1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
//===-- runtime/descriptor.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/descriptor.h"
#include "ISO_Fortran_util.h"
#include "derived.h"
#include "memory.h"
#include "stat.h"
#include "terminator.h"
#include "tools.h"
#include "type-info.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
namespace Fortran::runtime {
RT_OFFLOAD_API_GROUP_BEGIN
RT_API_ATTRS Descriptor::Descriptor(const Descriptor &that) { *this = that; }
RT_API_ATTRS Descriptor &Descriptor::operator=(const Descriptor &that) {
std::memcpy(this, &that, that.SizeInBytes());
return *this;
}
RT_API_ATTRS void Descriptor::Establish(TypeCode t, std::size_t elementBytes,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute, bool addendum) {
Terminator terminator{__FILE__, __LINE__};
int cfiStatus{ISO::VerifyEstablishParameters(&raw_, p, attribute, t.raw(),
elementBytes, rank, extent, /*external=*/false)};
if (cfiStatus != CFI_SUCCESS) {
terminator.Crash(
"Descriptor::Establish: CFI_establish returned %d for CFI_type_t(%d)",
cfiStatus, t.raw());
}
ISO::EstablishDescriptor(
&raw_, p, attribute, t.raw(), elementBytes, rank, extent);
if (elementBytes == 0) {
raw_.elem_len = 0;
// Reset byte strides of the dimensions, since EstablishDescriptor()
// only does that when the base address is not nullptr.
for (int j{0}; j < rank; ++j) {
GetDimension(j).SetByteStride(0);
}
}
raw_.f18Addendum = addendum;
DescriptorAddendum *a{Addendum()};
RUNTIME_CHECK(terminator, addendum == (a != nullptr));
if (a) {
new (a) DescriptorAddendum{};
}
}
namespace {
template <TypeCategory CAT, int KIND> struct TypeSizeGetter {
constexpr RT_API_ATTRS std::size_t operator()() const {
CppTypeFor<CAT, KIND> arr[2];
return sizeof arr / 2;
}
};
} // namespace
RT_API_ATTRS std::size_t Descriptor::BytesFor(TypeCategory category, int kind) {
Terminator terminator{__FILE__, __LINE__};
return ApplyType<TypeSizeGetter, std::size_t>(category, kind, terminator);
}
RT_API_ATTRS void Descriptor::Establish(TypeCategory c, int kind, void *p,
int rank, const SubscriptValue *extent, ISO::CFI_attribute_t attribute,
bool addendum) {
Establish(TypeCode(c, kind), BytesFor(c, kind), p, rank, extent, attribute,
addendum);
}
RT_API_ATTRS void Descriptor::Establish(int characterKind,
std::size_t characters, void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute, bool addendum) {
Establish(TypeCode{TypeCategory::Character, characterKind},
characterKind * characters, p, rank, extent, attribute, addendum);
}
RT_API_ATTRS void Descriptor::Establish(const typeInfo::DerivedType &dt,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
Establish(TypeCode{TypeCategory::Derived, 0}, dt.sizeInBytes(), p, rank,
extent, attribute, true);
DescriptorAddendum *a{Addendum()};
Terminator terminator{__FILE__, __LINE__};
RUNTIME_CHECK(terminator, a != nullptr);
new (a) DescriptorAddendum{&dt};
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(TypeCode t,
std::size_t elementBytes, void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute, bool addendum,
const typeInfo::DerivedType *dt) {
Terminator terminator{__FILE__, __LINE__};
RUNTIME_CHECK(terminator, t.IsDerived() == (dt != nullptr));
int derivedTypeLenParameters = dt ? dt->LenParameters() : 0;
std::size_t bytes{SizeInBytes(rank, addendum, derivedTypeLenParameters)};
