File: MIRPatterns.rst

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (577 lines) | stat: -rw-r--r-- 17,291 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

.. _tblgen-mirpats:

========================
MIR Patterns in TableGen
========================

.. contents::
   :local:


User's Guide
============

This section is intended for developers who want to use MIR patterns in their
TableGen files.

``NOTE``:
This feature is still in active development. This document may become outdated
over time. If you see something that's incorrect, please update it.

Use Cases
---------

MIR patterns are supported in the following places:

* GlobalISel ``GICombineRule``
* GlobalISel ``GICombinePatFrag``

Syntax
------

MIR patterns use the DAG datatype in TableGen.

.. code-block:: text

  (inst operand0, operand1, ...)

``inst`` must be a def which inherits from ``Instruction`` (e.g. ``G_FADD``),
``Intrinsic`` or ``GICombinePatFrag``.

Operands essentially fall into one of two categories:

* immediates

  * untyped, unnamed: ``0``
  * untyped, named: ``0:$y``
  * typed, unnamed: ``(i32 0)``
  * typed, named: ``(i32 0):$y``

* machine operands

  * untyped: ``$x``
  * typed: ``i32:$x``

Semantics:

* A typed operand always adds an operand type check to the matcher.
* There is a trivial type inference system to propagate types.

  * e.g. You only need to use ``i32:$x`` once in any pattern of a
    ``GICombinePatFrag`` alternative or ``GICombineRule``, then all
    other patterns in that rule/alternative can simply use ``$x``
    (``i32:$x`` is redundant).

* A named operand's behavior depends on whether the name has been seen before.

  * For match patterns, reusing an operand name checks that the operands
    are identical (see example 2 below).
  * For apply patterns, reusing an operand name simply copies that operand into
    the new instruction (see example 2 below).

Operands are ordered just like they would be in a MachineInstr: the defs (outs)
come first, then the uses (ins).

Patterns are generally grouped into another DAG datatype with a dummy operator
such as ``match``, ``apply`` or ``pattern``.

Finally, any DAG datatype in TableGen can be named. This also holds for
patterns. e.g. the following is valid: ``(G_FOO $root, (i32 0):$cst):$mypat``.
This may also be helpful to debug issues. Patterns are *always* named, and if
they don't have a name, an "anonymous" one is given to them. If you're trying
to debug an error related to a MIR pattern, but the error mentions an anonymous
pattern, you can try naming your patterns to see exactly where the issue is.

.. code-block:: text
  :caption: Pattern Example 1

  // Match
  //    %imp = G_IMPLICIT_DEF
  //    %root = G_MUL %x, %imp
  (match (G_IMPLICIT_DEF $imp),
         (G_MUL $root, $x, $imp))

.. code-block:: text
  :caption: Pattern Example 2

  // using $x twice here checks that the operand 1 and 2 of the G_AND are
  // identical.
  (match (G_AND $root, $x, $x))
  // using $x again here copies operand 1 from G_AND into the new inst.
  (apply (COPY $root, $x))

Types
-----

ValueType
~~~~~~~~~

Subclasses of ``ValueType`` are valid types, e.g. ``i32``.

GITypeOf
~~~~~~~~

``GITypeOf<"$x">`` is a ``GISpecialType`` that allows for the creation of a
register or immediate with the same type as another (register) operand.

Operand:

* An operand name as a string, prefixed by ``$``.

Semantics:

* Can only appear in an 'apply' pattern.
* The operand name used must appear in the 'match' pattern of the
  same ``GICombineRule``.

.. code-block:: text
  :caption: Example: Immediate

  def mul_by_neg_one: GICombineRule <
    (defs root:$root),
    (match (G_MUL $dst, $x, -1)),
    (apply (G_SUB $dst, (GITypeOf<"$x"> 0), $x))
  >;

.. code-block:: text
  :caption: Example: Temp Reg

  def Test0 : GICombineRule<
    (defs root:$dst),
    (match (G_FMUL $dst, $src, -1)),
    (apply (G_FSUB $dst, $src, $tmp),
           (G_FNEG GITypeOf<"$dst">:$tmp, $src))>;

Builtin Operations
------------------

MIR Patterns also offer builtin operations, also called "builtin instructions".
They offer some powerful features that would otherwise require use of C++ code.

GIReplaceReg
~~~~~~~~~~~~

.. code-block:: text
  :caption: Usage

  (apply (GIReplaceReg $old, $new))

Operands:

* ``$old`` (out) register defined by a matched instruction
* ``$new`` (in)  register

Semantics:

* Can only appear in an 'apply' pattern.
* If both old/new are operands of matched instructions,
  ``canReplaceReg`` is checked before applying the rule.


GIEraseRoot
~~~~~~~~~~~

.. code-block:: text
  :caption: Usage

  (apply (GIEraseRoot))

Semantics:

* Can only appear as the only pattern of an 'apply' pattern list.
* The root cannot have any output operands.
* The root must be a CodeGenInstruction

Instruction Flags
-----------------

MIR Patterns support both matching & writing ``MIFlags``.

