1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
|
//===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file "describes" induction and recurrence variables.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "iv-descriptors"
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
SmallPtrSetImpl<Instruction *> &Set) {
for (const Use &Use : I->operands())
if (!Set.count(dyn_cast<Instruction>(Use)))
return false;
return true;
}
bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
switch (Kind) {
default:
break;
case RecurKind::Add:
case RecurKind::Mul:
case RecurKind::Or:
case RecurKind::And:
case RecurKind::Xor:
case RecurKind::SMax:
case RecurKind::SMin:
case RecurKind::UMax:
case RecurKind::UMin:
case RecurKind::IAnyOf:
case RecurKind::FAnyOf:
return true;
}
return false;
}
bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
}
/// Determines if Phi may have been type-promoted. If Phi has a single user
/// that ANDs the Phi with a type mask, return the user. RT is updated to
/// account for the narrower bit width represented by the mask, and the AND
/// instruction is added to CI.
static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI) {
if (!Phi->hasOneUse())
return Phi;
const APInt *M = nullptr;
Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
// Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
// with a new integer type of the corresponding bit width.
if (match(J, m_And(m_Instruction(I), m_APInt(M)))) {
int32_t Bits = (*M + 1).exactLogBase2();
if (Bits > 0) {
RT = IntegerType::get(Phi->getContext(), Bits);
Visited.insert(Phi);
CI.insert(J);
return J;
}
}
return Phi;
}
/// Compute the minimal bit width needed to represent a reduction whose exit
/// instruction is given by Exit.
static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
DemandedBits *DB,
AssumptionCache *AC,
DominatorTree *DT) {
bool IsSigned = false;
const DataLayout &DL = Exit->getDataLayout();
uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
if (DB) {
// Use the demanded bits analysis to determine the bits that are live out
// of the exit instruction, rounding up to the nearest power of two. If the
// use of demanded bits results in a smaller bit width, we know the value
// must be positive (i.e., IsSigned = false), because if this were not the
// case, the sign bit would have been demanded.
auto Mask = DB->getDemandedBits(Exit);
MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
}
if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
// If demanded bits wasn't able to limit the bit width, we can try to use
// value tracking instead. This can be the case, for example, if the value
// may be negative.
auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
MaxBitWidth = NumTypeBits - NumSignBits;
KnownBits Bits = computeKnownBits(Exit, DL);
if (!Bits.isNonNegative()) {
// If the value is not known to be non-negative, we set IsSigned to true,
// meaning that we will use sext instructions instead of zext
// instructions to restore the original type.
IsSigned = true;
// Make sure at least one sign bit is included in the result, so it
// will get properly sign-extended.
++MaxBitWidth;
}
}
MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
IsSigned);
}
/// Collect cast instructions that can be ignored in the vectorizer's cost
/// model, given a reduction exit value and the minimal type in which the
// reduction can be represented. Also search casts to the recurrence type
// to find the minimum width used by the recurrence.
static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
Type *RecurrenceType,
SmallPtrSetImpl<Instruction *> &Casts,
unsigned &MinWidthCastToRecurTy) {
SmallVector<Instruction *, 8> Worklist;
SmallPtrSet<Instruction *, 8> Visited;
Worklist.push_back(Exit);
MinWidthCastToRecurTy = -1U;
while (!Worklist.empty()) {
Instruction *Val = Worklist.pop_back_val();
Visited.insert(Val);
if (auto *Cast = dyn_cast<CastInst>(Val)) {
if (Cast->getSrcTy() == RecurrenceType) {
// If the source type of a cast instruction is equal to the recurrence
// type, it will be eliminated, and should be ignored in the vectorizer
// cost model.
Casts.insert(Cast);
continue;
}
if (Cast->getDestTy() == RecurrenceType) {
// The minimum width used by the recurrence is found by checking for
// casts on its operands. The minimum width is used by the vectorizer
// when finding the widest type for in-loop reductions without any
// loads/stores.
MinWidthCastToRecurTy = std::min<unsigned>(
MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
continue;
}
}
// Add all operands to the work list if they are loop-varying values that
// we haven't yet visited.
for (Value *O : cast<User>(Val)->operands())
if (auto *I = dyn_cast<Instruction>(O))
if (TheLoop->contains(I) && !Visited.count(I))
Worklist.push_back(I);
}
}
// Check if a given Phi node can be recognized as an ordered reduction for
// vectorizing floating point operations without unsafe math.
static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
Instruction *Exit, PHINode *Phi) {
// Currently only FAdd and FMulAdd are supported.
if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
return false;
if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
return false;
if (Kind == RecurKind::FMulAdd &&
!RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
return false;
// Ensure the exit instruction has only one user other than the reduction PHI
if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
return false;
// The only pattern accepted is the one in which the reduction PHI
// is used as one of the operands of the exit instruction
auto *Op0 = Exit->getOperand(0);
auto *Op1 = Exit->getOperand(1);
if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
return false;
if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
return false;
LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
<< ", ExitInst: " << *Exit << "\n");
return true;
}
bool RecurrenceDescriptor::AddReductionVar(
PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF,
RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC,
DominatorTree *DT, ScalarEvolution *SE) {
if (Phi->getNumIncomingValues() != 2)
return false;
// Reduction variables are only found in the loop header block.
if (Phi->getParent() != TheLoop->getHeader())
return false;
// Obtain the reduction start value from the value that comes from the loop
// preheader.
