1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
|
//===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// Implementation file for the IRSimilarityIdentifier for identifying
// similarities in IR including the IRInstructionMapper.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IRSimilarityIdentifier.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/SuffixTree.h"
using namespace llvm;
using namespace IRSimilarity;
namespace llvm {
cl::opt<bool>
DisableBranches("no-ir-sim-branch-matching", cl::init(false),
cl::ReallyHidden,
cl::desc("disable similarity matching, and outlining, "
"across branches for debugging purposes."));
cl::opt<bool>
DisableIndirectCalls("no-ir-sim-indirect-calls", cl::init(false),
cl::ReallyHidden,
cl::desc("disable outlining indirect calls."));
cl::opt<bool>
MatchCallsByName("ir-sim-calls-by-name", cl::init(false), cl::ReallyHidden,
cl::desc("only allow matching call instructions if the "
"name and type signature match."));
cl::opt<bool>
DisableIntrinsics("no-ir-sim-intrinsics", cl::init(false), cl::ReallyHidden,
cl::desc("Don't match or outline intrinsics"));
} // namespace llvm
IRInstructionData::IRInstructionData(Instruction &I, bool Legality,
IRInstructionDataList &IDList)
: Inst(&I), Legal(Legality), IDL(&IDList) {
initializeInstruction();
}
void IRInstructionData::initializeInstruction() {
// We check for whether we have a comparison instruction. If it is, we
// find the "less than" version of the predicate for consistency for
// comparison instructions throught the program.
if (CmpInst *C = dyn_cast<CmpInst>(Inst)) {
CmpInst::Predicate Predicate = predicateForConsistency(C);
if (Predicate != C->getPredicate())
RevisedPredicate = Predicate;
}
// Here we collect the operands and their types for determining whether
// the structure of the operand use matches between two different candidates.
for (Use &OI : Inst->operands()) {
if (isa<CmpInst>(Inst) && RevisedPredicate) {
// If we have a CmpInst where the predicate is reversed, it means the
// operands must be reversed as well.
OperVals.insert(OperVals.begin(), OI.get());
continue;
}
OperVals.push_back(OI.get());
}
// We capture the incoming BasicBlocks as values as well as the incoming
// Values in order to check for structural similarity.
if (PHINode *PN = dyn_cast<PHINode>(Inst))
for (BasicBlock *BB : PN->blocks())
OperVals.push_back(BB);
}
IRInstructionData::IRInstructionData(IRInstructionDataList &IDList)
: IDL(&IDList) {}
void IRInstructionData::setBranchSuccessors(
DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) {
assert(isa<BranchInst>(Inst) && "Instruction must be branch");
BranchInst *BI = cast<BranchInst>(Inst);
DenseMap<BasicBlock *, unsigned>::iterator BBNumIt;
BBNumIt = BasicBlockToInteger.find(BI->getParent());
assert(BBNumIt != BasicBlockToInteger.end() &&
"Could not find location for BasicBlock!");
int CurrentBlockNumber = static_cast<int>(BBNumIt->second);
for (Value *V : getBlockOperVals()) {
BasicBlock *Successor = cast<BasicBlock>(V);
BBNumIt = BasicBlockToInteger.find(Successor);
assert(BBNumIt != BasicBlockToInteger.end() &&
"Could not find number for BasicBlock!");
int OtherBlockNumber = static_cast<int>(BBNumIt->second);
int Relative = OtherBlockNumber - CurrentBlockNumber;
RelativeBlockLocations.push_back(Relative);
}
}
ArrayRef<Value *> IRInstructionData::getBlockOperVals() {
assert((isa<BranchInst>(Inst) ||
isa<PHINode>(Inst)) && "Instruction must be branch or PHINode");
if (BranchInst *BI = dyn_cast<BranchInst>(Inst))
return ArrayRef<Value *>(
std::next(OperVals.begin(), BI->isConditional() ? 1 : 0),
OperVals.end()
);
if (PHINode *PN = dyn_cast<PHINode>(Inst))
return ArrayRef<Value *>(
std::next(OperVals.begin(), PN->getNumIncomingValues()),
OperVals.end()
);
return ArrayRef<Value *>();
}
void IRInstructionData::setCalleeName(bool MatchByName) {
CallInst *CI = dyn_cast<CallInst>(Inst);
assert(CI && "Instruction must be call");
CalleeName = "";
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
// To hash intrinsics, we use the opcode, and types like the other
// instructions, but also, the Intrinsic ID, and the Name of the
// intrinsic.
Intrinsic::ID IntrinsicID = II->getIntrinsicID();
FunctionType *FT = II->getFunctionType();
// If there is an overloaded name, we have to use the complex version
// of getName to get the entire string.
if (Intrinsic::isOverloaded(IntrinsicID))
CalleeName =
Intrinsic::getName(IntrinsicID, FT->params(), II->getModule(), FT);
// If there is not an overloaded name, we only need to use this version.
else
CalleeName = Intrinsic::getName(IntrinsicID).str();
return;
}
if (!CI->isIndirectCall() && MatchByName)
CalleeName = CI->getCalledFunction()->getName().str();
}
void IRInstructionData::setPHIPredecessors(
DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) {
assert(isa<PHINode>(Inst) && "Instruction must be phi node");
PHINode *PN = cast<PHINode>(Inst);
DenseMap<BasicBlock *, unsigned>::iterator BBNumIt;
BBNumIt = BasicBlockToInteger.find(PN->getParent());
assert(BBNumIt != BasicBlockToInteger.end() &&
"Could not find location for BasicBlock!");
int CurrentBlockNumber = static_cast<int>(BBNumIt->second);
// Convert the incoming blocks of the PHINode to an integer value, based on
// the relative distances between the current block and the incoming block.
for (unsigned Idx = 0; Idx < PN->getNumIncomingValues(); Idx++) {
BasicBlock *Incoming = PN->getIncomingBlock(Idx);
BBNumIt = BasicBlockToInteger.find(Incoming);
assert(BBNumIt != BasicBlockToInteger.end() &&
"Could not find number for BasicBlock!");
int OtherBlockNumber = static_cast<int>(BBNumIt->second);
int Relative = OtherBlockNumber - CurrentBlockNumber;
RelativeBlockLocations.push_back(Relative);
}
}
CmpInst::Predicate IRInstructionData::predicateForConsistency(CmpInst *CI) {
switch (CI->getPredicate()) {
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_UGT:
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGE:
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_SGE:
case CmpInst::ICMP_UGE:
return CI->getSwappedPredicate();
default:
return CI->getPredicate();
}
}
CmpInst::Predicate IRInstructionData::getPredicate() const {
assert(isa<CmpInst>(Inst) &&
"Can only get a predicate from a compare instruction");
if (RevisedPredicate)
return *RevisedPredicate;
return cast<CmpInst>(Inst)->getPredicate();
}
StringRef IRInstructionData::getCalleeName() const {
assert(isa<CallInst>(Inst) &&
"Can only get a name from a call instruction");
assert(CalleeName && "CalleeName has not been set");
return *CalleeName;
}
bool IRSimilarity::isClose(const IRInstructionData &A,
const IRInstructionData &B) {
if (!A.Legal || !B.Legal)
return false;
// Check if we are performing the same sort of operation on the same types
// but not on the same values.
