1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface between the inliner and a learned model.
// It delegates model evaluation to either the AOT compiled model (the
// 'release' mode) or a runtime-loaded model (the 'development' case).
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/InlineModelFeatureMaps.h"
#include "llvm/Analysis/InteractiveModelRunner.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ReleaseModeModelRunner.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
static cl::opt<std::string> InteractiveChannelBaseName(
"inliner-interactive-channel-base", cl::Hidden,
cl::desc(
"Base file path for the interactive mode. The incoming filename should "
"have the name <inliner-interactive-channel-base>.in, while the "
"outgoing name should be <inliner-interactive-channel-base>.out"));
static const std::string InclDefaultMsg =
(Twine("In interactive mode, also send the default policy decision: ") +
DefaultDecisionName + ".")
.str();
static cl::opt<bool>
InteractiveIncludeDefault("inliner-interactive-include-default", cl::Hidden,
cl::desc(InclDefaultMsg));
enum class SkipMLPolicyCriteria { Never, IfCallerIsNotCold };
static cl::opt<SkipMLPolicyCriteria> SkipPolicy(
"ml-inliner-skip-policy", cl::Hidden, cl::init(SkipMLPolicyCriteria::Never),
cl::values(clEnumValN(SkipMLPolicyCriteria::Never, "never", "never"),
clEnumValN(SkipMLPolicyCriteria::IfCallerIsNotCold,
"if-caller-not-cold", "if the caller is not cold")));
static cl::opt<std::string> ModelSelector("ml-inliner-model-selector",
cl::Hidden, cl::init(""));
#if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
// codegen-ed file
#include "InlinerSizeModel.h" // NOLINT
using CompiledModelType = llvm::InlinerSizeModel;
#else
using CompiledModelType = NoopSavedModelImpl;
#endif
std::unique_ptr<InlineAdvisor>
llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM,
std::function<bool(CallBase &)> GetDefaultAdvice) {
if (!llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() &&
InteractiveChannelBaseName.empty())
return nullptr;
std::unique_ptr<MLModelRunner> AOTRunner;
if (InteractiveChannelBaseName.empty())
AOTRunner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
M.getContext(), FeatureMap, DecisionName,
EmbeddedModelRunnerOptions().setModelSelector(ModelSelector));
else {
auto Features = FeatureMap;
if (InteractiveIncludeDefault)
Features.push_back(DefaultDecisionSpec);
AOTRunner = std::make_unique<InteractiveModelRunner>(
M.getContext(), Features, InlineDecisionSpec,
InteractiveChannelBaseName + ".out",
InteractiveChannelBaseName + ".in");
}
return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner),
GetDefaultAdvice);
}
#define DEBUG_TYPE "inline-ml"
static cl::opt<float> SizeIncreaseThreshold(
"ml-advisor-size-increase-threshold", cl::Hidden,
cl::desc("Maximum factor by which expected native size may increase before "
"blocking any further inlining."),
cl::init(2.0));
static cl::opt<bool> KeepFPICache(
"ml-advisor-keep-fpi-cache", cl::Hidden,
cl::desc(
"For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
cl::init(false));
// clang-format off
const std::vector<TensorSpec> llvm::FeatureMap{
#define POPULATE_NAMES(DTYPE, SHAPE, NAME, __) TensorSpec::createSpec<DTYPE>(#NAME, SHAPE),
// InlineCost features - these must come first
INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
// Non-cost features
INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
#undef POPULATE_NAMES
};
// clang-format on
const char *const llvm::DecisionName = "inlining_decision";
const TensorSpec llvm::InlineDecisionSpec =
TensorSpec::createSpec<int64_t>(DecisionName, {1});
const char *const llvm::DefaultDecisionName = "inlining_default";
const TensorSpec llvm::DefaultDecisionSpec =
TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1});
const char *const llvm::RewardName = "delta_size";
CallBase *getInlinableCS(Instruction &I) {
if (auto *CS = dyn_cast<CallBase>(&I))
if (Function *Callee = CS->getCalledFunction()) {
if (!Callee->isDeclaration()) {
return CS;
}
}
return nullptr;
}
MLInlineAdvisor::MLInlineAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> Runner,
std::function<bool(CallBase &)> GetDefaultAdvice)
: InlineAdvisor(
M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
ModelRunner(std::move(Runner)), GetDefaultAdvice(GetDefaultAdvice),
CG(MAM.getResult<LazyCallGraphAnalysis>(M)),
InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize),
PSI(MAM.getResult<ProfileSummaryAnalysis>(M)) {
assert(ModelRunner);
ModelRunner->switchContext("");
// Extract the 'call site height' feature - the position of a call site
// relative to the farthest statically reachable SCC node. We don't mutate
// this value while inlining happens. Empirically, this feature proved
// critical in behavioral cloning - i.e. training a model to mimic the manual
// heuristic's decisions - and, thus, equally important for training for
// improvement.