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = nullptr;
// Variable to keep last visited store instruction. By the end of the
// algorithm this variable will be either empty or having intermediate
// reduction value stored in invariant address.
StoreInst *IntermediateStore = nullptr;
// Indicates that we found a reduction operation in our scan.
bool FoundReduxOp = false;
// We start with the PHI node and scan for all of the users of this
// instruction. All users must be instructions that can be used as reduction
// variables (such as ADD). We must have a single out-of-block user. The cycle
// must include the original PHI.
bool FoundStartPHI = false;
// To recognize min/max patterns formed by a icmp select sequence, we store
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
InstDesc ReduxDesc(false, nullptr);
// Data used for determining if the recurrence has been type-promoted.
Type *RecurrenceType = Phi->getType();
SmallPtrSet<Instruction *, 4> CastInsts;
unsigned MinWidthCastToRecurrenceType;
Instruction *Start = Phi;
bool IsSigned = false;
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
// Return early if the recurrence kind does not match the type of Phi. If the
// recurrence kind is arithmetic, we attempt to look through AND operations
// resulting from the type promotion performed by InstCombine. Vector
// operations are not limited to the legal integer widths, so we may be able
// to evaluate the reduction in the narrower width.
if (RecurrenceType->isFloatingPointTy()) {
if (!isFloatingPointRecurrenceKind(Kind))
return false;
} else if (RecurrenceType->isIntegerTy()) {
if (!isIntegerRecurrenceKind(Kind))
return false;
if (!isMinMaxRecurrenceKind(Kind))
Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
} else {
// Pointer min/max may exist, but it is not supported as a reduction op.
return false;
}
Worklist.push_back(Start);
VisitedInsts.insert(Start);
// Start with all flags set because we will intersect this with the reduction
// flags from all the reduction operations.
FastMathFlags FMF = FastMathFlags::getFast();
// The first instruction in the use-def chain of the Phi node that requires
// exact floating point operations.
Instruction *ExactFPMathInst = nullptr;
// A value in the reduction can be used:
// - By the reduction:
// - Reduction operation:
// - One use of reduction value (safe).
// - Multiple use of reduction value (not safe).
// - PHI:
// - All uses of the PHI must be the reduction (safe).
// - Otherwise, not safe.
// - By instructions outside of the loop (safe).
// * One value may have several outside users, but all outside
// uses must be of the same value.
// - By store instructions with a loop invariant address (safe with
// the following restrictions):
// * If there are several stores, all must have the same address.
// * Final value should be stored in that loop invariant address.
// - By an instruction that is not part of the reduction (not safe).
// This is either:
// * An instruction type other than PHI or the reduction operation.
// * A PHI in the header other than the initial PHI.
while (!Worklist.empty()) {
Instruction *Cur = Worklist.pop_back_val();
// Store instructions are allowed iff it is the store of the reduction
// value to the same loop invariant memory location.
if (auto *SI = dyn_cast<StoreInst>(Cur)) {
if (!SE) {
LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
<< "Scalar Evolution Analysis\n");
return false;
}
const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand());
// Check it is the same address as previous stores
if (IntermediateStore) {
const SCEV *OtherScev =
SE->getSCEV(IntermediateStore->getPointerOperand());
if (OtherScev != PtrScev) {
LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
<< "inside the loop: " << *SI->getPointerOperand()
<< " and "
<< *IntermediateStore->getPointerOperand() << '\n');
return false;
}
}
// Check the pointer is loop invariant
if (!SE->isLoopInvariant(PtrScev, TheLoop)) {
LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
<< "inside the loop: " << *SI->getPointerOperand()
<< '\n');
return false;
}
// IntermediateStore is always the last store in the loop.
IntermediateStore = SI;
continue;
}
// No Users.
// If the instruction has no users then this is a broken chain and can't be
// a reduction variable.
if (Cur->use_empty())
return false;
bool IsAPhi = isa<PHINode>(Cur);
// A header PHI use other than the original PHI.
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
return false;
// Reductions of instructions such as Div, and Sub is only possible if the
// LHS is the reduction variable.
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
return false;
// Any reduction instruction must be of one of the allowed kinds. We ignore
// the starting value (the Phi or an AND instruction if the Phi has been
// type-promoted).
if (Cur != Start) {
ReduxDesc =
isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
ExactFPMathInst = ExactFPMathInst == nullptr
? ReduxDesc.getExactFPMathInst()
: ExactFPMathInst;
if (!ReduxDesc.isRecurrence())
return false;
// FIXME: FMF is allowed on phi, but propagation is not handled correctly.
if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
// Accept FMF on either fcmp or select of a min/max idiom.