if (!A.Inst->isSameOperationAs(B.Inst)) {
// If there is a predicate, this means that either there is a swapped
// predicate, or that the types are different, we want to make sure that
// the predicates are equivalent via swapping.
if (isa<CmpInst>(A.Inst) && isa<CmpInst>(B.Inst)) {
if (A.getPredicate() != B.getPredicate())
return false;
// If the predicates are the same via swap, make sure that the types are
// still the same.
auto ZippedTypes = zip(A.OperVals, B.OperVals);
return all_of(
ZippedTypes, [](std::tuple<llvm::Value *, llvm::Value *> R) {
return std::get<0>(R)->getType() == std::get<1>(R)->getType();
});
}
return false;
}
// Since any GEP Instruction operands after the first operand cannot be
// defined by a register, we must make sure that the operands after the first
// are the same in the two instructions
if (auto *GEP = dyn_cast<GetElementPtrInst>(A.Inst)) {
auto *OtherGEP = cast<GetElementPtrInst>(B.Inst);
// If the instructions do not have the same inbounds restrictions, we do
// not consider them the same.
if (GEP->isInBounds() != OtherGEP->isInBounds())
return false;
auto ZippedOperands = zip(GEP->indices(), OtherGEP->indices());
// We increment here since we do not care about the first instruction,
// we only care about the following operands since they must be the
// exact same to be considered similar.
return all_of(drop_begin(ZippedOperands),
[](std::tuple<llvm::Use &, llvm::Use &> R) {
return std::get<0>(R) == std::get<1>(R);
});
}
// If the instructions are functions calls, we make sure that the function
// name is the same. We already know that the types are since is
// isSameOperationAs is true.
if (isa<CallInst>(A.Inst) && isa<CallInst>(B.Inst)) {
if (A.getCalleeName() != B.getCalleeName())
return false;
}
if (isa<BranchInst>(A.Inst) && isa<BranchInst>(B.Inst) &&
A.RelativeBlockLocations.size() != B.RelativeBlockLocations.size())
return false;
return true;
}
// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
void IRInstructionMapper::convertToUnsignedVec(
BasicBlock &BB, std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
BasicBlock::iterator It = BB.begin();
std::vector<unsigned> IntegerMappingForBB;
std::vector<IRInstructionData *> InstrListForBB;
for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) {
switch (InstClassifier.visit(*It)) {
case InstrType::Legal:
mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
break;
case InstrType::Illegal:
mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
break;
case InstrType::Invisible:
AddedIllegalLastTime = false;
break;
}
}
if (AddedIllegalLastTime)
mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true);
for (IRInstructionData *ID : InstrListForBB)
this->IDL->push_back(*ID);
llvm::append_range(InstrList, InstrListForBB);
llvm::append_range(IntegerMapping, IntegerMappingForBB);
}
// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
unsigned IRInstructionMapper::mapToLegalUnsigned(
BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
std::vector<IRInstructionData *> &InstrListForBB) {
// We added something legal, so we should unset the AddedLegalLastTime
// flag.
AddedIllegalLastTime = false;
// If we have at least two adjacent legal instructions (which may have
// invisible instructions in between), remember that.
if (CanCombineWithPrevInstr)
HaveLegalRange = true;
CanCombineWithPrevInstr = true;
// Get the integer for this instruction or give it the current
// LegalInstrNumber.
IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL);
InstrListForBB.push_back(ID);
if (isa<BranchInst>(*It))
ID->setBranchSuccessors(BasicBlockToInteger);
if (isa<CallInst>(*It))
ID->setCalleeName(EnableMatchCallsByName);
if (isa<PHINode>(*It))
ID->setPHIPredecessors(BasicBlockToInteger);
// Add to the instruction list
bool WasInserted;
DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator
ResultIt;
std::tie(ResultIt, WasInserted) =
InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber));
unsigned INumber = ResultIt->second;
// There was an insertion.
if (WasInserted)
LegalInstrNumber++;
IntegerMappingForBB.push_back(INumber);
// Make sure we don't overflow or use any integers reserved by the DenseMap.
assert(LegalInstrNumber < IllegalInstrNumber &&
"Instruction mapping overflow!");
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
"Tried to assign DenseMap tombstone or empty key to instruction.");
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
"Tried to assign DenseMap tombstone or empty key to instruction.");
return INumber;
}
IRInstructionData *
IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality,
IRInstructionDataList &IDL) {
return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL);
}
IRInstructionData *
IRInstructionMapper::allocateIRInstructionData(IRInstructionDataList &IDL) {
return new (InstDataAllocator->Allocate()) IRInstructionData(IDL);
}
IRInstructionDataList *
IRInstructionMapper::allocateIRInstructionDataList() {
return new (IDLAllocator->Allocate()) IRInstructionDataList();
}
// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
unsigned IRInstructionMapper::mapToIllegalUnsigned(
BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
std::vector<IRInstructionData *> &InstrListForBB, bool End) {
// Can't combine an illegal instruction. Set the flag.
CanCombineWithPrevInstr = false;
// Only add one illegal number per range of legal numbers.
if (AddedIllegalLastTime)
return IllegalInstrNumber;
IRInstructionData *ID = nullptr;
if (!End)
ID = allocateIRInstructionData(*It, false, *IDL);
else
ID = allocateIRInstructionData(*IDL);
InstrListForBB.push_back(ID);
// Remember that we added an illegal number last time.
AddedIllegalLastTime = true;
unsigned INumber = IllegalInstrNumber;
IntegerMappingForBB.push_back(IllegalInstrNumber--);
assert(LegalInstrNumber < IllegalInstrNumber &&
"Instruction mapping overflow!");
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
return INumber;
}
IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
IRInstructionData *FirstInstIt,
IRInstructionData *LastInstIt)
: StartIdx(StartIdx), Len(Len) {
assert(FirstInstIt != nullptr && "Instruction is nullptr!");
assert(LastInstIt != nullptr && "Instruction is nullptr!");
assert(StartIdx + Len > StartIdx &&
"Overflow for IRSimilarityCandidate range?");
assert(Len - 1 == static_cast<unsigned>(std::distance(
iterator(FirstInstIt), iterator(LastInstIt))) &&
"Length of the first and last IRInstructionData do not match the "
"given length");
// We iterate over the given instructions, and map each unique value
// to a unique number in the IRSimilarityCandidate ValueToNumber and
// NumberToValue maps. A constant get its own value globally, the individual
// uses of the constants are not considered to be unique.
