1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
|
//===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
#include "LiveDebugValues/LiveDebugValues.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugProgramInstruction.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PrintPasses.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <assert.h>
#include <cstdint>
#include <optional>
#include <queue>
#include <sstream>
#include <unordered_map>
using namespace llvm;
#define DEBUG_TYPE "debug-ata"
STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
static cl::opt<unsigned>
MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
cl::desc("Maximum num basic blocks before debug info dropped"),
cl::Hidden);
/// Option for debugging the pass, determines if the memory location fragment
/// filling happens after generating the variable locations.
static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
cl::Hidden);
/// Print the results of the analysis. Respects -filter-print-funcs.
static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
cl::Hidden);
/// Coalesce adjacent dbg locs describing memory locations that have contiguous
/// fragments. This reduces the cost of LiveDebugValues which does SSA
/// construction for each explicitly stated variable fragment.
static cl::opt<cl::boolOrDefault>
CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
// Implicit conversions are disabled for enum class types, so unfortunately we
// need to create a DenseMapInfo wrapper around the specified underlying type.
template <> struct llvm::DenseMapInfo<VariableID> {
using Wrapped = DenseMapInfo<unsigned>;
static inline VariableID getEmptyKey() {
return static_cast<VariableID>(Wrapped::getEmptyKey());
}
static inline VariableID getTombstoneKey() {
return static_cast<VariableID>(Wrapped::getTombstoneKey());
}
static unsigned getHashValue(const VariableID &Val) {
return Wrapped::getHashValue(static_cast<unsigned>(Val));
}
static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
return LHS == RHS;
}
};
using VarLocInsertPt = PointerUnion<const Instruction *, const DbgRecord *>;
namespace std {
template <> struct hash<VarLocInsertPt> {
using argument_type = VarLocInsertPt;
using result_type = std::size_t;
result_type operator()(const argument_type &Arg) const {
return std::hash<void *>()(Arg.getOpaqueValue());
}
};
} // namespace std
/// Helper class to build FunctionVarLocs, since that class isn't easy to
/// modify. TODO: There's not a great deal of value in the split, it could be
/// worth merging the two classes.
class FunctionVarLocsBuilder {
friend FunctionVarLocs;
UniqueVector<DebugVariable> Variables;
// Use an unordered_map so we don't invalidate iterators after
// insert/modifications.
std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
SmallVector<VarLocInfo> SingleLocVars;
public:
unsigned getNumVariables() const { return Variables.size(); }
/// Find or insert \p V and return the ID.
VariableID insertVariable(DebugVariable V) {
return static_cast<VariableID>(Variables.insert(V));
}
/// Get a variable from its \p ID.
const DebugVariable &getVariable(VariableID ID) const {
return Variables[static_cast<unsigned>(ID)];
}
/// Return ptr to wedge of defs or nullptr if no defs come just before /p
/// Before.
const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const {
auto R = VarLocsBeforeInst.find(Before);
if (R == VarLocsBeforeInst.end())
return nullptr;
return &R->second;
}
/// Replace the defs that come just before /p Before with /p Wedge.
void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) {
VarLocsBeforeInst[Before] = std::move(Wedge);
}
/// Add a def for a variable that is valid for its lifetime.
void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
RawLocationWrapper R) {
VarLocInfo VarLoc;
VarLoc.VariableID = insertVariable(Var);
VarLoc.Expr = Expr;
VarLoc.DL = DL;
VarLoc.Values = R;
SingleLocVars.emplace_back(VarLoc);
}
/// Add a def to the wedge of defs just before /p Before.
void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr,
DebugLoc DL, RawLocationWrapper R) {
VarLocInfo VarLoc;
VarLoc.VariableID = insertVariable(Var);
VarLoc.Expr = Expr;
VarLoc.DL = DL;
VarLoc.Values = R;
VarLocsBeforeInst[Before].emplace_back(VarLoc);
}
};
void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
// Print the variable table first. TODO: Sorting by variable could make the
// output more stable?