// TODO: This is a hack to work-around the fact that FMF may not be
// assigned/propagated correctly. If that problem is fixed or we
// standardize on fmin/fmax via intrinsics, this can be removed.
if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
CurFMF |= FCmp->getFastMathFlags();
}
FMF &= CurFMF;
}
// Update this reduction kind if we matched a new instruction.
// TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
// state accurate while processing the worklist?
if (ReduxDesc.getRecKind() != RecurKind::None)
Kind = ReduxDesc.getRecKind();
}
bool IsASelect = isa<SelectInst>(Cur);
// A conditional reduction operation must only have 2 or less uses in
// VisitedInsts.
if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
hasMultipleUsesOf(Cur, VisitedInsts, 2))
return false;
// A reduction operation must only have one use of the reduction value.
if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
!isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(Cur, VisitedInsts, 1))
return false;
// All inputs to a PHI node must be a reduction value.
if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
return false;
if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) &&
(isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) &&
(isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
// Check whether we found a reduction operator.
FoundReduxOp |= !IsAPhi && Cur != Start;
// Process users of current instruction. Push non-PHI nodes after PHI nodes
// onto the stack. This way we are going to have seen all inputs to PHI
// nodes once we get to them.
SmallVector<Instruction *, 8> NonPHIs;
SmallVector<Instruction *, 8> PHIs;
for (User *U : Cur->users()) {
Instruction *UI = cast<Instruction>(U);
// If the user is a call to llvm.fmuladd then the instruction can only be
// the final operand.
if (isFMulAddIntrinsic(UI))
if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
return false;
// Check if we found the exit user.
BasicBlock *Parent = UI->getParent();
if (!TheLoop->contains(Parent)) {
// If we already know this instruction is used externally, move on to
// the next user.
if (ExitInstruction == Cur)
continue;
// Exit if you find multiple values used outside or if the header phi
// node is being used. In this case the user uses the value of the
// previous iteration, in which case we would loose "VF-1" iterations of
// the reduction operation if we vectorize.
if (ExitInstruction != nullptr || Cur == Phi)
return false;
// The instruction used by an outside user must be the last instruction
// before we feed back to the reduction phi. Otherwise, we loose VF-1
// operations on the value.
if (!is_contained(Phi->operands(), Cur))
return false;
ExitInstruction = Cur;
continue;
}
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
InstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI)) {
PHIs.push_back(UI);
} else {
StoreInst *SI = dyn_cast<StoreInst>(UI);
if (SI && SI->getPointerOperand() == Cur) {
// Reduction variable chain can only be stored somewhere but it
// can't be used as an address.
return false;
}
NonPHIs.push_back(UI);
}
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
(!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
!isAnyOfPattern(TheLoop, Phi, UI, IgnoredVal)
.isRecurrence() &&
!isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
return false;
// Remember that we completed the cycle.
if (UI == Phi)
FoundStartPHI = true;
}
Worklist.append(PHIs.begin(), PHIs.end());
Worklist.append(NonPHIs.begin(), NonPHIs.end());
}
// This means we have seen one but not the other instruction of the
// pattern or more than just a select and cmp. Zero implies that we saw a
// llvm.min/max intrinsic, which is always OK.
if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
NumCmpSelectPatternInst != 0)
return false;
if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
return false;
if (IntermediateStore) {
// Check that stored value goes to the phi node again. This way we make sure
// that the value stored in IntermediateStore is indeed the final reduction
// value.
if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) {
LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
<< *IntermediateStore << '\n');
return false;
}
// If there is an exit instruction it's value should be stored in
// IntermediateStore
if (ExitInstruction &&
IntermediateStore->getValueOperand() != ExitInstruction) {
LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
"store last calculated value of the reduction: "
<< *IntermediateStore << '\n');
return false;
}
// If all uses are inside the loop (intermediate stores), then the
// reduction value after the loop will be the one used in the last store.
if (!ExitInstruction)
ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand());
}
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
return false;
const bool IsOrdered =
checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
if (Start != Phi) {
// If the starting value is not the same as the phi node, we speculatively
// looked through an 'and' instruction when evaluating a potential
// arithmetic reduction to determine if it may have been type-promoted.
//
// We now compute the minimal bit width that is required to represent the
// reduction. If this is the same width that was indicated by the 'and', we
// can represent the reduction in the smaller type. The 'and' instruction
// will be eliminated since it will essentially be a cast instruction that
// can be ignore in the cost model. If we compute a different type than we
// did when evaluating the 'and', the 'and' will not be eliminated, and we
// will end up with different kinds of operations in the recurrence
// expression (e.g., IntegerAND, IntegerADD). We give up if this is
// the case.
//
// The vectorizer relies on InstCombine to perform the actual
// type-shrinking. It does this by inserting instructions to truncate the
// exit value of the reduction to the width indicated by RecurrenceType and
// then extend this value back to the original width. If IsSigned is false,
// a 'zext' instruction will be generated; otherwise, a 'sext' will be
// used.
//
// TODO: We should not rely on InstCombine to rewrite the reduction in the
// smaller type. We should just generate a correctly typed expression
// to begin with.