//
// IR: Mapping Added:
// %add1 = add i32 %a, c1 %add1 -> 3, %a -> 1, c1 -> 2
// %add2 = add i32 %a, %1 %add2 -> 4
// %add3 = add i32 c2, c1 %add3 -> 6, c2 -> 5
//
// when replace with global values, starting from 1, would be
//
// 3 = add i32 1, 2
// 4 = add i32 1, 3
// 6 = add i32 5, 2
unsigned LocalValNumber = 1;
IRInstructionDataList::iterator ID = iterator(*FirstInstIt);
for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) {
// Map the operand values to an unsigned integer if it does not already
// have an unsigned integer assigned to it.
for (Value *Arg : ID->OperVals)
if (!ValueToNumber.contains(Arg)) {
ValueToNumber.try_emplace(Arg, LocalValNumber);
NumberToValue.try_emplace(LocalValNumber, Arg);
LocalValNumber++;
}
// Mapping the instructions to an unsigned integer if it is not already
// exist in the mapping.
if (!ValueToNumber.contains(ID->Inst)) {
ValueToNumber.try_emplace(ID->Inst, LocalValNumber);
NumberToValue.try_emplace(LocalValNumber, ID->Inst);
LocalValNumber++;
}
}
// Setting the first and last instruction data pointers for the candidate. If
// we got through the entire for loop without hitting an assert, we know
// that both of these instructions are not nullptrs.
FirstInst = FirstInstIt;
LastInst = LastInstIt;
// Add the basic blocks contained in the set into the global value numbering.
DenseSet<BasicBlock *> BBSet;
getBasicBlocks(BBSet);
for (BasicBlock *BB : BBSet) {
if (ValueToNumber.contains(BB))
continue;
ValueToNumber.try_emplace(BB, LocalValNumber);
NumberToValue.try_emplace(LocalValNumber, BB);
LocalValNumber++;
}
}
bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A,
const IRSimilarityCandidate &B) {
if (A.getLength() != B.getLength())
return false;
auto InstrDataForBoth =
zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end()));
return all_of(InstrDataForBoth,
[](std::tuple<IRInstructionData &, IRInstructionData &> R) {
IRInstructionData &A = std::get<0>(R);
IRInstructionData &B = std::get<1>(R);
if (!A.Legal || !B.Legal)
return false;
return isClose(A, B);
});
}
/// Determine if one or more of the assigned global value numbers for the
/// operands in \p TargetValueNumbers is in the current mapping set for operand
/// numbers in \p SourceOperands. The set of possible corresponding global
/// value numbers are replaced with the most recent version of compatible
/// values.
///
/// \param [in] SourceValueToNumberMapping - The mapping of a Value to global
/// value number for the source IRInstructionCandidate.
/// \param [in, out] CurrentSrcTgtNumberMapping - The current mapping of source
/// IRSimilarityCandidate global value numbers to a set of possible numbers in
/// the target.
/// \param [in] SourceOperands - The operands in the original
/// IRSimilarityCandidate in the current instruction.
/// \param [in] TargetValueNumbers - The global value numbers of the operands in
/// the corresponding Instruction in the other IRSimilarityCandidate.
/// \returns true if there exists a possible mapping between the source
/// Instruction operands and the target Instruction operands, and false if not.
static bool checkNumberingAndReplaceCommutative(
const DenseMap<Value *, unsigned> &SourceValueToNumberMapping,
DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
ArrayRef<Value *> &SourceOperands,
DenseSet<unsigned> &TargetValueNumbers){
DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
unsigned ArgVal;
bool WasInserted;
// Iterate over the operands in the source IRSimilarityCandidate to determine
// whether there exists an operand in the other IRSimilarityCandidate that
// creates a valid mapping of Value to Value between the
// IRSimilarityCaniddates.
for (Value *V : SourceOperands) {
ArgVal = SourceValueToNumberMapping.find(V)->second;
// Instead of finding a current mapping, we attempt to insert a set.
std::tie(ValueMappingIt, WasInserted) = CurrentSrcTgtNumberMapping.insert(
std::make_pair(ArgVal, TargetValueNumbers));
// We need to iterate over the items in other IRSimilarityCandidate's
// Instruction to determine whether there is a valid mapping of
// Value to Value.
DenseSet<unsigned> NewSet;
for (unsigned &Curr : ValueMappingIt->second)
// If we can find the value in the mapping, we add it to the new set.
if (TargetValueNumbers.contains(Curr))
NewSet.insert(Curr);
// If we could not find a Value, return 0.
if (NewSet.empty())
return false;
// Otherwise replace the old mapping with the newly constructed one.
if (NewSet.size() != ValueMappingIt->second.size())
ValueMappingIt->second.swap(NewSet);
// We have reached no conclusions about the mapping, and cannot remove
// any items from the other operands, so we move to check the next operand.
if (ValueMappingIt->second.size() != 1)
continue;
unsigned ValToRemove = *ValueMappingIt->second.begin();
// When there is only one item left in the mapping for and operand, remove
// the value from the other operands. If it results in there being no
// mapping, return false, it means the mapping is wrong
for (Value *InnerV : SourceOperands) {
if (V == InnerV)
continue;
unsigned InnerVal = SourceValueToNumberMapping.find(InnerV)->second;
ValueMappingIt = CurrentSrcTgtNumberMapping.find(InnerVal);
if (ValueMappingIt == CurrentSrcTgtNumberMapping.end())
continue;
ValueMappingIt->second.erase(ValToRemove);
if (ValueMappingIt->second.empty())
return false;
}
}
return true;
}
/// Determine if operand number \p TargetArgVal is in the current mapping set
/// for operand number \p SourceArgVal.
///
/// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global
/// value numbers from source IRSimilarityCandidate to target
/// IRSimilarityCandidate.
/// \param [in] SourceArgVal The global value number for an operand in the
/// in the original candidate.
/// \param [in] TargetArgVal The global value number for the corresponding
/// operand in the other candidate.
/// \returns True if there exists a mapping and false if not.
bool checkNumberingAndReplace(
DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
unsigned SourceArgVal, unsigned TargetArgVal) {
// We are given two unsigned integers representing the global values of
// the operands in different IRSimilarityCandidates and a current mapping
// between the two.
//
// Source Operand GVN: 1
// Target Operand GVN: 2
// CurrentMapping: {1: {1, 2}}
//
// Since we have mapping, and the target operand is contained in the set, we
// update it to:
// CurrentMapping: {1: {2}}
// and can return true. But, if the mapping was
// CurrentMapping: {1: {3}}
// we would return false.
bool WasInserted;
DenseMap<unsigned, DenseSet<unsigned>>::iterator Val;
std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert(
std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal})));
// If we created a new mapping, then we are done.
if (WasInserted)
return true;
// If there is more than one option in the mapping set, and the target value
// is included in the mapping set replace that set with one that only includes
// the target value, as it is the only valid mapping via the non commutative
// instruction.
