| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 
 | /*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <clc/clc.h>
#include <math/clc_remainder.h>
#include "../clcmacro.h"
#include "config.h"
#include "math.h"
_CLC_DEF _CLC_OVERLOAD float __clc_remainder(float x, float y)
{
    int ux = as_int(x);
    int ax = ux & EXSIGNBIT_SP32;
    float xa = as_float(ax);
    int sx = ux ^ ax;
    int ex = ax >> EXPSHIFTBITS_SP32;
    int uy = as_int(y);
    int ay = uy & EXSIGNBIT_SP32;
    float ya = as_float(ay);
    int ey = ay >> EXPSHIFTBITS_SP32;
    float xr = as_float(0x3f800000 | (ax & 0x007fffff));
    float yr = as_float(0x3f800000 | (ay & 0x007fffff));
    int c;
    int k = ex - ey;
    uint q = 0;
    while (k > 0) {
        c = xr >= yr;
        q = (q << 1) | c;
        xr -= c ? yr : 0.0f;
        xr += xr;
	--k;
    }
    c = xr > yr;
    q = (q << 1) | c;
    xr -= c ? yr : 0.0f;
    int lt = ex < ey;
    q = lt ? 0 : q;
    xr = lt ? xa : xr;
    yr = lt ? ya : yr;
    c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1));
    xr -= c ? yr : 0.0f;
    q += c;
    float s = as_float(ey << EXPSHIFTBITS_SP32);
    xr *= lt ? 1.0f : s;
    c = ax == ay;
    xr = c ? 0.0f : xr;
    xr = as_float(sx ^ as_int(xr));
    c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
    xr = c ? as_float(QNANBITPATT_SP32) : xr;
    return xr;
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_remainder, float, float);
#ifdef cl_khr_fp64
_CLC_DEF _CLC_OVERLOAD double __clc_remainder(double x, double y)
{
    ulong ux = as_ulong(x);
    ulong ax = ux & ~SIGNBIT_DP64;
    ulong xsgn = ux ^ ax;
    double dx = as_double(ax);
    int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
    int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64);
    xexp1 = xexp < 1 ? xexp1 : xexp;
    ulong uy = as_ulong(y);
    ulong ay = uy & ~SIGNBIT_DP64;
    double dy = as_double(ay);
    int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
    int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64);
    yexp1 = yexp < 1 ? yexp1 : yexp;
    int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1;
    // First assume |x| > |y|
    // Set ntimes to the number of times we need to do a
    // partial remainder. If the exponent of x is an exact multiple
    // of 53 larger than the exponent of y, and the mantissa of x is
    // less than the mantissa of y, ntimes will be one too large
    // but it doesn't matter - it just means that we'll go round
    // the loop below one extra time.
    int ntimes = max(0, (xexp1 - yexp1) / 53);
    double w =  ldexp(dy, ntimes * 53);
    w = ntimes == 0 ? dy : w;
    double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
    // Each time round the loop we compute a partial remainder.
    // This is done by subtracting a large multiple of w
    // from x each time, where w is a scaled up version of y.
    // The subtraction must be performed exactly in quad
    // precision, though the result at each stage can
    // fit exactly in a double precision number.
    int i;
    double t, v, p, pp;
    for (i = 0; i < ntimes; i++) {
        // Compute integral multiplier
        t = trunc(dx / w);
        // Compute w * t in quad precision
        p = w * t;
        pp = fma(w, t, -p);
        // Subtract w * t from dx
        v = dx - p;
        dx = v + (((dx - v) - p) - pp);
        // If t was one too large, dx will be negative. Add back one w.
        dx += dx < 0.0 ? w : 0.0;
        // Scale w down by 2^(-53) for the next iteration
        w *= scale;
    }
    // One more time
    // Variable todd says whether the integer t is odd or not
    t = floor(dx / w);
    long lt = (long)t;
    int todd = lt & 1;
    p = w * t;
    pp = fma(w, t, -p);
    v = dx - p;
    dx = v + (((dx - v) - p) - pp);
    i = dx < 0.0;
    todd ^= i;
    dx += i ? w : 0.0;
    // At this point, dx lies in the range [0,dy)
    // For the fmod function, we're done apart from setting the correct sign.
    //
    // For the remainder function, we need to adjust dx
    // so that it lies in the range (-y/2, y/2] by carefully
    // subtracting w (== dy == y) if necessary. The rigmarole
    // with todd is to get the correct sign of the result
    // when x/y lies exactly half way between two integers,
    // when we need to choose the even integer.
    int al = (2.0*dx > w) | (todd & (2.0*dx == w));
    double dxl = dx - (al ? w : 0.0);
    int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w));
    double dxg = dx - (ag ? w : 0.0);
    dx = dy < 0x1.0p+1022 ? dxl : dxg;
    double ret = as_double(xsgn ^ as_ulong(dx));
    dx = as_double(ax);
    // Now handle |x| == |y|
    int c = dx == dy;
    t = as_double(xsgn);
    ret = c ? t : ret;
    // Next, handle |x| < |y|
    c = dx < dy;
    ret = c ? x : ret;
    c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy);
    // we could use a conversion here instead since qsgn = +-1
    p = qsgn == 1 ? -1.0 : 1.0;
    t = fma(y, p, x);
    ret = c ? t : ret;
    // We don't need anything special for |x| == 0
    // |y| is 0
    c = dy == 0.0;
    ret = c ? as_double(QNANBITPATT_DP64) : ret;
    // y is +-Inf, NaN
    c = yexp > BIASEDEMAX_DP64;
    t = y == y ? x : y;
    ret = c ? t : ret;
    // x is +=Inf, NaN
    c = xexp > BIASEDEMAX_DP64;
    ret = c ? as_double(QNANBITPATT_DP64) : ret;
    return ret;
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_remainder, double, double);
#endif
 |