Type *ComputedType;
std::tie(ComputedType, IsSigned) =
computeRecurrenceType(ExitInstruction, DB, AC, DT);
if (ComputedType != RecurrenceType)
return false;
}
// Collect cast instructions and the minimum width used by the recurrence.
// If the starting value is not the same as the phi node and the computed
// recurrence type is equal to the recurrence type, the recurrence expression
// will be represented in a narrower or wider type. If there are any cast
// instructions that will be unnecessary, collect them in CastsFromRecurTy.
// Note that the 'and' instruction was already included in this list.
//
// TODO: A better way to represent this may be to tag in some way all the
// instructions that are a part of the reduction. The vectorizer cost
// model could then apply the recurrence type to these instructions,
// without needing a white list of instructions to ignore.
// This may also be useful for the inloop reductions, if it can be
// kept simple enough.
collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
MinWidthCastToRecurrenceType);
// We found a reduction var if we have reached the original phi node and we
// only have a single instruction with out-of-loop users.
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
// is saved as part of the RecurrenceDescriptor.
// Save the description of this reduction variable.
RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind,
FMF, ExactFPMathInst, RecurrenceType, IsSigned,
IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
RedDes = RD;
return true;
}
// We are looking for loops that do something like this:
// int r = 0;
// for (int i = 0; i < n; i++) {
// if (src[i] > 3)
// r = 3;
// }
// where the reduction value (r) only has two states, in this example 0 or 3.
// The generated LLVM IR for this type of loop will be like this:
// for.body:
// %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
// ...
// %cmp = icmp sgt i32 %5, 3
// %spec.select = select i1 %cmp, i32 3, i32 %r
// ...
// In general we can support vectorization of loops where 'r' flips between
// any two non-constants, provided they are loop invariant. The only thing
// we actually care about at the end of the loop is whether or not any lane
// in the selected vector is different from the start value. The final
// across-vector reduction after the loop simply involves choosing the start
// value if nothing changed (0 in the example above) or the other selected
// value (3 in the example above).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi,
Instruction *I, InstDesc &Prev) {
// We must handle the select(cmp(),x,y) as a single instruction. Advance to
// the select.
CmpInst::Predicate Pred;
if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
return InstDesc(Select, Prev.getRecKind());
}
if (!match(I,
m_Select(m_Cmp(Pred, m_Value(), m_Value()), m_Value(), m_Value())))
return InstDesc(false, I);
SelectInst *SI = cast<SelectInst>(I);
Value *NonPhi = nullptr;
if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
NonPhi = SI->getFalseValue();
else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
NonPhi = SI->getTrueValue();
else
return InstDesc(false, I);
// We are looking for selects of the form:
// select(cmp(), phi, loop_invariant) or
// select(cmp(), loop_invariant, phi)
if (!Loop->isLoopInvariant(NonPhi))
return InstDesc(false, I);
return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IAnyOf
: RecurKind::FAnyOf);
}
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
const InstDesc &Prev) {
assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
"Expected a cmp or select or call instruction");
if (!isMinMaxRecurrenceKind(Kind))
return InstDesc(false, I);
// We must handle the select(cmp()) as a single instruction. Advance to the
// select.
CmpInst::Predicate Pred;
if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
return InstDesc(Select, Prev.getRecKind());
}
// Only match select with single use cmp condition, or a min/max intrinsic.
if (!isa<IntrinsicInst>(I) &&
!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
m_Value())))
return InstDesc(false, I);
// Look for a min/max pattern.
if (match(I, m_UMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::UMin, I);
if (match(I, m_UMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::UMax, I);
if (match(I, m_SMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::SMax, I);
if (match(I, m_SMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::SMin, I);
if (match(I, m_OrdFMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMin, I);
if (match(I, m_OrdFMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMax, I);
if (match(I, m_UnordFMin(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMin, I);
if (match(I, m_UnordFMax(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMax, I);
if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMin, I);
if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMax, I);
if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMinimum, I);
if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
return InstDesc(Kind == RecurKind::FMaximum, I);
return InstDesc(false, I);
}
/// Returns true if the select instruction has users in the compare-and-add
/// reduction pattern below. The select instruction argument is the last one
/// in the sequence.
///
/// %sum.1 = phi ...
/// ...
