| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 
 | /*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <clc/clc.h>
#include "config.h"
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
//    Algorithm:
//
//    e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64)
//
//    x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer
//    n = 64*m + j,   0 <= j < 64
//
//    e^x = 2^((64*m + j + f)/64)
//        = (2^m) * (2^(j/64)) * 2^(f/64)
//        = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64))
//
//    f = x*(64/ln(2)) - n
//    r = f*(ln(2)/64) = x - n*(ln(2)/64)
//
//    e^x = (2^m) * (2^(j/64)) * e^r
//
//    (2^(j/64)) is precomputed
//
//    e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
//    e^r = 1 + q
//
//    q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
//
//    e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) )
_CLC_DEF _CLC_OVERLOAD float __clc_exp10(float x)
{
    const float X_MAX =  0x1.344134p+5f; // 128*log2/log10 : 38.53183944498959
    const float X_MIN = -0x1.66d3e8p+5f; // -149*log2/log10 : -44.8534693539332
    const float R_64_BY_LOG10_2 = 0x1.a934f0p+7f; // 64*log10/log2 : 212.6033980727912
    const float R_LOG10_2_BY_64_LD = 0x1.340000p-8f; // log2/(64 * log10) lead : 0.004699707
    const float R_LOG10_2_BY_64_TL = 0x1.04d426p-18f; // log2/(64 * log10) tail : 0.00000388665057
    const float R_LN10 = 0x1.26bb1cp+1f;
    int return_nan = isnan(x);
    int return_inf = x > X_MAX;
    int return_zero = x < X_MIN;
    int n = convert_int(x * R_64_BY_LOG10_2);
    float fn = (float)n;
    int j = n & 0x3f;
    int m = n >> 6;
    int m2 = m << EXPSHIFTBITS_SP32;
    float r;
    r = R_LN10 * mad(fn, -R_LOG10_2_BY_64_TL, mad(fn, -R_LOG10_2_BY_64_LD, x));
    // Truncated Taylor series for e^r
    float z2 = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
    float two_to_jby64 = USE_TABLE(exp_tbl, j);
    z2 = mad(two_to_jby64, z2, two_to_jby64);
    float z2s = z2 * as_float(0x1 << (m + 149));
    float z2n = as_float(as_int(z2) + m2);
    z2 = m <= -126 ? z2s : z2n;
    z2 = return_inf ? as_float(PINFBITPATT_SP32) : z2;
    z2 = return_zero ? 0.0f : z2;
    z2 = return_nan ? x : z2;
    return z2;
}
_CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_exp10, float)
#ifdef cl_khr_fp64
_CLC_DEF _CLC_OVERLOAD double __clc_exp10(double x)
{
    const double X_MAX = 0x1.34413509f79ffp+8; // 1024*ln(2)/ln(10)
    const double X_MIN = -0x1.434e6420f4374p+8; // -1074*ln(2)/ln(10)
    const double R_64_BY_LOG10_2 = 0x1.a934f0979a371p+7; // 64*ln(10)/ln(2)
    const double R_LOG10_2_BY_64_LD = 0x1.3441350000000p-8; // head ln(2)/(64*ln(10))
    const double R_LOG10_2_BY_64_TL = 0x1.3ef3fde623e25p-37; // tail ln(2)/(64*ln(10))
    const double R_LN10 = 0x1.26bb1bbb55516p+1; // ln(10)
    int n = convert_int(x * R_64_BY_LOG10_2);
    double dn = (double)n;
    int j = n & 0x3f;
    int m = n >> 6;
    double r = R_LN10 * fma(-R_LOG10_2_BY_64_TL, dn, fma(-R_LOG10_2_BY_64_LD, dn, x));
    // 6 term tail of Taylor expansion of e^r
    double z2 = r * fma(r,
	                fma(r,
		            fma(r,
			        fma(r,
			            fma(r, 0x1.6c16c16c16c17p-10, 0x1.1111111111111p-7),
			            0x1.5555555555555p-5),
			        0x1.5555555555555p-3),
		            0x1.0000000000000p-1),
		        1.0);
    double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
    z2 = fma(tv.s0 + tv.s1, z2, tv.s1) + tv.s0;
    int small_value = (m < -1022) || ((m == -1022) && (z2 < 1.0));
	int n1 = m >> 2;
	int n2 = m-n1;
	double z3= z2 * as_double(((long)n1 + 1023) << 52);
	z3 *= as_double(((long)n2 + 1023) << 52);
    z2 = ldexp(z2, m);
    z2 = small_value ? z3: z2;
    z2 = isnan(x) ? x : z2;
    z2 = x > X_MAX ? as_double(PINFBITPATT_DP64) : z2;
    z2 = x < X_MIN ? 0.0 : z2;
    return z2;
}
_CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_exp10, double)
#endif
 |