DenseSet<unsigned> &TargetSet = Val->second;
if (TargetSet.size() > 1 && TargetSet.contains(TargetArgVal)) {
TargetSet.clear();
TargetSet.insert(TargetArgVal);
return true;
}
// Return true if we can find the value in the set.
return TargetSet.contains(TargetArgVal);
}
bool IRSimilarityCandidate::compareNonCommutativeOperandMapping(
OperandMapping A, OperandMapping B) {
// Iterators to keep track of where we are in the operands for each
// Instruction.
ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
unsigned OperandLength = A.OperVals.size();
// For each operand, get the value numbering and ensure it is consistent.
for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) {
unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second;
unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second;
// Attempt to add a set with only the target value. If there is no mapping
// we can create it here.
//
// For an instruction like a subtraction:
// IRSimilarityCandidateA: IRSimilarityCandidateB:
// %resultA = sub %a, %b %resultB = sub %d, %e
//
// We map %a -> %d and %b -> %e.
//
// And check to see whether their mapping is consistent in
// checkNumberingAndReplace.
if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB))
return false;
if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA))
return false;
}
return true;
}
bool IRSimilarityCandidate::compareCommutativeOperandMapping(
OperandMapping A, OperandMapping B) {
DenseSet<unsigned> ValueNumbersA;
DenseSet<unsigned> ValueNumbersB;
ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
unsigned OperandLength = A.OperVals.size();
// Find the value number sets for the operands.
for (unsigned Idx = 0; Idx < OperandLength;
Idx++, VItA++, VItB++) {
ValueNumbersA.insert(A.IRSC.ValueToNumber.find(*VItA)->second);
ValueNumbersB.insert(B.IRSC.ValueToNumber.find(*VItB)->second);
}
// Iterate over the operands in the first IRSimilarityCandidate and make sure
// there exists a possible mapping with the operands in the second
// IRSimilarityCandidate.
if (!checkNumberingAndReplaceCommutative(A.IRSC.ValueToNumber,
A.ValueNumberMapping, A.OperVals,
ValueNumbersB))
return false;
// Iterate over the operands in the second IRSimilarityCandidate and make sure
// there exists a possible mapping with the operands in the first
// IRSimilarityCandidate.
if (!checkNumberingAndReplaceCommutative(B.IRSC.ValueToNumber,
B.ValueNumberMapping, B.OperVals,
ValueNumbersA))
return false;
return true;
}
bool IRSimilarityCandidate::compareAssignmentMapping(
const unsigned InstValA, const unsigned &InstValB,
DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) {
DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
bool WasInserted;
std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
if (!WasInserted && !ValueMappingIt->second.contains(InstValB))
return false;
else if (ValueMappingIt->second.size() != 1) {
for (unsigned OtherVal : ValueMappingIt->second) {
if (OtherVal == InstValB)
continue;
if (!ValueNumberMappingA.contains(OtherVal))
continue;
if (!ValueNumberMappingA[OtherVal].contains(InstValA))
continue;
ValueNumberMappingA[OtherVal].erase(InstValA);
}
ValueNumberMappingA.erase(ValueMappingIt);
std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
}
return true;
}
bool IRSimilarityCandidate::checkRelativeLocations(RelativeLocMapping A,
RelativeLocMapping B) {
// Get the basic blocks the label refers to.
BasicBlock *ABB = cast<BasicBlock>(A.OperVal);
BasicBlock *BBB = cast<BasicBlock>(B.OperVal);
// Get the basic blocks contained in each region.
DenseSet<BasicBlock *> BasicBlockA;
DenseSet<BasicBlock *> BasicBlockB;
A.IRSC.getBasicBlocks(BasicBlockA);
B.IRSC.getBasicBlocks(BasicBlockB);
// Determine if the block is contained in the region.
bool AContained = BasicBlockA.contains(ABB);
bool BContained = BasicBlockB.contains(BBB);
// Both blocks need to be contained in the region, or both need to be outside
// the region.
if (AContained != BContained)
return false;
// If both are contained, then we need to make sure that the relative
// distance to the target blocks are the same.
if (AContained)
return A.RelativeLocation == B.RelativeLocation;
return true;
}
bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A,
const IRSimilarityCandidate &B) {
DenseMap<unsigned, DenseSet<unsigned>> MappingA;
DenseMap<unsigned, DenseSet<unsigned>> MappingB;
return IRSimilarityCandidate::compareStructure(A, B, MappingA, MappingB);
}
typedef detail::zippy<detail::zip_shortest, SmallVector<int, 4> &,
SmallVector<int, 4> &, ArrayRef<Value *> &,
ArrayRef<Value *> &>
ZippedRelativeLocationsT;
bool IRSimilarityCandidate::compareStructure(
const IRSimilarityCandidate &A, const IRSimilarityCandidate &B,
DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) {
if (A.getLength() != B.getLength())
return false;
if (A.ValueToNumber.size() != B.ValueToNumber.size())
return false;
iterator ItA = A.begin();
iterator ItB = B.begin();
// These ValueNumber Mapping sets create a create a mapping between the values
// in one candidate to values in the other candidate. If we create a set with
// one element, and that same element maps to the original element in the
// candidate we have a good mapping.
// Iterate over the instructions contained in each candidate
unsigned SectionLength = A.getStartIdx() + A.getLength();
for (unsigned Loc = A.getStartIdx(); Loc < SectionLength;
ItA++, ItB++, Loc++) {
// Make sure the instructions are similar to one another.
if (!isClose(*ItA, *ItB))
return false;
Instruction *IA = ItA->Inst;
Instruction *IB = ItB->Inst;
if (!ItA->Legal || !ItB->Legal)
return false;
// Get the operand sets for the instructions.
ArrayRef<Value *> OperValsA = ItA->OperVals;
ArrayRef<Value *> OperValsB = ItB->OperVals;
unsigned InstValA = A.ValueToNumber.find(IA)->second;
unsigned InstValB = B.ValueToNumber.find(IB)->second;
// Ensure that the mappings for the instructions exists.
if (!compareAssignmentMapping(InstValA, InstValB, ValueNumberMappingA,
ValueNumberMappingB))
return false;
if (!compareAssignmentMapping(InstValB, InstValA, ValueNumberMappingB,
ValueNumberMappingA))
return false;
// We have different paths for commutative instructions and non-commutative
// instructions since commutative instructions could allow multiple mappings
// to certain values.
if (IA->isCommutative() && !isa<FPMathOperator>(IA) &&
!isa<IntrinsicInst>(IA)) {
if (!compareCommutativeOperandMapping(
{A, OperValsA, ValueNumberMappingA},
{B, OperValsB, ValueNumberMappingB}))
return false;
continue;
}
// Handle the non-commutative cases.
if (!compareNonCommutativeOperandMapping(
{A, OperValsA, ValueNumberMappingA},
{B, OperValsB, ValueNumberMappingB}))
return false;
// Here we check that between two corresponding instructions,
// when referring to a basic block in the same region, the
// relative locations are the same. And, that the instructions refer to
// basic blocks outside the region in the same corresponding locations.