unsigned Counter = -1;
OS << "=== Variables ===\n";
for (const DebugVariable &V : Variables) {
++Counter;
// Skip first entry because it is a dummy entry.
if (Counter == 0) {
continue;
}
OS << "[" << Counter << "] " << V.getVariable()->getName();
if (auto F = V.getFragment())
OS << " bits [" << F->OffsetInBits << ", "
<< F->OffsetInBits + F->SizeInBits << ")";
if (const auto *IA = V.getInlinedAt())
OS << " inlined-at " << *IA;
OS << "\n";
}
auto PrintLoc = [&OS](const VarLocInfo &Loc) {
OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
<< " Expr=" << *Loc.Expr << " Values=(";
for (auto *Op : Loc.Values.location_ops()) {
errs() << Op->getName() << " ";
}
errs() << ")\n";
};
// Print the single location variables.
OS << "=== Single location vars ===\n";
for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
++It) {
PrintLoc(*It);
}
// Print the non-single-location defs in line with IR.
OS << "=== In-line variable defs ===";
for (const BasicBlock &BB : Fn) {
OS << "\n" << BB.getName() << ":\n";
for (const Instruction &I : BB) {
for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
PrintLoc(*It);
}
OS << I << "\n";
}
}
}
void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
// Add the single-location variables first.
for (const auto &VarLoc : Builder.SingleLocVars)
VarLocRecords.emplace_back(VarLoc);
// Mark the end of the section.
SingleVarLocEnd = VarLocRecords.size();
// Insert a contiguous block of VarLocInfos for each instruction, mapping it
// to the start and end position in the vector with VarLocsBeforeInst. This
// block includes VarLocs for any DbgVariableRecords attached to that
// instruction.
for (auto &P : Builder.VarLocsBeforeInst) {
// Process VarLocs attached to a DbgRecord alongside their marker
// Instruction.
if (isa<const DbgRecord *>(P.first))
continue;
const Instruction *I = cast<const Instruction *>(P.first);
unsigned BlockStart = VarLocRecords.size();
// Any VarLocInfos attached to a DbgRecord should now be remapped to their
// marker Instruction, in order of DbgRecord appearance and prior to any
// VarLocInfos attached directly to that instruction.
for (const DbgVariableRecord &DVR : filterDbgVars(I->getDbgRecordRange())) {
// Even though DVR defines a variable location, VarLocsBeforeInst can
// still be empty if that VarLoc was redundant.
if (!Builder.VarLocsBeforeInst.count(&DVR))
continue;
for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DVR])
VarLocRecords.emplace_back(VarLoc);
}
for (const VarLocInfo &VarLoc : P.second)
VarLocRecords.emplace_back(VarLoc);
unsigned BlockEnd = VarLocRecords.size();
// Record the start and end indices.
if (BlockEnd != BlockStart)
VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
}
// Copy the Variables vector from the builder's UniqueVector.
assert(Variables.empty() && "Expect clear before init");
// UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
// are one-based) so reserve an extra and insert a dummy.
Variables.reserve(Builder.Variables.size() + 1);
Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
Variables.append(Builder.Variables.begin(), Builder.Variables.end());
}
void FunctionVarLocs::clear() {
Variables.clear();
VarLocRecords.clear();
VarLocsBeforeInst.clear();
SingleVarLocEnd = 0;
}
/// Walk backwards along constant GEPs and bitcasts to the base storage from \p
/// Start as far as possible. Prepend \Expression with the offset and append it
/// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
/// value and modified expression.
static std::pair<Value *, DIExpression *>
walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
DIExpression *Expression) {
APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
Value *End =
Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
SmallVector<uint64_t, 3> Ops;
if (OffsetInBytes.getBoolValue()) {
Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
Expression = DIExpression::prependOpcodes(
Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
}
Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
return {End, Expression};
}
/// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
/// doesn't explicitly describe a memory location with DW_OP_deref or if the
/// expression is too complex to interpret.
