1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
//===- ScalarEvolutionAliasAnalysis.cpp - SCEV-based Alias Analysis -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the ScalarEvolutionAliasAnalysis pass, which implements a
// simple alias analysis implemented in terms of ScalarEvolution queries.
//
// This differs from traditional loop dependence analysis in that it tests
// for dependencies within a single iteration of a loop, rather than
// dependencies between different iterations.
//
// ScalarEvolution has a more complete understanding of pointer arithmetic
// than BasicAliasAnalysis' collection of ad-hoc analyses.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
static bool canComputePointerDiff(ScalarEvolution &SE,
const SCEV *A, const SCEV *B) {
if (SE.getEffectiveSCEVType(A->getType()) !=
SE.getEffectiveSCEVType(B->getType()))
return false;
return SE.instructionCouldExistWithOperands(A, B);
}
AliasResult SCEVAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB, AAQueryInfo &AAQI,
const Instruction *) {
// If either of the memory references is empty, it doesn't matter what the
// pointer values are. This allows the code below to ignore this special
// case.
if (LocA.Size.isZero() || LocB.Size.isZero())
return AliasResult::NoAlias;
// This is SCEVAAResult. Get the SCEVs!
const SCEV *AS = SE.getSCEV(const_cast<Value *>(LocA.Ptr));
const SCEV *BS = SE.getSCEV(const_cast<Value *>(LocB.Ptr));
// If they evaluate to the same expression, it's a MustAlias.
if (AS == BS)
return AliasResult::MustAlias;
// If something is known about the difference between the two addresses,
// see if it's enough to prove a NoAlias.
if (canComputePointerDiff(SE, AS, BS)) {
unsigned BitWidth = SE.getTypeSizeInBits(AS->getType());
APInt ASizeInt(BitWidth, LocA.Size.hasValue()
? static_cast<uint64_t>(LocA.Size.getValue())
: MemoryLocation::UnknownSize);
APInt BSizeInt(BitWidth, LocB.Size.hasValue()
? static_cast<uint64_t>(LocB.Size.getValue())
: MemoryLocation::UnknownSize);
// Firstly, try to convert the two pointers into ptrtoint expressions to
// handle two pointers with different pointer bases.
// Either both pointers are used with ptrtoint or neither, so we can't end
// up with a ptr + int mix.
const SCEV *AInt =
SE.getPtrToIntExpr(AS, SE.getEffectiveSCEVType(AS->getType()));
const SCEV *BInt =
SE.getPtrToIntExpr(BS, SE.getEffectiveSCEVType(BS->getType()));
if (!isa<SCEVCouldNotCompute>(AInt) && !isa<SCEVCouldNotCompute>(BInt)) {
AS = AInt;
BS = BInt;
}
// Compute the difference between the two pointers.
const SCEV *BA = SE.getMinusSCEV(BS, AS);
// Test whether the difference is known to be great enough that memory of
// the given sizes don't overlap. This assumes that ASizeInt and BSizeInt
// are non-zero, which is special-cased above.
if (!isa<SCEVCouldNotCompute>(BA) &&
ASizeInt.ule(SE.getUnsignedRange(BA).getUnsignedMin()) &&
(-BSizeInt).uge(SE.getUnsignedRange(BA).getUnsignedMax()))
return AliasResult::NoAlias;
// Folding the subtraction while preserving range information can be tricky
// (because of INT_MIN, etc.); if the prior test failed, swap AS and BS
// and try again to see if things fold better that way.
// Compute the difference between the two pointers.
const SCEV *AB = SE.getMinusSCEV(AS, BS);
// Test whether the difference is known to be great enough that memory of
// the given sizes don't overlap. This assumes that ASizeInt and BSizeInt
// are non-zero, which is special-cased above.
if (!isa<SCEVCouldNotCompute>(AB) &&
BSizeInt.ule(SE.getUnsignedRange(AB).getUnsignedMin()) &&
(-ASizeInt).uge(SE.getUnsignedRange(AB).getUnsignedMax()))
return AliasResult::NoAlias;
}
// If ScalarEvolution can find an underlying object, form a new query.
// The correctness of this depends on ScalarEvolution not recognizing
// inttoptr and ptrtoint operators.
Value *AO = GetBaseValue(AS);
Value *BO = GetBaseValue(BS);
if ((AO && AO != LocA.Ptr) || (BO && BO != LocB.Ptr))
if (alias(MemoryLocation(AO ? AO : LocA.Ptr,
AO ? LocationSize::beforeOrAfterPointer()
: LocA.Size,
AO ? AAMDNodes() : LocA.AATags),
MemoryLocation(BO ? BO : LocB.Ptr,
BO ? LocationSize::beforeOrAfterPointer()
: LocB.Size,
BO ? AAMDNodes() : LocB.AATags),
AAQI, nullptr) == AliasResult::NoAlias)
return AliasResult::NoAlias;
return AliasResult::MayAlias;
}
/// Given an expression, try to find a base value.
///
/// Returns null if none was found.
Value *SCEVAAResult::GetBaseValue(const SCEV *S) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
// In an addrec, assume that the base will be in the start, rather
// than the step.
return GetBaseValue(AR->getStart());
} else if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
// If there's a pointer operand, it'll be sorted at the end of the list.
const SCEV *Last = A->getOperand(A->getNumOperands() - 1);
if (Last->getType()->isPointerTy())
return GetBaseValue(Last);
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// This is a leaf node.
return U->getValue();
}
// No Identified object found.
return nullptr;
}
bool SCEVAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
// We don't care if this analysis itself is preserved, it has no state. But
// we need to check that the analyses it depends on have been.
return Inv.invalidate<ScalarEvolutionAnalysis>(Fn, PA);
}
AnalysisKey SCEVAA::Key;
SCEVAAResult SCEVAA::run(Function &F, FunctionAnalysisManager &AM) {
return SCEVAAResult(AM.getResult<ScalarEvolutionAnalysis>(F));
}
char SCEVAAWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(SCEVAAWrapperPass, "scev-aa",
"ScalarEvolution-based Alias Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(SCEVAAWrapperPass, "scev-aa",
"ScalarEvolution-based Alias Analysis", false, true)
FunctionPass *llvm::createSCEVAAWrapperPass() {
return new SCEVAAWrapperPass();
}
SCEVAAWrapperPass::SCEVAAWrapperPass() : FunctionPass(ID) {
initializeSCEVAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool SCEVAAWrapperPass::runOnFunction(Function &F) {
Result.reset(
new SCEVAAResult(getAnalysis<ScalarEvolutionWrapperPass>().getSE()));
return false;
}
void SCEVAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<ScalarEvolutionWrapperPass>();
}
|