// We are able to make the assumption about blocks outside of the region
// since the target block labels are considered values and will follow the
// same number matching that we defined for the other instructions in the
// region. So, at this point, in each location we target a specific block
// outside the region, we are targeting a corresponding block in each
// analagous location in the region we are comparing to.
if (!(isa<BranchInst>(IA) && isa<BranchInst>(IB)) &&
!(isa<PHINode>(IA) && isa<PHINode>(IB)))
continue;
SmallVector<int, 4> &RelBlockLocsA = ItA->RelativeBlockLocations;
SmallVector<int, 4> &RelBlockLocsB = ItB->RelativeBlockLocations;
ArrayRef<Value *> ABL = ItA->getBlockOperVals();
ArrayRef<Value *> BBL = ItB->getBlockOperVals();
// Check to make sure that the number of operands, and branching locations
// between BranchInsts is the same.
if (RelBlockLocsA.size() != RelBlockLocsB.size() &&
ABL.size() != BBL.size())
return false;
assert(RelBlockLocsA.size() == ABL.size() &&
"Block information vectors not the same size.");
assert(RelBlockLocsB.size() == BBL.size() &&
"Block information vectors not the same size.");
ZippedRelativeLocationsT ZippedRelativeLocations =
zip(RelBlockLocsA, RelBlockLocsB, ABL, BBL);
if (any_of(ZippedRelativeLocations,
[&A, &B](std::tuple<int, int, Value *, Value *> R) {
return !checkRelativeLocations(
{A, std::get<0>(R), std::get<2>(R)},
{B, std::get<1>(R), std::get<3>(R)});
}))
return false;
}
return true;
}
bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A,
const IRSimilarityCandidate &B) {
auto DoesOverlap = [](const IRSimilarityCandidate &X,
const IRSimilarityCandidate &Y) {
// Check:
// XXXXXX X starts before Y ends
// YYYYYYY Y starts after X starts
return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx;
};
return DoesOverlap(A, B) || DoesOverlap(B, A);
}
void IRSimilarityIdentifier::populateMapper(
Module &M, std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
std::vector<IRInstructionData *> InstrListForModule;
std::vector<unsigned> IntegerMappingForModule;
// Iterate over the functions in the module to map each Instruction in each
// BasicBlock to an unsigned integer.
Mapper.initializeForBBs(M);
for (Function &F : M) {
if (F.empty())
continue;
for (BasicBlock &BB : F) {
// BB has potential to have similarity since it has a size greater than 2
// and can therefore match other regions greater than 2. Map it to a list
// of unsigned integers.
Mapper.convertToUnsignedVec(BB, InstrListForModule,
IntegerMappingForModule);
}
BasicBlock::iterator It = F.begin()->end();
Mapper.mapToIllegalUnsigned(It, IntegerMappingForModule, InstrListForModule,
true);
if (InstrListForModule.size() > 0)
Mapper.IDL->push_back(*InstrListForModule.back());
}
// Insert the InstrListForModule at the end of the overall InstrList so that
// we can have a long InstrList for the entire set of Modules being analyzed.
llvm::append_range(InstrList, InstrListForModule);
// Do the same as above, but for IntegerMapping.
llvm::append_range(IntegerMapping, IntegerMappingForModule);
}
void IRSimilarityIdentifier::populateMapper(
ArrayRef<std::unique_ptr<Module>> &Modules,
std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
// Iterate over, and map the instructions in each module.
for (const std::unique_ptr<Module> &M : Modules)
populateMapper(*M, InstrList, IntegerMapping);
}
/// From a repeated subsequence, find all the different instances of the
/// subsequence from the \p InstrList, and create an IRSimilarityCandidate from
/// the IRInstructionData in subsequence.
///
/// \param [in] Mapper - The instruction mapper for basic correctness checks.
/// \param [in] InstrList - The vector that holds the instruction data.
/// \param [in] IntegerMapping - The vector that holds the mapped integers.
/// \param [out] CandsForRepSubstring - The vector to store the generated
/// IRSimilarityCandidates.
static void createCandidatesFromSuffixTree(
const IRInstructionMapper& Mapper, std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS,
std::vector<IRSimilarityCandidate> &CandsForRepSubstring) {
unsigned StringLen = RS.Length;
if (StringLen < 2)
return;
// Create an IRSimilarityCandidate for instance of this subsequence \p RS.
for (const unsigned &StartIdx : RS.StartIndices) {
unsigned EndIdx = StartIdx + StringLen - 1;
// Check that this subsequence does not contain an illegal instruction.
bool ContainsIllegal = false;
for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) {
unsigned Key = IntegerMapping[CurrIdx];
if (Key > Mapper.IllegalInstrNumber) {
ContainsIllegal = true;
break;
}
}
// If we have an illegal instruction, we should not create an
// IRSimilarityCandidate for this region.
if (ContainsIllegal)
continue;
// We are getting iterators to the instructions in this region of code
// by advancing the start and end indices from the start of the
// InstrList.
std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin();
std::advance(StartIt, StartIdx);
std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin();
std::advance(EndIt, EndIdx);
CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt);
}
}
void IRSimilarityCandidate::createCanonicalRelationFrom(
IRSimilarityCandidate &SourceCand,
DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping,
DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping) {
assert(SourceCand.CanonNumToNumber.size() != 0 &&
"Base canonical relationship is empty!");
assert(SourceCand.NumberToCanonNum.size() != 0 &&
"Base canonical relationship is empty!");
assert(CanonNumToNumber.size() == 0 && "Canonical Relationship is non-empty");
assert(NumberToCanonNum.size() == 0 && "Canonical Relationship is non-empty");
DenseSet<unsigned> UsedGVNs;
// Iterate over the mappings provided from this candidate to SourceCand. We
// are then able to map the GVN in this candidate to the same canonical number
// given to the corresponding GVN in SourceCand.
for (std::pair<unsigned, DenseSet<unsigned>> &GVNMapping : ToSourceMapping) {
unsigned SourceGVN = GVNMapping.first;
assert(GVNMapping.second.size() != 0 && "Possible GVNs is 0!");
unsigned ResultGVN;
// We need special handling if we have more than one potential value. This
// means that there are at least two GVNs that could correspond to this GVN.