.. code-block:: text
  :caption: Example

  def Test : GICombineRule<
    (defs root:$dst),
    (match (G_FOO $dst, $src, (MIFlags FmNoNans, FmNoInfs))),
    (apply (G_BAR $dst, $src, (MIFlags FmReassoc)))>;

In ``apply`` patterns, we also support referring to a matched instruction to
"take" its MIFlags.

.. code-block:: text
  :caption: Example

  ; We match NoNans/NoInfs, but $zext may have more flags.
  ; Copy them all into the output instruction, and set Reassoc on the output inst.
  def TestCpyFlags : GICombineRule<
    (defs root:$dst),
    (match (G_FOO $dst, $src, (MIFlags FmNoNans, FmNoInfs)):$zext),
    (apply (G_BAR $dst, $src, (MIFlags $zext, FmReassoc)))>;

The ``not`` operator can be used to check that a flag is NOT present
on a matched instruction, and to remove a flag from a generated instruction.

.. code-block:: text
  :caption: Example

  ; We match NoInfs but we don't want NoNans/Reassoc to be set. $zext may have more flags.
  ; Copy them all into the output instruction but remove NoInfs on the output inst.
  def TestNot : GICombineRule<
    (defs root:$dst),
    (match (G_FOO $dst, $src, (MIFlags FmNoInfs, (not FmNoNans, FmReassoc))):$zext),
    (apply (G_BAR $dst, $src, (MIFlags $zext, (not FmNoInfs))))>;

Limitations
-----------

This a non-exhaustive list of known issues with MIR patterns at this time.

* Using ``GICombinePatFrag`` within another ``GICombinePatFrag`` is not
  supported.
* ``GICombinePatFrag`` can only have a single root.
* Instructions with multiple defs cannot be the root of a ``GICombinePatFrag``.
* Using ``GICombinePatFrag`` in the ``apply`` pattern of a ``GICombineRule``
  is not supported.
* We cannot rewrite a matched instruction other than the root.
* Matching/creating a (CImm) immediate >64 bits is not supported
  (see comment in ``GIM_CheckConstantInt``)
* There is currently no way to constrain two register/immediate types to
  match. e.g. if a pattern needs to work on both i32 and i64, you either
  need to leave it untyped and check the type in C++, or duplicate the
  pattern.

GICombineRule
-------------

MIR patterns can appear in the ``match`` or ``apply`` patterns of a
``GICombineRule``.

The ``root`` of the rule can either be a def of an instruction, or a
named pattern. The latter is helpful when the instruction you want
to match has no defs. The former is generally preferred because
it's less verbose.

.. code-block:: text
  :caption: Combine Rule root is a def

  // Fold x op 1 -> x
  def right_identity_one: GICombineRule<
    (defs root:$dst),
    (match (G_MUL $dst, $x, 1)),
    // Note: Patterns always need to create something, we can't just replace $dst with $x, so we need a COPY.
    (apply (COPY $dst, $x))
  >;

.. code-block:: text
  :caption: Combine Rule root is a named pattern

  def Foo : GICombineRule<
    (defs root:$root),
    (match (G_ZEXT $tmp, (i32 0)),
           (G_STORE $tmp, $ptr):$root),
    (apply (G_STORE (i32 0), $ptr):$root)>;


Combine Rules also allow mixing C++ code with MIR patterns, so that you
may perform additional checks when matching, or run a C++ action after
matching.

Note that C++ code in ``apply`` pattern is mutually exclusive with
other patterns. However, you can freely mix C++ code with other
types of patterns in ``match`` patterns.
C++ code in ``match`` patterns is always run last, after all other
patterns matched.

.. code-block:: text
  :caption: Apply Pattern Examples with C++ code

  // Valid
  def Foo : GICombineRule<
    (defs root:$root),
    (match (G_ZEXT $tmp, (i32 0)),
           (G_STORE $tmp, $ptr):$root,
           "return myFinalCheck()"),
    (apply "runMyAction(${root})")>;

  // error: 'apply' patterns cannot mix C++ code with other types of patterns
  def Bar : GICombineRule<
    (defs root:$dst),
    (match (G_ZEXT $dst, $src):$mi),
    (apply (G_MUL $dst, $src, $src),
           "runMyAction(${root})")>;

The following expansions are available for MIR patterns:

* operand names (``MachineOperand &``)
* pattern names (``MachineInstr *`` for ``match``,
  ``MachineInstrBuilder &`` for apply)

.. code-block:: text
  :caption: Example C++ Expansions

  def Foo : GICombineRule<
    (defs root:$root),
    (match (G_ZEXT $root, $src):$mi),
    (apply "foobar(${root}.getReg(), ${src}.getReg(), ${mi}->hasImplicitDef())")>;

Common Pattern #1: Replace a Register with Another
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The 'apply' pattern must always redefine all operands defined by the match root.
Sometimes, we do not need to create instructions, simply replace a def with
another matched register. The ``GIReplaceReg`` builtin can do just that.

