File: timing.h

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (99 lines) | stat: -rw-r--r-- 3,248 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
//===------------- NVPTX implementation of timing utils ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#define LLVM_LIBC_UTILS_GPU_TIMING_NVPTX

#include "src/__support/GPU/utils.h"
#include "src/__support/common.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"

#include <stdint.h>

namespace LIBC_NAMESPACE_DECL {

// Returns the overhead associated with calling the profiling region. This
// allows us to substract the constant-time overhead from the latency to
// obtain a true result. This can vary with system load.
[[gnu::noinline]] static uint64_t overhead() {
  volatile uint32_t x = 1;
  uint32_t y = x;
  uint64_t start = gpu::processor_clock();
  asm("" ::"r"(y), "llr"(start));
  uint32_t result = y;
  asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result) :);
  uint64_t stop = gpu::processor_clock();
  volatile auto storage = result;
  return stop - start;
}

// Stimulate a simple function and obtain its latency in clock cycles on the
// system. This function cannot be inlined or else it will disturb the very
// delicate balance of hard-coded dependencies.
template <typename F, typename T>
[[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T t) {
  // We need to store the input somewhere to guarantee that the compiler will
  // not constant propagate it and remove the profiling region.
  volatile T storage = t;
  T arg = storage;
  asm("" ::"r"(arg));

  // Get the current timestamp from the clock.
  gpu::memory_fence();
  uint64_t start = gpu::processor_clock();

  // This forces the compiler to load the input argument and run the clock cycle
  // counter before the profiling region.
  asm("" ::"r"(arg), "llr"(start));

  // Run the function under test and return its value.
  auto result = f(arg);

  // This inline assembly performs a no-op which forces the result to both be
  // used and prevents us from exiting this region before it's complete.
  asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result) :);

  // Obtain the current timestamp after running the calculation and force
  // ordering.
  uint64_t stop = gpu::processor_clock();
  gpu::memory_fence();
  asm("" ::"r"(stop));
  volatile T output = result;

  // Return the time elapsed.
  return stop - start;
}

template <typename F, typename T1, typename T2>
static LIBC_INLINE uint64_t latency(F f, T1 t1, T2 t2) {
  volatile T1 storage = t1;
  volatile T2 storage2 = t2;
  T1 arg = storage;
  T2 arg2 = storage2;
  asm("" ::"r"(arg), "r"(arg2));

  gpu::memory_fence();
  uint64_t start = gpu::processor_clock();

  asm("" ::"r"(arg), "r"(arg2), "llr"(start));

  auto result = f(arg, arg2);

  asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result) :);

  uint64_t stop = gpu::processor_clock();
  gpu::memory_fence();
  asm("" ::"r"(stop));
  volatile auto output = result;

  return stop - start;
}
} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_UTILS_GPU_TIMING_NVPTX