Descriptor *result{
reinterpret_cast<Descriptor *>(AllocateMemoryOrCrash(terminator, bytes))};
if (dt) {
result->Establish(*dt, p, rank, extent, attribute);
} else {
result->Establish(t, elementBytes, p, rank, extent, attribute, addendum);
}
return OwningPtr<Descriptor>{result};
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(TypeCategory c, int kind,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
return Create(
TypeCode(c, kind), BytesFor(c, kind), p, rank, extent, attribute);
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(int characterKind,
SubscriptValue characters, void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
return Create(TypeCode{TypeCategory::Character, characterKind},
characterKind * characters, p, rank, extent, attribute);
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(
const typeInfo::DerivedType &dt, void *p, int rank,
const SubscriptValue *extent, ISO::CFI_attribute_t attribute) {
return Create(TypeCode{TypeCategory::Derived, 0}, dt.sizeInBytes(), p, rank,
extent, attribute, /*addendum=*/true, &dt);
}
RT_API_ATTRS std::size_t Descriptor::SizeInBytes() const {
const DescriptorAddendum *addendum{Addendum()};
return sizeof *this - sizeof(Dimension) + raw_.rank * sizeof(Dimension) +
(addendum ? addendum->SizeInBytes() : 0);
}
RT_API_ATTRS std::size_t Descriptor::Elements() const {
int n{rank()};
std::size_t elements{1};
for (int j{0}; j < n; ++j) {
elements *= GetDimension(j).Extent();
}
return elements;
}
RT_API_ATTRS int Descriptor::Allocate() {
std::size_t elementBytes{ElementBytes()};
if (static_cast<std::int64_t>(elementBytes) < 0) {
// F'2023 7.4.4.2 p5: "If the character length parameter value evaluates
// to a negative value, the length of character entities declared is zero."
elementBytes = raw_.elem_len = 0;
}
std::size_t byteSize{Elements() * elementBytes};
// Zero size allocation is possible in Fortran and the resulting
// descriptor must be allocated/associated. Since std::malloc(0)
// result is implementation defined, always allocate at least one byte.
void *p{byteSize ? std::malloc(byteSize) : std::malloc(1)};
if (!p) {
return CFI_ERROR_MEM_ALLOCATION;
}
// TODO: image synchronization
raw_.base_addr = p;
SetByteStrides();
return 0;
}
RT_API_ATTRS void Descriptor::SetByteStrides() {
if (int dims{rank()}) {
std::size_t stride{ElementBytes()};
for (int j{0}; j < dims; ++j) {
auto &dimension{GetDimension(j)};
dimension.SetByteStride(stride);
stride *= dimension.Extent();
}
}
}
RT_API_ATTRS int Descriptor::Destroy(
bool finalize, bool destroyPointers, Terminator *terminator) {
if (!destroyPointers && raw_.attribute == CFI_attribute_pointer) {
return StatOk;
} else {
if (auto *addendum{Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noDestructionNeeded()) {
runtime::Destroy(*this, finalize, *derived, terminator);
}
}
}
return Deallocate();
}
}
RT_API_ATTRS int Descriptor::Deallocate() {
ISO::CFI_cdesc_t &descriptor{raw()};
if (!descriptor.base_addr) {
return CFI_ERROR_BASE_ADDR_NULL;
} else {
std::free(descriptor.base_addr);
descriptor.base_addr = nullptr;
return CFI_SUCCESS;
}
}
RT_API_ATTRS bool Descriptor::DecrementSubscripts(
SubscriptValue *subscript, const int *permutation) const {
for (int j{raw_.rank - 1}; j >= 0; --j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
if (--subscript[k] >= dim.LowerBound()) {