/// %cmp = fcmp pred %0, %CFP
/// %add = fadd %0, %sum.1
/// %sum.2 = select %cmp, %add, %sum.1
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
SelectInst *SI = dyn_cast<SelectInst>(I);
if (!SI)
return InstDesc(false, I);
CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
// Only handle single use cases for now.
if (!CI || !CI->hasOneUse())
return InstDesc(false, I);
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
// Handle only when either of operands of select instruction is a PHI
// node for now.
if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
(!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
return InstDesc(false, I);
Instruction *I1 =
isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
: dyn_cast<Instruction>(TrueVal);
if (!I1 || !I1->isBinaryOp())
return InstDesc(false, I);
Value *Op1, *Op2;
if (!(((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
I1->isFast()) ||
(m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) ||
((m_Add(m_Value(Op1), m_Value(Op2)).match(I1) ||
m_Sub(m_Value(Op1), m_Value(Op2)).match(I1))) ||
(m_Mul(m_Value(Op1), m_Value(Op2)).match(I1))))
return InstDesc(false, I);
Instruction *IPhi = isa<PHINode>(*Op1) ? dyn_cast<Instruction>(Op1)
: dyn_cast<Instruction>(Op2);
if (!IPhi || IPhi != FalseVal)
return InstDesc(false, I);
return InstDesc(true, SI);
}
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
Instruction *I, RecurKind Kind,
InstDesc &Prev, FastMathFlags FuncFMF) {
assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
switch (I->getOpcode()) {
default:
return InstDesc(false, I);
case Instruction::PHI:
return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
case Instruction::Sub:
case Instruction::Add:
return InstDesc(Kind == RecurKind::Add, I);
case Instruction::Mul:
return InstDesc(Kind == RecurKind::Mul, I);
case Instruction::And:
return InstDesc(Kind == RecurKind::And, I);
case Instruction::Or:
return InstDesc(Kind == RecurKind::Or, I);
case Instruction::Xor:
return InstDesc(Kind == RecurKind::Xor, I);
case Instruction::FDiv:
case Instruction::FMul:
return InstDesc(Kind == RecurKind::FMul, I,
I->hasAllowReassoc() ? nullptr : I);
case Instruction::FSub:
case Instruction::FAdd:
return InstDesc(Kind == RecurKind::FAdd, I,
I->hasAllowReassoc() ? nullptr : I);
case Instruction::Select:
if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul ||
Kind == RecurKind::Add || Kind == RecurKind::Mul)
return isConditionalRdxPattern(Kind, I);
[[fallthrough]];
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Call:
if (isAnyOfRecurrenceKind(Kind))
return isAnyOfPattern(L, OrigPhi, I, Prev);
auto HasRequiredFMF = [&]() {
if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros())
return true;
if (isa<FPMathOperator>(I) && I->hasNoNaNs() && I->hasNoSignedZeros())
return true;
// minimum and maximum intrinsics do not require nsz and nnan flags since
// NaN and signed zeroes are propagated in the intrinsic implementation.
return match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())) ||
match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()));
};
if (isIntMinMaxRecurrenceKind(Kind) ||
(HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind)))
return isMinMaxPattern(I, Kind, Prev);
else if (isFMulAddIntrinsic(I))
return InstDesc(Kind == RecurKind::FMulAdd, I,
I->hasAllowReassoc() ? nullptr : I);
return InstDesc(false, I);
}
}
bool RecurrenceDescriptor::hasMultipleUsesOf(
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
unsigned MaxNumUses) {
unsigned NumUses = 0;
for (const Use &U : I->operands()) {
if (Insts.count(dyn_cast<Instruction>(U)))
++NumUses;
if (NumUses > MaxNumUses)
return true;
}
return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes,
DemandedBits *DB, AssumptionCache *AC,
DominatorTree *DT,
ScalarEvolution *SE) {
BasicBlock *Header = TheLoop->getHeader();
Function &F = *Header->getParent();
FastMathFlags FMF;
FMF.setNoNaNs(
F.getFnAttribute("no-nans-fp-math").getValueAsBool());
FMF.setNoSignedZeros(
F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::IAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
<< *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
<< " PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMaximum, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RecurKind::FMinimum, TheLoop, FMF, RedDes, DB, AC, DT,
SE)) {
LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n");
return true;
}
// Not a reduction of known type.
return false;
}
bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
DominatorTree *DT) {
// Ensure the phi node is in the loop header and has two incoming values.
if (Phi->getParent() != TheLoop->getHeader() ||
Phi->getNumIncomingValues() != 2)
return false;
// Ensure the loop has a preheader and a single latch block. The loop
// vectorizer will need the latch to set up the next iteration of the loop.
auto *Preheader = TheLoop->getLoopPreheader();
auto *Latch = TheLoop->getLoopLatch();
if (!Preheader || !Latch)
return false;
// Ensure the phi node's incoming blocks are the loop preheader and latch.
if (Phi->getBasicBlockIndex(Preheader) < 0 ||
Phi->getBasicBlockIndex(Latch) < 0)
return false;
// Get the previous value. The previous value comes from the latch edge while
// the initial value comes from the preheader edge.
auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
// If Previous is a phi in the header, go through incoming values from the
// latch until we find a non-phi value. Use this as the new Previous, all uses
// in the header will be dominated by the original phi, but need to be moved
// after the non-phi previous value.
SmallPtrSet<PHINode *, 4> SeenPhis;
while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
if (PrevPhi->getParent() != Phi->getParent())
return false;
if (!SeenPhis.insert(PrevPhi).second)
return false;
Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
}
if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
return false;
// Ensure every user of the phi node (recursively) is dominated by the
// previous value. The dominance requirement ensures the loop vectorizer will
// not need to vectorize the initial value prior to the first iteration of the
// loop.