.. code-block:: text

  def Foo : GICombineRule<
    (defs root:$dst),
    (match (G_FNEG $tmp, $src), (G_FNEG $dst, $tmp)),
    (apply (GIReplaceReg $dst, $src))>;

This also works if the replacement register is a temporary register from the
``apply`` pattern.

.. code-block:: text

  def ReplaceTemp : GICombineRule<
    (defs root:$a),
    (match    (G_BUILD_VECTOR $tmp, $x, $y),
              (G_UNMERGE_VALUES $a, $b, $tmp)),
    (apply  (G_UNMERGE_VALUES $a, i32:$new, $y),
            (GIReplaceReg $b, $new))>

Common Pattern #2: Erasing a Def-less Root
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If we simply want to erase a def-less match root, we can use the
``GIEraseRoot`` builtin.

.. code-block:: text

  def Foo : GICombineRule<
    (defs root:$mi),
    (match (G_STORE $a, $b):$mi),
    (apply (GIEraseRoot))>;

Common Pattern #3: Emitting a Constant Value
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When an immediate operand appears in an 'apply' pattern, the behavior
depends on whether it's typed or not.

* If the immediate is typed, ``MachineIRBuilder::buildConstant`` is used
  to create a ``G_CONSTANT``. A ``G_BUILD_VECTOR`` will be used for vectors.
* If the immediate is untyped, a simple immediate is added
  (``MachineInstrBuilder::addImm``).

There is of course a special case for ``G_CONSTANT``. Immediates for
``G_CONSTANT`` must always be typed, and a CImm is added
(``MachineInstrBuilder::addCImm``).

.. code-block:: text
  :caption: Constant Emission Examples:

  // Example output:
  //    %0 = G_CONSTANT i32 0
  //    %dst = COPY %0
  def Foo : GICombineRule<
    (defs root:$dst),
    (match (G_FOO $dst, $src)),
    (apply (COPY $dst, (i32 0)))>;

  // Example output:
  //    %dst = COPY 0
  // Note that this would be ill-formed because COPY
  // expects a register operand!
  def Bar : GICombineRule<
    (defs root:$dst),
    (match (G_FOO $dst, $src)),
    (apply (COPY $dst, (i32 0)))>;

  // Example output:
  //    %dst = G_CONSTANT i32 0
  def Bux : GICombineRule<
    (defs root:$dst),
    (match (G_FOO $dst, $src)),
    (apply (G_CONSTANT $dst, (i32 0)))>;

GICombinePatFrag
----------------

``GICombinePatFrag`` is an equivalent of ``PatFrags`` for MIR patterns.
They have two main usecases:

* Reduce repetition by creating a ``GICombinePatFrag`` for common
  patterns (see example 1).
* Implicitly duplicate a CombineRule for multiple variants of a
  pattern (see example 2).

A ``GICombinePatFrag`` is composed of three elements:

* zero or more ``in`` (def) parameter
* zero or more ``out`` parameter
* A list of MIR patterns that can match.

  * When a ``GICombinePatFrag`` is used within a pattern, the pattern is
    cloned once for each alternative that can match.

Parameters can have the following types:

* ``gi_mo``, which is the implicit default (no type = ``gi_mo``).

  * Refers to any operand of an instruction (register, BB ref, imm, etc.).
  * Can be used in both ``in`` and ``out`` parameters.
  * Users of the PatFrag can only use an operand name for this
    parameter (e.g. ``(my_pat_frag $foo)``).

* ``root``

  * This is identical to ``gi_mo``.
  * Can only be used in ``out`` parameters to declare the root of the
    pattern.
  * Non-empty ``out`` parameter lists must always have exactly one ``root``.

* ``gi_imm``

  * Refers to an (potentially typed) immediate.
  * Can only be used in ``in`` parameters.
  * Users of the PatFrag can only use an immediate for this parameter
    (e.g. ``(my_pat_frag 0)`` or ``(my_pat_frag (i32 0))``)

``out`` operands can only be empty if the ``GICombinePatFrag`` only contains
C++ code. If the fragment contains instruction patterns, it has to have at
least one ``out`` operand of type ``root``.

``in`` operands are less restricted, but there is one important concept to
remember: you can pass "unbound" operand names, but only if the
``GICombinePatFrag`` binds it. See example 3 below.