return true;
}
subscript[k] = dim.UpperBound();
}
return false;
}
RT_API_ATTRS std::size_t Descriptor::ZeroBasedElementNumber(
const SubscriptValue *subscript, const int *permutation) const {
std::size_t result{0};
std::size_t coefficient{1};
for (int j{0}; j < raw_.rank; ++j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
result += coefficient * (subscript[k] - dim.LowerBound());
coefficient *= dim.Extent();
}
return result;
}
RT_API_ATTRS bool Descriptor::EstablishPointerSection(const Descriptor &source,
const SubscriptValue *lower, const SubscriptValue *upper,
const SubscriptValue *stride) {
*this = source;
raw_.attribute = CFI_attribute_pointer;
int newRank{raw_.rank};
for (int j{0}; j < raw_.rank; ++j) {
if (!stride || stride[j] == 0) {
if (newRank > 0) {
--newRank;
} else {
return false;
}
}
}
raw_.rank = newRank;
if (const auto *sourceAddendum = source.Addendum()) {
if (auto *addendum{Addendum()}) {
*addendum = *sourceAddendum;
} else {
return false;
}
}
return CFI_section(&raw_, &source.raw_, lower, upper, stride) == CFI_SUCCESS;
}
RT_API_ATTRS void Descriptor::ApplyMold(const Descriptor &mold, int rank) {
raw_.elem_len = mold.raw_.elem_len;
raw_.rank = rank;
raw_.type = mold.raw_.type;
for (int j{0}; j < rank && j < mold.raw_.rank; ++j) {
GetDimension(j) = mold.GetDimension(j);
}
if (auto *addendum{Addendum()}) {
if (auto *moldAddendum{mold.Addendum()}) {
*addendum = *moldAddendum;
} else {
INTERNAL_CHECK(!addendum->derivedType());
}
}
}
RT_API_ATTRS void Descriptor::Check() const {
// TODO
}
void Descriptor::Dump(FILE *f) const {
std::fprintf(f, "Descriptor @ %p:\n", reinterpret_cast<const void *>(this));
std::fprintf(f, " base_addr %p\n", raw_.base_addr);
std::fprintf(f, " elem_len %zd\n", static_cast<std::size_t>(raw_.elem_len));
std::fprintf(f, " version %d\n", static_cast<int>(raw_.version));
std::fprintf(f, " rank %d\n", static_cast<int>(raw_.rank));
std::fprintf(f, " type %d\n", static_cast<int>(raw_.type));
std::fprintf(f, " attribute %d\n", static_cast<int>(raw_.attribute));
std::fprintf(f, " addendum %d\n", static_cast<int>(raw_.f18Addendum));
for (int j{0}; j < raw_.rank; ++j) {
std::fprintf(f, " dim[%d] lower_bound %jd\n", j,
static_cast<std::intmax_t>(raw_.dim[j].lower_bound));
std::fprintf(f, " extent %jd\n",
static_cast<std::intmax_t>(raw_.dim[j].extent));
std::fprintf(f, " sm %jd\n",
static_cast<std::intmax_t>(raw_.dim[j].sm));
}
if (const DescriptorAddendum * addendum{Addendum()}) {
addendum->Dump(f);
}
}
RT_API_ATTRS DescriptorAddendum &DescriptorAddendum::operator=(
const DescriptorAddendum &that) {
derivedType_ = that.derivedType_;
auto lenParms{that.LenParameters()};
for (std::size_t j{0}; j < lenParms; ++j) {
len_[j] = that.len_[j];
}
return *this;
}
RT_API_ATTRS std::size_t DescriptorAddendum::SizeInBytes() const {
return SizeInBytes(LenParameters());
}
RT_API_ATTRS std::size_t DescriptorAddendum::LenParameters() const {
const auto *type{derivedType()};
return type ? type->LenParameters() : 0;
}
void DescriptorAddendum::Dump(FILE *f) const {
std::fprintf(
f, " derivedType @ %p\n", reinterpret_cast<const void *>(derivedType()));
std::size_t lenParms{LenParameters()};
for (std::size_t j{0}; j < lenParms; ++j) {
std::fprintf(f, " len[%zd] %jd\n", j, static_cast<std::intmax_t>(len_[j]));
}
}
RT_OFFLOAD_API_GROUP_END
} // namespace Fortran::runtime
|