// This could lead to potential swapping later on, so we make a decision
// here to ensure a one-to-one mapping.
if (GVNMapping.second.size() > 1) {
bool Found = false;
for (unsigned Val : GVNMapping.second) {
// We make sure the target value number hasn't already been reserved.
if (UsedGVNs.contains(Val))
continue;
// We make sure that the opposite mapping is still consistent.
DenseMap<unsigned, DenseSet<unsigned>>::iterator It =
FromSourceMapping.find(Val);
if (!It->second.contains(SourceGVN))
continue;
// We pick the first item that satisfies these conditions.
Found = true;
ResultGVN = Val;
break;
}
assert(Found && "Could not find matching value for source GVN");
(void)Found;
} else
ResultGVN = *GVNMapping.second.begin();
// Whatever GVN is found, we mark it as used.
UsedGVNs.insert(ResultGVN);
unsigned CanonNum = *SourceCand.getCanonicalNum(ResultGVN);
CanonNumToNumber.insert(std::make_pair(CanonNum, SourceGVN));
NumberToCanonNum.insert(std::make_pair(SourceGVN, CanonNum));
}
DenseSet<BasicBlock *> BBSet;
getBasicBlocks(BBSet);
// Find canonical numbers for the BasicBlocks in the current candidate.
// This is done by finding the corresponding value for the first instruction
// in the block in the current candidate, finding the matching value in the
// source candidate. Then by finding the parent of this value, use the
// canonical number of the block in the source candidate for the canonical
// number in the current candidate.
for (BasicBlock *BB : BBSet) {
unsigned BBGVNForCurrCand = ValueToNumber.find(BB)->second;
// We can skip the BasicBlock if the canonical numbering has already been
// found in a separate instruction.
if (NumberToCanonNum.contains(BBGVNForCurrCand))
continue;
// If the basic block is the starting block, then the shared instruction may
// not be the first instruction in the block, it will be the first
// instruction in the similarity region.
Value *FirstOutlineInst = BB == getStartBB()
? frontInstruction()
: &*BB->instructionsWithoutDebug().begin();
unsigned FirstInstGVN = *getGVN(FirstOutlineInst);
unsigned FirstInstCanonNum = *getCanonicalNum(FirstInstGVN);
unsigned SourceGVN = *SourceCand.fromCanonicalNum(FirstInstCanonNum);
Value *SourceV = *SourceCand.fromGVN(SourceGVN);
BasicBlock *SourceBB = cast<Instruction>(SourceV)->getParent();
unsigned SourceBBGVN = *SourceCand.getGVN(SourceBB);
unsigned SourceCanonBBGVN = *SourceCand.getCanonicalNum(SourceBBGVN);
CanonNumToNumber.insert(std::make_pair(SourceCanonBBGVN, BBGVNForCurrCand));
NumberToCanonNum.insert(std::make_pair(BBGVNForCurrCand, SourceCanonBBGVN));
}
}
void IRSimilarityCandidate::createCanonicalRelationFrom(
IRSimilarityCandidate &SourceCand, IRSimilarityCandidate &SourceCandLarge,
IRSimilarityCandidate &TargetCandLarge) {
assert(!SourceCand.CanonNumToNumber.empty() &&
"Canonical Relationship is non-empty");
assert(!SourceCand.NumberToCanonNum.empty() &&
"Canonical Relationship is non-empty");
assert(!SourceCandLarge.CanonNumToNumber.empty() &&
"Canonical Relationship is non-empty");
assert(!SourceCandLarge.NumberToCanonNum.empty() &&
"Canonical Relationship is non-empty");
assert(!TargetCandLarge.CanonNumToNumber.empty() &&
"Canonical Relationship is non-empty");
assert(!TargetCandLarge.NumberToCanonNum.empty() &&
"Canonical Relationship is non-empty");
assert(CanonNumToNumber.empty() && "Canonical Relationship is non-empty");
assert(NumberToCanonNum.empty() && "Canonical Relationship is non-empty");
// We're going to use the larger candidates as a "bridge" to create the
// canonical number for the target candidate since we have idetified two
// candidates as subsequences of larger sequences, and therefore must be
// structurally similar.
for (std::pair<Value *, unsigned> &ValueNumPair : ValueToNumber) {
Value *CurrVal = ValueNumPair.first;
unsigned TargetCandGVN = ValueNumPair.second;
// Find the numbering in the large candidate that surrounds the
// current candidate.
std::optional<unsigned> OLargeTargetGVN = TargetCandLarge.getGVN(CurrVal);
assert(OLargeTargetGVN.has_value() && "GVN not found for Value");
// Get the canonical numbering in the large target candidate.
std::optional<unsigned> OTargetCandCanon =
TargetCandLarge.getCanonicalNum(OLargeTargetGVN.value());
assert(OTargetCandCanon.has_value() &&
"Canononical Number not found for GVN");
// Get the GVN in the large source candidate from the canonical numbering.
std::optional<unsigned> OLargeSourceGVN =
SourceCandLarge.fromCanonicalNum(OTargetCandCanon.value());
assert(OLargeSourceGVN.has_value() &&
"GVN Number not found for Canonical Number");
// Get the Value from the GVN in the large source candidate.
std::optional<Value *> OLargeSourceV =
SourceCandLarge.fromGVN(OLargeSourceGVN.value());
assert(OLargeSourceV.has_value() && "Value not found for GVN");
// Get the GVN number for the Value in the source candidate.
std::optional<unsigned> OSourceGVN =
SourceCand.getGVN(OLargeSourceV.value());
assert(OSourceGVN.has_value() && "GVN Number not found for Value");
// Get the canonical numbering from the GVN/
std::optional<unsigned> OSourceCanon =
SourceCand.getCanonicalNum(OSourceGVN.value());
assert(OSourceCanon.has_value() && "Canon Number not found for GVN");
// Insert the canonical numbering and GVN pair into their respective
// mappings.
CanonNumToNumber.insert(
std::make_pair(OSourceCanon.value(), TargetCandGVN));
NumberToCanonNum.insert(
std::make_pair(TargetCandGVN, OSourceCanon.value()));
}
}
void IRSimilarityCandidate::createCanonicalMappingFor(
IRSimilarityCandidate &CurrCand) {
assert(CurrCand.CanonNumToNumber.size() == 0 &&
"Canonical Relationship is non-empty");
assert(CurrCand.NumberToCanonNum.size() == 0 &&
"Canonical Relationship is non-empty");
unsigned CanonNum = 0;
// Iterate over the value numbers found, the order does not matter in this
// case.
for (std::pair<unsigned, Value *> &NumToVal : CurrCand.NumberToValue) {
CurrCand.NumberToCanonNum.insert(std::make_pair(NumToVal.first, CanonNum));
CurrCand.CanonNumToNumber.insert(std::make_pair(CanonNum, NumToVal.first));
CanonNum++;
}
}
/// Look for larger IRSimilarityCandidates From the previously matched
/// IRSimilarityCandidates that fully contain \p CandA or \p CandB. If there is
/// an overlap, return a pair of structurally similar, larger
/// IRSimilarityCandidates.