// TODO: Consider extending this sinking to handle memory instructions.
SmallPtrSet<Value *, 8> Seen;
BasicBlock *PhiBB = Phi->getParent();
SmallVector<Instruction *, 8> WorkList;
auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
// Cyclic dependence.
if (Previous == SinkCandidate)
return false;
if (!Seen.insert(SinkCandidate).second)
return true;
if (DT->dominates(Previous,
SinkCandidate)) // We already are good w/o sinking.
return true;
if (SinkCandidate->getParent() != PhiBB ||
SinkCandidate->mayHaveSideEffects() ||
SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
return false;
// If we reach a PHI node that is not dominated by Previous, we reached a
// header PHI. No need for sinking.
if (isa<PHINode>(SinkCandidate))
return true;
// Sink User tentatively and check its users
WorkList.push_back(SinkCandidate);
return true;
};
WorkList.push_back(Phi);
// Try to recursively sink instructions and their users after Previous.
while (!WorkList.empty()) {
Instruction *Current = WorkList.pop_back_val();
for (User *User : Current->users()) {
if (!TryToPushSinkCandidate(cast<Instruction>(User)))
return false;
}
}
return true;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
FastMathFlags FMF) const {
switch (K) {
case RecurKind::Xor:
case RecurKind::Add:
case RecurKind::Or:
// Adding, Xoring, Oring zero to a number does not change it.
return ConstantInt::get(Tp, 0);
case RecurKind::Mul:
// Multiplying a number by 1 does not change it.
return ConstantInt::get(Tp, 1);
case RecurKind::And:
// AND-ing a number with an all-1 value does not change it.
return ConstantInt::get(Tp, -1, true);
case RecurKind::FMul:
// Multiplying a number by 1 does not change it.
return ConstantFP::get(Tp, 1.0L);
case RecurKind::FMulAdd:
case RecurKind::FAdd:
// Adding zero to a number does not change it.
// FIXME: Ideally we should not need to check FMF for FAdd and should always
// use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
// Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
// nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
// mean we can then remove the check for noSignedZeros() below (see D98963).
if (FMF.noSignedZeros())
return ConstantFP::get(Tp, 0.0L);
return ConstantFP::get(Tp, -0.0L);
case RecurKind::UMin:
return ConstantInt::get(Tp, -1, true);
case RecurKind::UMax:
return ConstantInt::get(Tp, 0);
case RecurKind::SMin:
return ConstantInt::get(Tp,
APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
case RecurKind::SMax:
return ConstantInt::get(Tp,
APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
case RecurKind::FMin:
assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
"nnan, nsz is expected to be set for FP min reduction.");
return ConstantFP::getInfinity(Tp, false /*Negative*/);
case RecurKind::FMax:
assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
"nnan, nsz is expected to be set for FP max reduction.");
return ConstantFP::getInfinity(Tp, true /*Negative*/);
case RecurKind::FMinimum:
return ConstantFP::getInfinity(Tp, false /*Negative*/);
case RecurKind::FMaximum:
return ConstantFP::getInfinity(Tp, true /*Negative*/);
case RecurKind::IAnyOf:
case RecurKind::FAnyOf:
return getRecurrenceStartValue();
break;
default:
llvm_unreachable("Unknown recurrence kind");
}
}
unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
switch (Kind) {
case RecurKind::Add:
return Instruction::Add;
case RecurKind::Mul:
return Instruction::Mul;
case RecurKind::Or:
return Instruction::Or;
case RecurKind::And:
return Instruction::And;
case RecurKind::Xor:
return Instruction::Xor;
case RecurKind::FMul:
return Instruction::FMul;
case RecurKind::FMulAdd:
case RecurKind::FAdd:
return Instruction::FAdd;
case RecurKind::SMax:
case RecurKind::SMin:
case RecurKind::UMax:
case RecurKind::UMin:
case RecurKind::IAnyOf:
return Instruction::ICmp;
case RecurKind::FMax:
case RecurKind::FMin:
case RecurKind::FMaximum:
case RecurKind::FMinimum:
case RecurKind::FAnyOf:
return Instruction::FCmp;
default:
llvm_unreachable("Unknown recurrence operation");
}
}
SmallVector<Instruction *, 4>
RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
SmallVector<Instruction *, 4> ReductionOperations;
unsigned RedOp = getOpcode(Kind);
// Search down from the Phi to the LoopExitInstr, looking for instructions
// with a single user of the correct type for the reduction.
// Note that we check that the type of the operand is correct for each item in
// the chain, including the last (the loop exit value). This can come up from
// sub, which would otherwise be treated as an add reduction. MinMax also need
// to check for a pair of icmp/select, for which we use getNextInstruction and
// isCorrectOpcode functions to step the right number of instruction, and
// check the icmp/select pair.