CallGraph CGraph(M);
for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) {
const std::vector<CallGraphNode *> &CGNodes = *I;
unsigned Level = 0;
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (!F || F->isDeclaration())
continue;
for (auto &I : instructions(F)) {
if (auto *CS = getInlinableCS(I)) {
auto *Called = CS->getCalledFunction();
auto Pos = FunctionLevels.find(&CG.get(*Called));
// In bottom up traversal, an inlinable callee is either in the
// same SCC, or to a function in a visited SCC. So not finding its
// level means we haven't visited it yet, meaning it's in this SCC.
if (Pos == FunctionLevels.end())
continue;
Level = std::max(Level, Pos->second + 1);
}
}
}
for (auto *CGNode : CGNodes) {
Function *F = CGNode->getFunction();
if (F && !F->isDeclaration())
FunctionLevels[&CG.get(*F)] = Level;
}
}
for (auto KVP : FunctionLevels) {
AllNodes.insert(KVP.first);
EdgeCount += getLocalCalls(KVP.first->getFunction());
}
NodeCount = AllNodes.size();
}
unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const {
return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0;
}
void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *CurSCC) {
if (!CurSCC || ForceStop)
return;
FPICache.clear();
// Function passes executed between InlinerPass runs may have changed the
// module-wide features.
// The cgscc pass manager rules are such that:
// - if a pass leads to merging SCCs, then the pipeline is restarted on the
// merged SCC
// - if a pass leads to splitting the SCC, then we continue with one of the
// splits
// This means that the NodesInLastSCC is a superset (not strict) of the nodes
// that subsequent passes would have processed
// - in addition, if new Nodes were created by a pass (e.g. CoroSplit),
// they'd be adjacent to Nodes in the last SCC. So we just need to check the
// boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't
// care about the nature of the Edge (call or ref). `FunctionLevels`-wise, we
// record them at the same level as the original node (this is a choice, may
// need revisiting).
// - nodes are only deleted at the end of a call graph walk where they are
// batch deleted, so we shouldn't see any dead nodes here.
while (!NodesInLastSCC.empty()) {
const auto *N = *NodesInLastSCC.begin();
assert(!N->isDead());
NodesInLastSCC.erase(N);
EdgeCount += getLocalCalls(N->getFunction());
const auto NLevel = FunctionLevels.at(N);
for (const auto &E : *(*N)) {
const auto *AdjNode = &E.getNode();
assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
auto I = AllNodes.insert(AdjNode);
// We've discovered a new function.
if (I.second) {
++NodeCount;
NodesInLastSCC.insert(AdjNode);
FunctionLevels[AdjNode] = NLevel;
}
}
}
EdgeCount -= EdgesOfLastSeenNodes;
EdgesOfLastSeenNodes = 0;
// (Re)use NodesInLastSCC to remember the nodes in the SCC right now,
// in case the SCC is split before onPassExit and some nodes are split out
assert(NodesInLastSCC.empty());
for (const auto &N : *CurSCC)
NodesInLastSCC.insert(&N);
}
void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *CurSCC) {
// No need to keep this around - function passes will invalidate it.
if (!KeepFPICache)
FPICache.clear();
if (!CurSCC || ForceStop)
return;
// Keep track of the nodes and edges we last saw. Then, in onPassEntry,
// we update the node count and edge count from the subset of these nodes that
// survived.
