1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
//===- UniformityAnalysis.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/UniformityAnalysis.h"
#include "llvm/ADT/GenericUniformityImpl.h"
#include "llvm/Analysis/CycleAnalysis.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::hasDivergentDefs(
const Instruction &I) const {
return isDivergent((const Value *)&I);
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::markDefsDivergent(
const Instruction &Instr) {
return markDivergent(cast<Value>(&Instr));
}
template <> void llvm::GenericUniformityAnalysisImpl<SSAContext>::initialize() {
for (auto &I : instructions(F)) {
if (TTI->isSourceOfDivergence(&I))
markDivergent(I);
else if (TTI->isAlwaysUniform(&I))
addUniformOverride(I);
}
for (auto &Arg : F.args()) {
if (TTI->isSourceOfDivergence(&Arg)) {
markDivergent(&Arg);
}
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<SSAContext>::pushUsers(
const Value *V) {
for (const auto *User : V->users()) {
if (const auto *UserInstr = dyn_cast<const Instruction>(User)) {
markDivergent(*UserInstr);
}
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<SSAContext>::pushUsers(
const Instruction &Instr) {
assert(!isAlwaysUniform(Instr));
if (Instr.isTerminator())
return;
pushUsers(cast<Value>(&Instr));
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::usesValueFromCycle(
const Instruction &I, const Cycle &DefCycle) const {
assert(!isAlwaysUniform(I));
for (const Use &U : I.operands()) {
if (auto *I = dyn_cast<Instruction>(&U)) {
if (DefCycle.contains(I->getParent()))
return true;
}
}
return false;
}
template <>
void llvm::GenericUniformityAnalysisImpl<
SSAContext>::propagateTemporalDivergence(const Instruction &I,
const Cycle &DefCycle) {
if (isDivergent(I))
return;
for (auto *User : I.users()) {
auto *UserInstr = cast<Instruction>(User);
if (DefCycle.contains(UserInstr->getParent()))
continue;
markDivergent(*UserInstr);
}
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::isDivergentUse(
const Use &U) const {
const auto *V = U.get();
if (isDivergent(V))
return true;
if (const auto *DefInstr = dyn_cast<Instruction>(V)) {
const auto *UseInstr = cast<Instruction>(U.getUser());
return isTemporalDivergent(*UseInstr->getParent(), *DefInstr);
}
return false;
}
// This ensures explicit instantiation of
// GenericUniformityAnalysisImpl::ImplDeleter::operator()
template class llvm::GenericUniformityInfo<SSAContext>;
template struct llvm::GenericUniformityAnalysisImplDeleter<
llvm::GenericUniformityAnalysisImpl<SSAContext>>;
//===----------------------------------------------------------------------===//
// UniformityInfoAnalysis and related pass implementations
//===----------------------------------------------------------------------===//
llvm::UniformityInfo UniformityInfoAnalysis::run(Function &F,
FunctionAnalysisManager &FAM) {
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
auto &CI = FAM.getResult<CycleAnalysis>(F);
UniformityInfo UI{DT, CI, &TTI};
// Skip computation if we can assume everything is uniform.
if (TTI.hasBranchDivergence(&F))
UI.compute();
return UI;
}
AnalysisKey UniformityInfoAnalysis::Key;
UniformityInfoPrinterPass::UniformityInfoPrinterPass(raw_ostream &OS)
: OS(OS) {}
PreservedAnalyses UniformityInfoPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
OS << "UniformityInfo for function '" << F.getName() << "':\n";
AM.getResult<UniformityInfoAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}
//===----------------------------------------------------------------------===//
// UniformityInfoWrapperPass Implementation
//===----------------------------------------------------------------------===//
char UniformityInfoWrapperPass::ID = 0;
UniformityInfoWrapperPass::UniformityInfoWrapperPass() : FunctionPass(ID) {
initializeUniformityInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(UniformityInfoWrapperPass, "uniformity",
"Uniformity Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CycleInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(UniformityInfoWrapperPass, "uniformity",
"Uniformity Analysis", true, true)
void UniformityInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequiredTransitive<CycleInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
bool UniformityInfoWrapperPass::runOnFunction(Function &F) {
auto &cycleInfo = getAnalysis<CycleInfoWrapperPass>().getResult();
auto &domTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &targetTransformInfo =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
m_function = &F;
m_uniformityInfo = UniformityInfo{domTree, cycleInfo, &targetTransformInfo};
// Skip computation if we can assume everything is uniform.
if (targetTransformInfo.hasBranchDivergence(m_function))
m_uniformityInfo.compute();
return false;
}
void UniformityInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
OS << "UniformityInfo for function '" << m_function->getName() << "':\n";
}
void UniformityInfoWrapperPass::releaseMemory() {
m_uniformityInfo = UniformityInfo{};
m_function = nullptr;
}
|