1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
//===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a `-dot-cfg` analysis pass, which emits the
// `<prefix>.<fnname>.dot` file for each function in the program, with a graph
// of the CFG for that function. The default value for `<prefix>` is `cfg` but
// can be customized as needed.
//
// The other main feature of this file is that it implements the
// Function::viewCFG method, which is useful for debugging passes which operate
// on the CFG.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GraphWriter.h"
using namespace llvm;
static cl::opt<std::string>
CFGFuncName("cfg-func-name", cl::Hidden,
cl::desc("The name of a function (or its substring)"
" whose CFG is viewed/printed."));
static cl::opt<std::string> CFGDotFilenamePrefix(
"cfg-dot-filename-prefix", cl::Hidden,
cl::desc("The prefix used for the CFG dot file names."));
static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths",
cl::init(false));
static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths",
cl::init(false));
static cl::opt<double> HideColdPaths(
"cfg-hide-cold-paths", cl::init(0.0),
cl::desc("Hide blocks with relative frequency below the given value"));
static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true),
cl::Hidden,
cl::desc("Show heat colors in CFG"));
static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false),
cl::Hidden,
cl::desc("Use raw weights for labels. "
"Use percentages as default."));
static cl::opt<bool>
ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden,
cl::desc("Show edges labeled with weights"));
static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI,
BranchProbabilityInfo *BPI, uint64_t MaxFreq,
bool CFGOnly = false) {
std::string Filename =
(CFGDotFilenamePrefix + "." + F.getName() + ".dot").str();
errs() << "Writing '" << Filename << "'...";
std::error_code EC;
raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
CFGInfo.setHeatColors(ShowHeatColors);
CFGInfo.setEdgeWeights(ShowEdgeWeight);
CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
if (!EC)
WriteGraph(File, &CFGInfo, CFGOnly);
else
errs() << " error opening file for writing!";
errs() << "\n";
}
static void viewCFG(Function &F, const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI, uint64_t MaxFreq,
bool CFGOnly = false) {
DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq);
CFGInfo.setHeatColors(ShowHeatColors);
CFGInfo.setEdgeWeights(ShowEdgeWeight);
CFGInfo.setRawEdgeWeights(UseRawEdgeWeight);
ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly);
}
PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
viewCFG(F, BFI, BPI, getMaxFreq(F, BFI));
return PreservedAnalyses::all();
}
PreservedAnalyses CFGOnlyViewerPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
return PreservedAnalyses::all();
}
PreservedAnalyses CFGPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI));
return PreservedAnalyses::all();
}
PreservedAnalyses CFGOnlyPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName))
return PreservedAnalyses::all();
auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true);
return PreservedAnalyses::all();
}
/// viewCFG - This function is meant for use from the debugger. You can just
/// say 'call F->viewCFG()' and a ghostview window should pop up from the
/// program, displaying the CFG of the current function. This depends on there
/// being a 'dot' and 'gv' program in your path.
///
void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); }
void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI) const {
if (!CFGFuncName.empty() && !getName().contains(CFGFuncName))
return;
DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0);
ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly);
}
/// viewCFGOnly - This function is meant for use from the debugger. It works
/// just like viewCFG, but it does not include the contents of basic blocks
/// into the nodes, just the label. If you are only interested in the CFG
/// this can make the graph smaller.
///
void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); }
void Function::viewCFGOnly(const BlockFrequencyInfo *BFI,
const BranchProbabilityInfo *BPI) const {
viewCFG(true, BFI, BPI);
}
/// Find all blocks on the paths which terminate with a deoptimize or
/// unreachable (i.e. all blocks which are post-dominated by a deoptimize
/// or unreachable). These paths are hidden if the corresponding cl::opts
/// are enabled.
void DOTGraphTraits<DOTFuncInfo *>::computeDeoptOrUnreachablePaths(
const Function *F) {
auto evaluateBB = [&](const BasicBlock *Node) {
if (succ_empty(Node)) {
const Instruction *TI = Node->getTerminator();
isOnDeoptOrUnreachablePath[Node] =
(HideUnreachablePaths && isa<UnreachableInst>(TI)) ||
(HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall());
return;
}
isOnDeoptOrUnreachablePath[Node] =
llvm::all_of(successors(Node), [this](const BasicBlock *BB) {
return isOnDeoptOrUnreachablePath[BB];
});
};
/// The post order traversal iteration is done to know the status of
/// isOnDeoptOrUnreachablePath for all the successors on the current BB.
llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB);
}
bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node,
const DOTFuncInfo *CFGInfo) {
if (HideColdPaths.getNumOccurrences() > 0)
if (auto *BFI = CFGInfo->getBFI()) {
BlockFrequency NodeFreq = BFI->getBlockFreq(Node);
BlockFrequency EntryFreq = BFI->getEntryFreq();
// Hide blocks with relative frequency below HideColdPaths threshold.
if ((double)NodeFreq.getFrequency() / EntryFreq.getFrequency() <
HideColdPaths)
return true;
}
if (HideUnreachablePaths || HideDeoptimizePaths) {
if (!isOnDeoptOrUnreachablePath.contains(Node))
computeDeoptOrUnreachablePaths(Node->getParent());
return isOnDeoptOrUnreachablePath[Node];
}
return false;
}
|