``GICombinePatFrag`` are used just like any other instructions.
Note that the ``out`` operands are defs, so they come first in the list
of operands.

.. code-block:: text
  :caption: Example 1: Reduce Repetition

  def zext_cst : GICombinePatFrag<(outs root:$dst, $cst), (ins gi_imm:$val),
    [(pattern (G_CONSTANT $cst, $val),
              (G_ZEXT $dst, $cst))]
  >;

  def foo_to_impdef : GICombineRule<
   (defs root:$dst),
   (match (zext_cst $y, $cst, (i32 0))
          (G_FOO $dst, $y)),
   (apply (G_IMPLICIT_DEF $dst))>;

  def store_ext_zero : GICombineRule<
   (defs root:$root),
   (match (zext_cst $y, $cst, (i32 0))
          (G_STORE $y, $ptr):$root),
   (apply (G_STORE $cst, $ptr):$root)>;

.. code-block:: text
  :caption: Example 2: Generate Multiple Rules at Once

  // Fold (freeze (freeze x)) -> (freeze x).
  // Fold (fabs (fabs x)) -> (fabs x).
  // Fold (fcanonicalize (fcanonicalize x)) -> (fcanonicalize x).
  def idempotent_prop_frags : GICombinePatFrag<(outs root:$dst, $src), (ins),
    [
      (pattern (G_FREEZE $dst, $src), (G_FREEZE $src, $x)),
      (pattern (G_FABS $dst, $src), (G_FABS $src, $x)),
      (pattern (G_FCANONICALIZE $dst, $src), (G_FCANONICALIZE $src, $x))
    ]
  >;

  def idempotent_prop : GICombineRule<
    (defs root:$dst),
    (match (idempotent_prop_frags $dst, $src)),
    (apply (COPY $dst, $src))>;



.. code-block:: text
  :caption: Example 3: Unbound Operand Names

  // This fragment binds $x to an operand in all of its
  // alternative patterns.
  def always_binds : GICombinePatFrag<
    (outs root:$dst), (ins $x),
    [
      (pattern (G_FREEZE $dst, $x)),
      (pattern (G_FABS $dst, $x)),
    ]
  >;

  // This fragment does not bind $x to an operand in any
  // of its alternative patterns.
  def does_not_bind : GICombinePatFrag<
    (outs root:$dst), (ins $x),
    [
      (pattern (G_FREEZE $dst, $x)), // binds $x
      (pattern (G_FOO $dst (i32 0))), // does not bind $x
      (pattern "return myCheck(${x}.getReg())"), // does not bind $x
    ]
  >;

  // Here we pass $x, which is unbound, to always_binds.
  // This works because if $x is unbound, always_binds will bind it for us.
  def test0 : GICombineRule<
    (defs root:$dst),
    (match (always_binds $dst, $x)),
    (apply (COPY $dst, $x))>;

  // Here we pass $x, which is unbound, to does_not_bind.
  // This cannot work because $x may not have been initialized in 'apply'.
  // error: operand 'x' (for parameter 'src' of 'does_not_bind') cannot be unbound
  def test1 : GICombineRule<
    (defs root:$dst),
    (match (does_not_bind $dst, $x)),
    (apply (COPY $dst, $x))>;

  // Here we pass $x, which is bound, to does_not_bind.
  // This is fine because $x will always be bound when emitting does_not_bind
  def test2 : GICombineRule<
    (defs root:$dst),
    (match (does_not_bind $tmp, $x)
           (G_MUL $dst, $x, $tmp)),
    (apply (COPY $dst, $x))>;




Gallery
=======

We should use precise patterns that state our intentions. Please avoid
using wip_match_opcode in patterns.

.. code-block:: text
  :caption: Example fold zext(trunc:nuw)

  // Imprecise: matches any G_ZEXT
  def zext : GICombineRule<
    (defs root:$root),
    (match (wip_match_opcode G_ZEXT):$root,
    [{ return Helper.matchZextOfTrunc(*${root}, ${matchinfo}); }]),
    (apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>;


  // Imprecise: matches G_ZEXT of G_TRUNC
  def zext_of_trunc : GICombineRule<
    (defs root:$root),
    (match (G_TRUNC $src, $x),
           (G_ZEXT $root, $src),
    [{ return Helper.matchZextOfTrunc(${root}, ${matchinfo}); }]),
    (apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;


  // Precise: matches G_ZEXT of G_TRUNC with nuw flag
  def zext_of_trunc_nuw : GICombineRule<
    (defs root:$root),
    (match (G_TRUNC $src, $x, (MIFlags NoUWrap)),
           (G_ZEXT $root, $src),
    [{ return Helper.matchZextOfTrunc(${root}, ${matchinfo}); }]),
    (apply [{ Helper.applyBuildFnMO(${root}, ${matchinfo}); }])>;