_value_op));
#endif
#endif // FORTRAN_RUNTIME_COMPLEX_REDUCTION_H_
|