EdgesOfLastSeenNodes = 0;
// Check on nodes that were in SCC onPassEntry
for (const LazyCallGraph::Node *N : NodesInLastSCC) {
assert(!N->isDead());
EdgesOfLastSeenNodes += getLocalCalls(N->getFunction());
}
// Check on nodes that may have got added to SCC
for (const auto &N : *CurSCC) {
assert(!N.isDead());
auto I = NodesInLastSCC.insert(&N);
if (I.second)
EdgesOfLastSeenNodes += getLocalCalls(N.getFunction());
}
assert(NodeCount >= NodesInLastSCC.size());
assert(EdgeCount >= EdgesOfLastSeenNodes);
}
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
return getCachedFPI(F).DirectCallsToDefinedFunctions;
}
// Update the internal state of the advisor, and force invalidate feature
// analysis. Currently, we maintain minimal (and very simple) global state - the
// number of functions and the number of static calls. We also keep track of the
// total IR size in this module, to stop misbehaving policies at a certain bloat
// factor (SizeIncreaseThreshold)
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
bool CalleeWasDeleted) {
assert(!ForceStop);
Function *Caller = Advice.getCaller();
Function *Callee = Advice.getCallee();
// The caller features aren't valid anymore.
{
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<FunctionPropertiesAnalysis>();
PA.abandon<DominatorTreeAnalysis>();
PA.abandon<LoopAnalysis>();
FAM.invalidate(*Caller, PA);
}
Advice.updateCachedCallerFPI(FAM);
int64_t IRSizeAfter =
getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
ForceStop = true;
// We can delta-update module-wide features. We know the inlining only changed
// the caller, and maybe the callee (by deleting the latter).
// Nodes are simple to update.
// For edges, we 'forget' the edges that the caller and callee used to have
// before inlining, and add back what they currently have together.
int64_t NewCallerAndCalleeEdges =
getCachedFPI(*Caller).DirectCallsToDefinedFunctions;
// A dead function's node is not actually removed from the call graph until
// the end of the call graph walk, but the node no longer belongs to any valid
// SCC.
if (CalleeWasDeleted) {
--NodeCount;
NodesInLastSCC.erase(CG.lookup(*Callee));
DeadFunctions.insert(Callee);
} else {
NewCallerAndCalleeEdges +=
getCachedFPI(*Callee).DirectCallsToDefinedFunctions;
}
EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
}
int64_t MLInlineAdvisor::getModuleIRSize() const {
int64_t Ret = 0;
for (auto &F : M)
if (!F.isDeclaration())
Ret += getIRSize(F);
return Ret;
}
FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const {
auto InsertPair =
FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo()));
if (!InsertPair.second)
return InsertPair.first->second;
InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F);
return InsertPair.first->second;
}
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
return Skip;
auto &Caller = *CB.getCaller();
auto &Callee = *CB.getCalledFunction();
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
return FAM.getResult<AssumptionAnalysis>(F);
};
auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
if (SkipPolicy == SkipMLPolicyCriteria::IfCallerIsNotCold) {
if (!PSI.isFunctionEntryCold(&Caller))
return std::make_unique<InlineAdvice>(this, CB, ORE,
GetDefaultAdvice(CB));
}
auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
// If this is a "never inline" case, there won't be any changes to internal
// state we need to track, so we can just return the base InlineAdvice, which
// will do nothing interesting.
// Same thing if this is a recursive case.
if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
&Caller == &Callee)
return getMandatoryAdvice(CB, false);
bool Mandatory =
MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
// If we need to stop, we won't want to track anymore any state changes, so
// we just return the base InlineAdvice, which acts as a noop.
if (ForceStop) {
ORE.emit([&] {
return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
<< "Won't attempt inlining because module size grew too much.";
});
return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
}
int CostEstimate = 0;
if (!Mandatory) {
auto IsCallSiteInlinable =
llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
if (!IsCallSiteInlinable) {
// We can't inline this for correctness reasons, so return the base
// InlineAdvice, as we don't care about tracking any state changes (which
// won't happen).
