1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
//===-- runtime/tools.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tools.h"
#include "terminator.h"
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <cstring>
namespace Fortran::runtime {
RT_OFFLOAD_API_GROUP_BEGIN
RT_API_ATTRS std::size_t TrimTrailingSpaces(const char *s, std::size_t n) {
while (n > 0 && s[n - 1] == ' ') {
--n;
}
return n;
}
RT_API_ATTRS OwningPtr<char> SaveDefaultCharacter(
const char *s, std::size_t length, const Terminator &terminator) {
if (s) {
auto *p{static_cast<char *>(AllocateMemoryOrCrash(terminator, length + 1))};
std::memcpy(p, s, length);
p[length] = '\0';
return OwningPtr<char>{p};
} else {
return OwningPtr<char>{};
}
}
static RT_API_ATTRS bool CaseInsensitiveMatch(
const char *value, std::size_t length, const char *possibility) {
for (; length-- > 0; ++possibility) {
char ch{*value++};
if (ch >= 'a' && ch <= 'z') {
ch += 'A' - 'a';
}
if (*possibility != ch) {
if (*possibility != '\0' || ch != ' ') {
return false;
}
// Ignore trailing blanks (12.5.6.2 p1)
while (length-- > 0) {
if (*value++ != ' ') {
return false;
}
}
return true;
}
}
return *possibility == '\0';
}
RT_API_ATTRS int IdentifyValue(
const char *value, std::size_t length, const char *possibilities[]) {
if (value) {
for (int j{0}; possibilities[j]; ++j) {
if (CaseInsensitiveMatch(value, length, possibilities[j])) {
return j;
}
}
}
return -1;
}
RT_API_ATTRS void ToFortranDefaultCharacter(
char *to, std::size_t toLength, const char *from) {
std::size_t len{Fortran::runtime::strlen(from)};
if (len < toLength) {
std::memcpy(to, from, len);
std::memset(to + len, ' ', toLength - len);
} else {
std::memcpy(to, from, toLength);
}
}
RT_API_ATTRS void CheckConformability(const Descriptor &to, const Descriptor &x,
Terminator &terminator, const char *funcName, const char *toName,
const char *xName) {
if (x.rank() == 0) {
return; // scalar conforms with anything
}
int rank{to.rank()};
if (x.rank() != rank) {
terminator.Crash(
"Incompatible array arguments to %s: %s has rank %d but %s has rank %d",
funcName, toName, rank, xName, x.rank());
} else {
for (int j{0}; j < rank; ++j) {
auto toExtent{static_cast<std::int64_t>(to.GetDimension(j).Extent())};
auto xExtent{static_cast<std::int64_t>(x.GetDimension(j).Extent())};
if (xExtent != toExtent) {
terminator.Crash("Incompatible array arguments to %s: dimension %d of "
"%s has extent %" PRId64 " but %s has extent %" PRId64,
funcName, j + 1, toName, toExtent, xName, xExtent);
}
}
}
}
RT_API_ATTRS void CheckIntegerKind(
Terminator &terminator, int kind, const char *intrinsic) {
if (kind < 1 || kind > 16 || (kind & (kind - 1)) != 0) {
terminator.Crash("not yet implemented: INTEGER(KIND=%d) in %s intrinsic",
intrinsic, kind);
}
}
RT_API_ATTRS void ShallowCopyDiscontiguousToDiscontiguous(
const Descriptor &to, const Descriptor &from) {
SubscriptValue toAt[maxRank], fromAt[maxRank];
to.GetLowerBounds(toAt);
from.GetLowerBounds(fromAt);
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memcpy(
to.Element<char>(toAt), from.Element<char>(fromAt), elementBytes);
}
}
RT_API_ATTRS void ShallowCopyDiscontiguousToContiguous(
const Descriptor &to, const Descriptor &from) {
char *toAt{to.OffsetElement()};
SubscriptValue fromAt[maxRank];
from.GetLowerBounds(fromAt);
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
toAt += elementBytes, from.IncrementSubscripts(fromAt)) {
std::memcpy(toAt, from.Element<char>(fromAt), elementBytes);
}
}
RT_API_ATTRS void ShallowCopyContiguousToDiscontiguous(
const Descriptor &to, const Descriptor &from) {
SubscriptValue toAt[maxRank];
to.GetLowerBounds(toAt);
char *fromAt{from.OffsetElement()};
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
to.IncrementSubscripts(toAt), fromAt += elementBytes) {