// FIXME: We also do not attempt to look through Select's yet, which might
// be part of the reduction chain, or attempt to looks through And's to find a
// smaller bitwidth. Subs are also currently not allowed (which are usually
// treated as part of a add reduction) as they are expected to generally be
// more expensive than out-of-loop reductions, and need to be costed more
// carefully.
unsigned ExpectedUses = 1;
if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
ExpectedUses = 2;
auto getNextInstruction = [&](Instruction *Cur) -> Instruction * {
for (auto *User : Cur->users()) {
Instruction *UI = cast<Instruction>(User);
if (isa<PHINode>(UI))
continue;
if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
// We are expecting a icmp/select pair, which we go to the next select
// instruction if we can. We already know that Cur has 2 uses.
if (isa<SelectInst>(UI))
return UI;
continue;
}
return UI;
}
return nullptr;
};
auto isCorrectOpcode = [&](Instruction *Cur) {
if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
Value *LHS, *RHS;
return SelectPatternResult::isMinOrMax(
matchSelectPattern(Cur, LHS, RHS).Flavor);
}
// Recognize a call to the llvm.fmuladd intrinsic.
if (isFMulAddIntrinsic(Cur))
return true;
return Cur->getOpcode() == RedOp;
};
// Attempt to look through Phis which are part of the reduction chain
unsigned ExtraPhiUses = 0;
Instruction *RdxInstr = LoopExitInstr;
if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
if (ExitPhi->getNumIncomingValues() != 2)
return {};
Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
Instruction *Chain = nullptr;
if (Inc0 == Phi)
Chain = Inc1;
else if (Inc1 == Phi)
Chain = Inc0;
else
return {};
RdxInstr = Chain;
ExtraPhiUses = 1;
}
// The loop exit instruction we check first (as a quick test) but add last. We
// check the opcode is correct (and dont allow them to be Subs) and that they
// have expected to have the expected number of uses. They will have one use
// from the phi and one from a LCSSA value, no matter the type.
if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
return {};
// Check that the Phi has one (or two for min/max) uses, plus an extra use
// for conditional reductions.
if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
return {};
Instruction *Cur = getNextInstruction(Phi);
// Each other instruction in the chain should have the expected number of uses
// and be the correct opcode.
while (Cur != RdxInstr) {
if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
return {};
ReductionOperations.push_back(Cur);
Cur = getNextInstruction(Cur);
}
ReductionOperations.push_back(Cur);
return ReductionOperations;
}
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
const SCEV *Step, BinaryOperator *BOp,
SmallVectorImpl<Instruction *> *Casts)
: StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
assert(IK != IK_NoInduction && "Not an induction");
// Start value type should match the induction kind and the value
// itself should not be null.
assert(StartValue && "StartValue is null");
assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
"StartValue is not a pointer for pointer induction");
assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
"StartValue is not an integer for integer induction");
// Check the Step Value. It should be non-zero integer value.
assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
"Step value is zero");
assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
"StepValue is not an integer");
assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
"StepValue is not FP for FpInduction");
assert((IK != IK_FpInduction ||
(InductionBinOp &&
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction");
if (Casts) {
for (auto &Inst : *Casts) {
RedundantCasts.push_back(Inst);
}
}
}
ConstantInt *InductionDescriptor::getConstIntStepValue() const {
if (isa<SCEVConstant>(Step))
return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
return nullptr;
}
bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
ScalarEvolution *SE,
InductionDescriptor &D) {
// Here we only handle FP induction variables.
assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
if (TheLoop->getHeader() != Phi->getParent())
return false;
// The loop may have multiple entrances or multiple exits; we can analyze
// this phi if it has a unique entry value and a unique backedge value.
if (Phi->getNumIncomingValues() != 2)
return false;
Value *BEValue = nullptr, *StartValue = nullptr;
if (TheLoop->contains(Phi->getIncomingBlock(0))) {
BEValue = Phi->getIncomingValue(0);
StartValue = Phi->getIncomingValue(1);
} else {
assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
"Unexpected Phi node in the loop");
BEValue = Phi->getIncomingValue(1);
StartValue = Phi->getIncomingValue(0);
}
BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
if (!BOp)
return false;
Value *Addend = nullptr;
if (BOp->getOpcode() == Instruction::FAdd) {
if (BOp->getOperand(0) == Phi)
Addend = BOp->getOperand(1);
else if (BOp->getOperand(1) == Phi)
Addend = BOp->getOperand(0);
} else if (BOp->getOpcode() == Instruction::FSub)
if (BOp->getOperand(0) == Phi)
Addend = BOp->getOperand(1);
if (!Addend)
return false;
// The addend should be loop invariant
if (auto *I = dyn_cast<Instruction>(Addend))
if (TheLoop->contains(I))
return false;
// FP Step has unknown SCEV
const SCEV *Step = SE->getUnknown(Addend);
D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
return true;
}
/// This function is called when we suspect that the update-chain of a phi node
/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
/// predicate P under which the SCEV expression for the phi can be the
/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
/// cast instructions that are involved in the update-chain of this induction.
/// A caller that adds the required runtime predicate can be free to drop these
/// cast instructions, and compute the phi using \p AR (instead of some scev
/// expression with casts).