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
}
CostEstimate = *IsCallSiteInlinable;
}
const auto CostFeatures =
llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
if (!CostFeatures) {
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
}
if (Mandatory)
return getMandatoryAdvice(CB, true);
auto NrCtantParams = 0;
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
NrCtantParams += (isa<Constant>(*I));
}
auto &CallerBefore = getCachedFPI(Caller);
auto &CalleeBefore = getCachedFPI(Callee);
*ModelRunner->getTensor<int64_t>(FeatureIndex::callee_basic_block_count) =
CalleeBefore.BasicBlockCount;
*ModelRunner->getTensor<int64_t>(FeatureIndex::callsite_height) =
getInitialFunctionLevel(Caller);
*ModelRunner->getTensor<int64_t>(FeatureIndex::node_count) = NodeCount;
*ModelRunner->getTensor<int64_t>(FeatureIndex::nr_ctant_params) =
NrCtantParams;
*ModelRunner->getTensor<int64_t>(FeatureIndex::edge_count) = EdgeCount;
*ModelRunner->getTensor<int64_t>(FeatureIndex::caller_users) =
CallerBefore.Uses;
*ModelRunner->getTensor<int64_t>(
FeatureIndex::caller_conditionally_executed_blocks) =
CallerBefore.BlocksReachedFromConditionalInstruction;
*ModelRunner->getTensor<int64_t>(FeatureIndex::caller_basic_block_count) =
CallerBefore.BasicBlockCount;
*ModelRunner->getTensor<int64_t>(
FeatureIndex::callee_conditionally_executed_blocks) =
CalleeBefore.BlocksReachedFromConditionalInstruction;
*ModelRunner->getTensor<int64_t>(FeatureIndex::callee_users) =
CalleeBefore.Uses;
*ModelRunner->getTensor<int64_t>(FeatureIndex::cost_estimate) = CostEstimate;
*ModelRunner->getTensor<int64_t>(FeatureIndex::is_callee_avail_external) =
Callee.hasAvailableExternallyLinkage();
*ModelRunner->getTensor<int64_t>(FeatureIndex::is_caller_avail_external) =
Caller.hasAvailableExternallyLinkage();
// Add the cost features
for (size_t I = 0;
I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
*ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature(
static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I);
}
// This one would have been set up to be right at the end.
if (!InteractiveChannelBaseName.empty() && InteractiveIncludeDefault)
*ModelRunner->getTensor<int64_t>(InlineCostFeatureIndex::NumberOfFeatures) =
GetDefaultAdvice(CB);
return getAdviceFromModel(CB, ORE);
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
OptimizationRemarkEmitter &ORE) {
return std::make_unique<MLInlineAdvice>(
this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>()));
}
std::unique_ptr<InlineAdvice>
MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) {
if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller())
.isReachableFromEntry(CB.getParent()))
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false);
return nullptr;
}
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
bool Advice) {
// Make sure we track inlinings in all cases - mandatory or not.
if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
return Skip;
if (Advice && !ForceStop)
return getMandatoryAdviceImpl(CB);
// If this is a "never inline" case, there won't be any changes to internal
// state we need to track, so we can just return the base InlineAdvice, which
// will do nothing interesting.
// Same if we are forced to stop - we don't track anymore.
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
}
std::unique_ptr<MLInlineAdvice>
MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
}
void MLInlineAdvisor::print(raw_ostream &OS) const {
OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount
<< " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n";
OS << "[MLInlineAdvisor] FPI:\n";
for (auto I : FPICache) {
OS << I.first->getName() << ":\n";
I.second.print(OS);
OS << "\n";
}
OS << "\n";
OS << "[MLInlineAdvisor] FuncLevels:\n";
for (auto I : FunctionLevels)
OS << (DeadFunctions.contains(&I.first->getFunction())
? "<deleted>"
: I.first->getFunction().getName())
<< " : " << I.second << "\n";
OS << "\n";
}
MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
OptimizationRemarkEmitter &ORE,
bool Recommendation)
: InlineAdvice(Advisor, CB, ORE, Recommendation),
CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)),
CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)),
CallerAndCalleeEdges(Advisor->isForcedToStop()
? 0
: (Advisor->getLocalCalls(*Caller) +
Advisor->getLocalCalls(*Callee))),
PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) {
if (Recommendation)
FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB);
}
void MLInlineAdvice::reportContextForRemark(
DiagnosticInfoOptimizationBase &OR) {
using namespace ore;
OR << NV("Callee", Callee->getName());
for (size_t I = 0; I < NumberOfFeatures; ++I)
OR << NV(FeatureMap[I].name(),
*getAdvisor()->getModelRunner().getTensor<int64_t>(I));
OR << NV("ShouldInline", isInliningRecommended());
}
void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const {
FPU->finish(FAM);
}
void MLInlineAdvice::recordInliningImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
}
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
ORE.emit([&]() {
OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
Block);
reportContextForRemark(R);
return R;
});
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
}
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
const InlineResult &Result) {
getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI;
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
DLoc, Block);
reportContextForRemark(R);
return R;
});
}
void MLInlineAdvice::recordUnattemptedInliningImpl() {
assert(!FPU);
ORE.emit([&]() {
OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
reportContextForRemark(R);
return R;
});
}
|