std::memcpy(to.Element<char>(toAt), fromAt, elementBytes);
}
}
RT_API_ATTRS void ShallowCopy(const Descriptor &to, const Descriptor &from,
bool toIsContiguous, bool fromIsContiguous) {
if (toIsContiguous) {
if (fromIsContiguous) {
std::memcpy(to.OffsetElement(), from.OffsetElement(),
to.Elements() * to.ElementBytes());
} else {
ShallowCopyDiscontiguousToContiguous(to, from);
}
} else {
if (fromIsContiguous) {
ShallowCopyContiguousToDiscontiguous(to, from);
} else {
ShallowCopyDiscontiguousToDiscontiguous(to, from);
}
}
}
RT_API_ATTRS void ShallowCopy(const Descriptor &to, const Descriptor &from) {
ShallowCopy(to, from, to.IsContiguous(), from.IsContiguous());
}
RT_API_ATTRS char *EnsureNullTerminated(
char *str, std::size_t length, Terminator &terminator) {
if (runtime::memchr(str, '\0', length) == nullptr) {
char *newCmd{(char *)AllocateMemoryOrCrash(terminator, length + 1)};
std::memcpy(newCmd, str, length);
newCmd[length] = '\0';
return newCmd;
} else {
return str;
}
}
RT_API_ATTRS bool IsValidCharDescriptor(const Descriptor *value) {
return value && value->IsAllocated() &&
value->type() == TypeCode(TypeCategory::Character, 1) &&
value->rank() == 0;
}
RT_API_ATTRS bool IsValidIntDescriptor(const Descriptor *intVal) {
// Check that our descriptor is allocated and is a scalar integer with
// kind != 1 (i.e. with a large enough decimal exponent range).
return intVal && intVal->IsAllocated() && intVal->rank() == 0 &&
intVal->type().IsInteger() && intVal->type().GetCategoryAndKind() &&
intVal->type().GetCategoryAndKind()->second != 1;
}
RT_API_ATTRS std::int32_t CopyCharsToDescriptor(const Descriptor &value,
const char *rawValue, std::size_t rawValueLength, const Descriptor *errmsg,
std::size_t offset) {
const std::int64_t toCopy{std::min(static_cast<std::int64_t>(rawValueLength),
static_cast<std::int64_t>(value.ElementBytes() - offset))};
if (toCopy < 0) {
return ToErrmsg(errmsg, StatValueTooShort);
}
std::memcpy(value.OffsetElement(offset), rawValue, toCopy);
if (static_cast<std::int64_t>(rawValueLength) > toCopy) {
return ToErrmsg(errmsg, StatValueTooShort);
}
return StatOk;
}
RT_API_ATTRS void StoreIntToDescriptor(
const Descriptor *length, std::int64_t value, Terminator &terminator) {
auto typeCode{length->type().GetCategoryAndKind()};
int kind{typeCode->second};
ApplyIntegerKind<StoreIntegerAt, void>(
kind, terminator, *length, /* atIndex = */ 0, value);
}
template <int KIND> struct FitsInIntegerKind {
RT_API_ATTRS bool operator()([[maybe_unused]] std::int64_t value) {
if constexpr (KIND >= 8) {
return true;
} else {
return value <=
std::numeric_limits<
CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>>::max();
}
}
};
// Utility: establishes & allocates the result array for a partial
// reduction (i.e., one with DIM=).
RT_API_ATTRS void CreatePartialReductionResult(Descriptor &result,
const Descriptor &x, std::size_t resultElementSize, int dim,
Terminator &terminator, const char *intrinsic, TypeCode typeCode) {
int xRank{x.rank()};
if (dim < 1 || dim > xRank) {
terminator.Crash(
"%s: bad DIM=%d for ARRAY with rank %d", intrinsic, dim, xRank);
}
int zeroBasedDim{dim - 1};
SubscriptValue resultExtent[maxRank];
for (int j{0}; j < zeroBasedDim; ++j) {
resultExtent[j] = x.GetDimension(j).Extent();
}
for (int j{zeroBasedDim + 1}; j < xRank; ++j) {
resultExtent[j - 1] = x.GetDimension(j).Extent();
}
result.Establish(typeCode, resultElementSize, nullptr, xRank - 1,
resultExtent, CFI_attribute_allocatable);
for (int j{0}; j + 1 < xRank; ++j) {
result.GetDimension(j).SetBounds(1, resultExtent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"%s: could not allocate memory for result; STAT=%d", intrinsic, stat);
}
}
RT_OFFLOAD_API_GROUP_END
} // namespace Fortran::runtime
|