1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
//===- TFUtils.cpp - TFLite-based evaluation utilities --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for interfacing with TFLite.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TFLITE)
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/Support/Base64.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/model_builder.h"
#include "tensorflow/lite/op_resolver.h"
#include "tensorflow/lite/logger.h"
#include <cassert>
#include <numeric>
#include <optional>
using namespace llvm;
namespace llvm {
class EvaluationResultImpl {
public:
EvaluationResultImpl(const std::vector<const TfLiteTensor *> &Outputs)
: Outputs(Outputs){};
const TfLiteTensor *getOutput(size_t I) { return Outputs[I]; }
EvaluationResultImpl(const EvaluationResultImpl &) = delete;
EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
private:
const std::vector<const TfLiteTensor *> Outputs;
};
class TFModelEvaluatorImpl {
public:
TFModelEvaluatorImpl(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
const std::vector<TensorSpec> &OutputSpecs,
const char *Tags);
bool isValid() const { return IsValid; }
size_t outputSize() const { return Output.size(); }
std::unique_ptr<EvaluationResultImpl> evaluate() {
Interpreter->Invoke();
return std::make_unique<EvaluationResultImpl>(Output);
}
const std::vector<TfLiteTensor *> &getInput() const { return Input; }
~TFModelEvaluatorImpl();
private:
std::unique_ptr<tflite::FlatBufferModel> Model;
/// The objects necessary for carrying out an evaluation of the SavedModel.
/// They are expensive to set up, and we maintain them accross all the
/// evaluations of the model.
std::unique_ptr<tflite::Interpreter> Interpreter;
/// The input tensors. We set up the tensors once and just mutate theirs
/// scalars before each evaluation. The input tensors keep their value after
/// an evaluation.
std::vector<TfLiteTensor *> Input;
/// The output nodes.
std::vector<const TfLiteTensor *> Output;
void invalidate() { IsValid = false; }
bool IsValid = true;
/// Reusable utility for ensuring we can bind the requested Name to a node in
/// the SavedModel Graph.
bool checkReportAndInvalidate(const TfLiteTensor *Tensor,
const TensorSpec &Spec);
};
} // namespace llvm
TFModelEvaluatorImpl::TFModelEvaluatorImpl(
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
const std::vector<TensorSpec> &OutputSpecs, const char *Tags = "serve")
: Input(InputSpecs.size()), Output(OutputSpecs.size()) {
// INFO and DEBUG messages could be numerous and not particularly interesting
tflite::LoggerOptions::SetMinimumLogSeverity(tflite::TFLITE_LOG_WARNING);
// FIXME: make ErrorReporter a member (may also need subclassing
// StatefulErrorReporter) to easily get the latest error status, for
// debugging.
tflite::StderrReporter ErrorReporter;
SmallVector<char, 128> TFLitePathBuff;
llvm::sys::path::append(TFLitePathBuff, SavedModelPath, "model.tflite");
StringRef TFLitePath(TFLitePathBuff.data(), TFLitePathBuff.size());
Model = tflite::FlatBufferModel::BuildFromFile(TFLitePath.str().c_str(),
&ErrorReporter);
if (!Model) {
invalidate();
return;
}
tflite::ops::builtin::BuiltinOpResolver Resolver;
tflite::InterpreterBuilder Builder(*Model, Resolver);
Builder(&Interpreter);
if (!Interpreter) {
invalidate();
return;
}
// We assume the input buffers are valid for the lifetime of the interpreter.
// By default, tflite allocates memory in an arena and will periodically take
// away memory and reallocate it in a different location after evaluations in
// order to improve utilization of the buffers owned in the arena. So, we
// explicitly mark our input buffers as persistent to avoid this behavior.
for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
Interpreter->tensor(I)->allocation_type =
TfLiteAllocationType::kTfLiteArenaRwPersistent;
if (Interpreter->AllocateTensors() != TfLiteStatus::kTfLiteOk) {
invalidate();
return;
}
// Known inputs and outputs
StringMap<int> InputsMap;
StringMap<int> OutputsMap;
for (size_t I = 0; I < Interpreter->inputs().size(); ++I)
InputsMap[Interpreter->GetInputName(I)] = I;
for (size_t I = 0; I < Interpreter->outputs().size(); ++I)
OutputsMap[Interpreter->GetOutputName(I)] = I;
size_t NumberFeaturesPassed = 0;
for (size_t I = 0; I < InputSpecs.size(); ++I) {
auto &InputSpec = InputSpecs[I];
auto MapI = InputsMap.find(InputSpec.name() + ":" +
std::to_string(InputSpec.port()));
if (MapI == InputsMap.end()) {
Input[I] = nullptr;
continue;
}
Input[I] = Interpreter->tensor(MapI->second);
if (!checkReportAndInvalidate(Input[I], InputSpec))
return;
std::memset(Input[I]->data.data, 0,
InputSpecs[I].getTotalTensorBufferSize());
++NumberFeaturesPassed;
}
if (NumberFeaturesPassed < Interpreter->inputs().size()) {
// we haven't passed all the required features to the model, throw an error.
errs() << "Required feature(s) have not been passed to the ML model";
invalidate();
return;
}
for (size_t I = 0; I < OutputSpecs.size(); ++I) {
const auto &OutputSpec = OutputSpecs[I];
Output[I] = Interpreter->output_tensor(
OutputsMap[OutputSpec.name() + ":" +
std::to_string(OutputSpec.port())]);
if (!checkReportAndInvalidate(Output[I], OutputSpec))
return;
}
}
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
const std::vector<TensorSpec> &OutputSpecs,
const char *Tags)
: Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, OutputSpecs,
Tags)) {
if (!Impl->isValid())
Impl.reset();
}
TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {}
bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TfLiteTensor *Tensor,
const TensorSpec &Spec) {
if (!Tensor) {
errs() << "Could not find TF_Output named: " + Spec.name();
IsValid = false;
}
if (Spec.getTotalTensorBufferSize() != Tensor->bytes)
IsValid = false;
// If the total sizes match, there could still be a mismatch in the shape.
// We ignore that for now.
return IsValid;
}
std::optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
if (!isValid())
return std::nullopt;
return EvaluationResult(Impl->evaluate());
}
void *TFModelEvaluator::getUntypedInput(size_t Index) {
TfLiteTensor *T = Impl->getInput()[Index];
if (!T)
return nullptr;
return T->data.data;
}
TFModelEvaluator::EvaluationResult::EvaluationResult(
std::unique_ptr<EvaluationResultImpl> Impl)
: Impl(std::move(Impl)) {}
TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
: Impl(std::move(Other.Impl)) {}
TFModelEvaluator::EvaluationResult &
TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
Impl = std::move(Other.Impl);
return *this;
}
void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
return Impl->getOutput(Index)->data.data;
}
const void *
TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
return Impl->getOutput(Index)->data.data;
}
TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
TFModelEvaluator::~TFModelEvaluator() {}
#endif // defined(LLVM_HAVE_TFLITE)
|