///
/// \param [in] CandA - The first candidate we are trying to determine the
/// structure of.
/// \param [in] CandB - The second candidate we are trying to determine the
/// structure of.
/// \param [in] IndexToIncludedCand - Mapping of index of the an instruction in
/// a circuit to the IRSimilarityCandidates that include this instruction.
/// \param [in] CandToOverallGroup - Mapping of IRSimilarityCandidate to a
/// number representing the structural group assigned to it.
static std::optional<
std::pair<IRSimilarityCandidate *, IRSimilarityCandidate *>>
CheckLargerCands(
IRSimilarityCandidate &CandA, IRSimilarityCandidate &CandB,
DenseMap<unsigned, DenseSet<IRSimilarityCandidate *>> &IndexToIncludedCand,
DenseMap<IRSimilarityCandidate *, unsigned> &CandToGroup) {
DenseMap<unsigned, IRSimilarityCandidate *> IncludedGroupAndCandA;
DenseMap<unsigned, IRSimilarityCandidate *> IncludedGroupAndCandB;
DenseSet<unsigned> IncludedGroupsA;
DenseSet<unsigned> IncludedGroupsB;
// Find the overall similarity group numbers that fully contain the candidate,
// and record the larger candidate for each group.
auto IdxToCandidateIt = IndexToIncludedCand.find(CandA.getStartIdx());
std::optional<std::pair<IRSimilarityCandidate *, IRSimilarityCandidate *>>
Result;
unsigned CandAStart = CandA.getStartIdx();
unsigned CandAEnd = CandA.getEndIdx();
unsigned CandBStart = CandB.getStartIdx();
unsigned CandBEnd = CandB.getEndIdx();
if (IdxToCandidateIt == IndexToIncludedCand.end())
return Result;
for (IRSimilarityCandidate *MatchedCand : IdxToCandidateIt->second) {
if (MatchedCand->getStartIdx() > CandAStart ||
(MatchedCand->getEndIdx() < CandAEnd))
continue;
unsigned GroupNum = CandToGroup.find(MatchedCand)->second;
IncludedGroupAndCandA.insert(std::make_pair(GroupNum, MatchedCand));
IncludedGroupsA.insert(GroupNum);
}
// Find the overall similarity group numbers that fully contain the next
// candidate, and record the larger candidate for each group.
IdxToCandidateIt = IndexToIncludedCand.find(CandBStart);
if (IdxToCandidateIt == IndexToIncludedCand.end())
return Result;
for (IRSimilarityCandidate *MatchedCand : IdxToCandidateIt->second) {
if (MatchedCand->getStartIdx() > CandBStart ||
MatchedCand->getEndIdx() < CandBEnd)
continue;
unsigned GroupNum = CandToGroup.find(MatchedCand)->second;
IncludedGroupAndCandB.insert(std::make_pair(GroupNum, MatchedCand));
IncludedGroupsB.insert(GroupNum);
}
// Find the intersection between the two groups, these are the groups where
// the larger candidates exist.
set_intersect(IncludedGroupsA, IncludedGroupsB);
// If there is no intersection between the sets, then we cannot determine
// whether or not there is a match.
if (IncludedGroupsA.empty())
return Result;
// Create a pair that contains the larger candidates.
auto ItA = IncludedGroupAndCandA.find(*IncludedGroupsA.begin());
auto ItB = IncludedGroupAndCandB.find(*IncludedGroupsA.begin());
Result = std::make_pair(ItA->second, ItB->second);
return Result;
}
/// From the list of IRSimilarityCandidates, perform a comparison between each
/// IRSimilarityCandidate to determine if there are overlapping
/// IRInstructionData, or if they do not have the same structure.
///
/// \param [in] CandsForRepSubstring - The vector containing the
/// IRSimilarityCandidates.
/// \param [out] StructuralGroups - the mapping of unsigned integers to vector
/// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the
/// vector are structurally similar to one another.
/// \param [in] IndexToIncludedCand - Mapping of index of the an instruction in
/// a circuit to the IRSimilarityCandidates that include this instruction.
/// \param [in] CandToOverallGroup - Mapping of IRSimilarityCandidate to a
/// number representing the structural group assigned to it.
static void findCandidateStructures(
std::vector<IRSimilarityCandidate> &CandsForRepSubstring,
DenseMap<unsigned, SimilarityGroup> &StructuralGroups,
DenseMap<unsigned, DenseSet<IRSimilarityCandidate *>> &IndexToIncludedCand,
DenseMap<IRSimilarityCandidate *, unsigned> &CandToOverallGroup
) {
std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt,
InnerCandEndIt;
// IRSimilarityCandidates each have a structure for operand use. It is
// possible that two instances of the same subsequences have different
// structure. Each type of structure found is assigned a number. This
// DenseMap maps an IRSimilarityCandidate to which type of similarity
// discovered it fits within.
DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;
// Find the compatibility from each candidate to the others to determine
// which candidates overlap and which have the same structure by mapping
// each structure to a different group.
bool SameStructure;
bool Inserted;
unsigned CurrentGroupNum = 0;
unsigned OuterGroupNum;
DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt;
DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner;
DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair;
// Iterate over the candidates to determine its structural and overlapping
// compatibility with other instructions
DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA;
DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB;
for (CandIt = CandsForRepSubstring.begin(),
CandEndIt = CandsForRepSubstring.end();
CandIt != CandEndIt; CandIt++) {
// Determine if it has an assigned structural group already.
CandToGroupIt = CandToGroup.find(&*CandIt);
if (CandToGroupIt == CandToGroup.end()) {
// If not, we assign it one, and add it to our mapping.
std::tie(CandToGroupIt, Inserted) =
CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++));
}
// Get the structural group number from the iterator.
OuterGroupNum = CandToGroupIt->second;
// Check if we already have a list of IRSimilarityCandidates for the current
// structural group. Create one if one does not exist.
CurrentGroupPair = StructuralGroups.find(OuterGroupNum);
if (CurrentGroupPair == StructuralGroups.end()) {
IRSimilarityCandidate::createCanonicalMappingFor(*CandIt);
std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert(
std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt})));
}
// Iterate over the IRSimilarityCandidates following the current
// IRSimilarityCandidate in the list to determine whether the two
// IRSimilarityCandidates are compatible. This is so we do not repeat pairs
// of IRSimilarityCandidates.
for (InnerCandIt = std::next(CandIt),
InnerCandEndIt = CandsForRepSubstring.end();
InnerCandIt != InnerCandEndIt; InnerCandIt++) {
// We check if the inner item has a group already, if it does, we skip it.