///
/// For example, without a predicate the scev expression can take the following
/// form:
/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
///
/// It corresponds to the following IR sequence:
/// %for.body:
/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
/// %casted_phi = "ExtTrunc i64 %x"
/// %add = add i64 %casted_phi, %step
///
/// where %x is given in \p PN,
/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
/// several forms, for example, such as:
/// ExtTrunc1: %casted_phi = and %x, 2^n-1
/// or:
/// ExtTrunc2: %t = shl %x, m
/// %casted_phi = ashr %t, m
///
/// If we are able to find such sequence, we return the instructions
/// we found, namely %casted_phi and the instructions on its use-def chain up
/// to the phi (not including the phi).
static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
const SCEVUnknown *PhiScev,
const SCEVAddRecExpr *AR,
SmallVectorImpl<Instruction *> &CastInsts) {
assert(CastInsts.empty() && "CastInsts is expected to be empty.");
auto *PN = cast<PHINode>(PhiScev->getValue());
assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
const Loop *L = AR->getLoop();
// Find any cast instructions that participate in the def-use chain of
// PhiScev in the loop.
// FORNOW/TODO: We currently expect the def-use chain to include only
// two-operand instructions, where one of the operands is an invariant.
// createAddRecFromPHIWithCasts() currently does not support anything more
// involved than that, so we keep the search simple. This can be
// extended/generalized as needed.
auto getDef = [&](const Value *Val) -> Value * {
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
if (!BinOp)
return nullptr;
Value *Op0 = BinOp->getOperand(0);
Value *Op1 = BinOp->getOperand(1);
Value *Def = nullptr;
if (L->isLoopInvariant(Op0))
Def = Op1;
else if (L->isLoopInvariant(Op1))
Def = Op0;
return Def;
};
// Look for the instruction that defines the induction via the
// loop backedge.
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return false;
Value *Val = PN->getIncomingValueForBlock(Latch);
if (!Val)
return false;
// Follow the def-use chain until the induction phi is reached.
// If on the way we encounter a Value that has the same SCEV Expr as the
// phi node, we can consider the instructions we visit from that point
// as part of the cast-sequence that can be ignored.
bool InCastSequence = false;
auto *Inst = dyn_cast<Instruction>(Val);
while (Val != PN) {
// If we encountered a phi node other than PN, or if we left the loop,
// we bail out.
if (!Inst || !L->contains(Inst)) {
return false;
}
auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
InCastSequence = true;
if (InCastSequence) {
// Only the last instruction in the cast sequence is expected to have
// uses outside the induction def-use chain.
if (!CastInsts.empty())
if (!Inst->hasOneUse())
return false;
CastInsts.push_back(Inst);
}
Val = getDef(Val);
if (!Val)
return false;
Inst = dyn_cast<Instruction>(Val);
}
return InCastSequence;
}
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
PredicatedScalarEvolution &PSE,
InductionDescriptor &D, bool Assume) {
Type *PhiTy = Phi->getType();
// Handle integer and pointer inductions variables.
// Now we handle also FP induction but not trying to make a
// recurrent expression from the PHI node in-place.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
!PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
return false;
if (PhiTy->isFloatingPointTy())
return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
const SCEV *PhiScev = PSE.getSCEV(Phi);
const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
// We need this expression to be an AddRecExpr.
if (Assume && !AR)
AR = PSE.getAsAddRec(Phi);
if (!AR) {
LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
// Record any Cast instructions that participate in the induction update
const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
// If we started from an UnknownSCEV, and managed to build an addRecurrence
// only after enabling Assume with PSCEV, this means we may have encountered
// cast instructions that required adding a runtime check in order to
// guarantee the correctness of the AddRecurrence respresentation of the
// induction.
if (PhiScev != AR && SymbolicPhi) {
SmallVector<Instruction *, 2> Casts;
if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
}
return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}
bool InductionDescriptor::isInductionPHI(
PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
InductionDescriptor &D, const SCEV *Expr,
SmallVectorImpl<Instruction *> *CastsToIgnore) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
return false;
// Check that the PHI is consecutive.
const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
if (AR->getLoop() != TheLoop) {
// FIXME: We should treat this as a uniform. Unfortunately, we
// don't currently know how to handled uniform PHIs.
LLVM_DEBUG(
dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
return false;
}
// This function assumes that InductionPhi is called only on Phi nodes
// present inside loop headers. Check for the same, and throw an assert if
// the current Phi is not present inside the loop header.
assert(Phi->getParent() == AR->getLoop()->getHeader()
&& "Invalid Phi node, not present in loop header");
Value *StartValue =
Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
BasicBlock *Latch = AR->getLoop()->getLoopLatch();
if (!Latch)
return false;
const SCEV *Step = AR->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
// The stride may be a constant or a loop invariant integer value.
const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
return false;
if (PhiTy->isIntegerTy()) {
BinaryOperator *BOp =
dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
CastsToIgnore);
return true;
}
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
// This allows induction variables w/non-constant steps.
D = InductionDescriptor(StartValue, IK_PtrInduction, Step);
return true;
}
|