CandToGroupItInner = CandToGroup.find(&*InnerCandIt);
if (CandToGroupItInner != CandToGroup.end())
continue;
// Check if we have found structural similarity between two candidates
// that fully contains the first and second candidates.
std::optional<std::pair<IRSimilarityCandidate *, IRSimilarityCandidate *>>
LargerPair = CheckLargerCands(
*CandIt, *InnerCandIt, IndexToIncludedCand, CandToOverallGroup);
// If a pair was found, it means that we can assume that these smaller
// substrings are also structurally similar. Use the larger candidates to
// determine the canonical mapping between the two sections.
if (LargerPair.has_value()) {
SameStructure = true;
InnerCandIt->createCanonicalRelationFrom(
*CandIt, *LargerPair.value().first, *LargerPair.value().second);
CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
CurrentGroupPair->second.push_back(*InnerCandIt);
continue;
}
// Otherwise we determine if they have the same structure and add it to
// vector if they match.
ValueNumberMappingA.clear();
ValueNumberMappingB.clear();
SameStructure = IRSimilarityCandidate::compareStructure(
*CandIt, *InnerCandIt, ValueNumberMappingA, ValueNumberMappingB);
if (!SameStructure)
continue;
InnerCandIt->createCanonicalRelationFrom(*CandIt, ValueNumberMappingA,
ValueNumberMappingB);
CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
CurrentGroupPair->second.push_back(*InnerCandIt);
}
}
}
void IRSimilarityIdentifier::findCandidates(
std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
SuffixTree ST(IntegerMapping);
std::vector<IRSimilarityCandidate> CandsForRepSubstring;
std::vector<SimilarityGroup> NewCandidateGroups;
DenseMap<unsigned, SimilarityGroup> StructuralGroups;
DenseMap<unsigned, DenseSet<IRSimilarityCandidate *>> IndexToIncludedCand;
DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;
// Iterate over the subsequences found by the Suffix Tree to create
// IRSimilarityCandidates for each repeated subsequence and determine which
// instances are structurally similar to one another.
// Sort the suffix tree from longest substring to shortest.
std::vector<SuffixTree::RepeatedSubstring> RSes;
for (SuffixTree::RepeatedSubstring &RS : ST)
RSes.push_back(RS);
llvm::stable_sort(RSes, [](const SuffixTree::RepeatedSubstring &LHS,
const SuffixTree::RepeatedSubstring &RHS) {
return LHS.Length > RHS.Length;
});
for (SuffixTree::RepeatedSubstring &RS : RSes) {
createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, RS,
CandsForRepSubstring);
if (CandsForRepSubstring.size() < 2)
continue;
findCandidateStructures(CandsForRepSubstring, StructuralGroups,
IndexToIncludedCand, CandToGroup);
for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups) {
// We only add the group if it contains more than one
// IRSimilarityCandidate. If there is only one, that means there is no
// other repeated subsequence with the same structure.
if (Group.second.size() > 1) {
SimilarityCandidates->push_back(Group.second);
// Iterate over each candidate in the group, and add an entry for each
// instruction included with a mapping to a set of
// IRSimilarityCandidates that include that instruction.
for (IRSimilarityCandidate &IRCand : SimilarityCandidates->back()) {
for (unsigned Idx = IRCand.getStartIdx(), Edx = IRCand.getEndIdx();
Idx <= Edx; ++Idx) {
DenseMap<unsigned, DenseSet<IRSimilarityCandidate *>>::iterator
IdIt;
IdIt = IndexToIncludedCand.find(Idx);
bool Inserted = false;
if (IdIt == IndexToIncludedCand.end())
std::tie(IdIt, Inserted) = IndexToIncludedCand.insert(
std::make_pair(Idx, DenseSet<IRSimilarityCandidate *>()));
IdIt->second.insert(&IRCand);
}
// Add mapping of candidate to the overall similarity group number.
CandToGroup.insert(
std::make_pair(&IRCand, SimilarityCandidates->size() - 1));
}
}
}
CandsForRepSubstring.clear();
StructuralGroups.clear();
NewCandidateGroups.clear();
}
}
SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(
ArrayRef<std::unique_ptr<Module>> Modules) {
resetSimilarityCandidates();
std::vector<IRInstructionData *> InstrList;
std::vector<unsigned> IntegerMapping;
Mapper.InstClassifier.EnableBranches = this->EnableBranches;
Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls;
Mapper.EnableMatchCallsByName = EnableMatchingCallsByName;
Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics;
Mapper.InstClassifier.EnableMustTailCalls = EnableMustTailCalls;
populateMapper(Modules, InstrList, IntegerMapping);
findCandidates(InstrList, IntegerMapping);
return *SimilarityCandidates;
}
SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) {
resetSimilarityCandidates();
Mapper.InstClassifier.EnableBranches = this->EnableBranches;
Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls;
Mapper.EnableMatchCallsByName = EnableMatchingCallsByName;
Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics;
Mapper.InstClassifier.EnableMustTailCalls = EnableMustTailCalls;
std::vector<IRInstructionData *> InstrList;
std::vector<unsigned> IntegerMapping;
populateMapper(M, InstrList, IntegerMapping);
findCandidates(InstrList, IntegerMapping);
return *SimilarityCandidates;
}
INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier",
"ir-similarity-identifier", false, true)
IRSimilarityIdentifierWrapperPass::IRSimilarityIdentifierWrapperPass()
: ModulePass(ID) {
initializeIRSimilarityIdentifierWrapperPassPass(
*PassRegistry::getPassRegistry());
}
bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) {
IRSI.reset(new IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls,
MatchCallsByName, !DisableIntrinsics,
false));
return false;
}
bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) {
IRSI.reset();
return false;
}
bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) {
IRSI->findSimilarity(M);
return false;
}
AnalysisKey IRSimilarityAnalysis::Key;
IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M,
ModuleAnalysisManager &) {
auto IRSI = IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls,
MatchCallsByName, !DisableIntrinsics,
false);
IRSI.findSimilarity(M);
return IRSI;
}
PreservedAnalyses
IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M);
std::optional<SimilarityGroupList> &SimilarityCandidatesOpt =
IRSI.getSimilarity();
for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) {
OS << CandVec.size() << " candidates of length "
<< CandVec.begin()->getLength() << ". Found in: \n";
for (IRSimilarityCandidate &Cand : CandVec) {
OS << " Function: " << Cand.front()->Inst->getFunction()->getName().str()
<< ", Basic Block: ";
if (Cand.front()->Inst->getParent()->getName().str() == "")
OS << "(unnamed)";
else
OS << Cand.front()->Inst->getParent()->getName().str();
OS << "\n Start Instruction: ";
Cand.frontInstruction()->print(OS);
OS << "\n End Instruction: ";
Cand.backInstruction()->print(OS);
OS << "\n";
}
}
return PreservedAnalyses::all();
}
char IRSimilarityIdentifierWrapperPass::ID = 0;
|