static std::optional<int64_t>
getDerefOffsetInBytes(const DIExpression *DIExpr) {
int64_t Offset = 0;
const unsigned NumElements = DIExpr->getNumElements();
const auto Elements = DIExpr->getElements();
unsigned ExpectedDerefIdx = 0;
// Extract the offset.
if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
Offset = Elements[1];
ExpectedDerefIdx = 2;
} else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
ExpectedDerefIdx = 3;
if (Elements[2] == dwarf::DW_OP_plus)
Offset = Elements[1];
else if (Elements[2] == dwarf::DW_OP_minus)
Offset = -Elements[1];
else
return std::nullopt;
}
// If that's all there is it means there's no deref.
if (ExpectedDerefIdx >= NumElements)
return std::nullopt;
// Check the next element is DW_OP_deref - otherwise this is too complex or
// isn't a deref expression.
if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
return std::nullopt;
// Check the final operation is either the DW_OP_deref or is a fragment.
if (NumElements == ExpectedDerefIdx + 1)
return Offset; // Ends with deref.
unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
if (NumElements == ExpectedFragFinalIdx + 1 &&
Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
return Offset; // Ends with deref + fragment.
// Don't bother trying to interpret anything more complex.
return std::nullopt;
}
/// A whole (unfragmented) source variable.
using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
}
static DebugAggregate getAggregate(const DebugVariable &Var) {
return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
}
static bool shouldCoalesceFragments(Function &F) {
// Enabling fragment coalescing reduces compiler run time when instruction
// referencing is enabled. However, it may cause LiveDebugVariables to create
// incorrect locations. Since instruction-referencing mode effectively
// bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
// has not been explicitly set and instruction-referencing is turned on.
switch (CoalesceAdjacentFragmentsOpt) {
case cl::boolOrDefault::BOU_UNSET:
return debuginfoShouldUseDebugInstrRef(
Triple(F.getParent()->getTargetTriple()));
case cl::boolOrDefault::BOU_TRUE:
return true;
case cl::boolOrDefault::BOU_FALSE:
return false;
}
llvm_unreachable("Unknown boolOrDefault value");
}
namespace {
/// In dwarf emission, the following sequence
/// 1. dbg.value ... Fragment(0, 64)
/// 2. dbg.value ... Fragment(0, 32)
/// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
/// the intersection of the fragments to having "no location"). This makes
/// sense for implicit location values because splitting the computed values
/// could be troublesome, and is probably quite uncommon. When we convert
/// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
/// a location (memory) rather than a value means we don't need to worry about
/// splitting any values, so we try to recover the rest of the fragment
/// location here.
/// This class performs a(nother) dataflow analysis over the function, adding
/// variable locations so that any bits of a variable with a memory location
/// have that location explicitly reinstated at each subsequent variable
/// location definition that that doesn't overwrite those bits. i.e. after a
/// variable location def, insert new defs for the memory location with
/// fragments for the difference of "all bits currently in memory" and "the
/// fragment of the second def".
class MemLocFragmentFill {
Function &Fn;
FunctionVarLocsBuilder *FnVarLocs;
const DenseSet<DebugAggregate> *VarsWithStackSlot;
bool CoalesceAdjacentFragments;
// 0 = no memory location.
using BaseAddress = unsigned;
using OffsetInBitsTy = unsigned;
using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
using FragsInMemMap = IntervalMap<
OffsetInBitsTy, BaseAddress,
IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
FragTraits>;
FragsInMemMap::Allocator IntervalMapAlloc;
using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
/// IDs for memory location base addresses in maps. Use 0 to indicate that
/// there's no memory location.
UniqueVector<RawLocationWrapper> Bases;
UniqueVector<DebugAggregate> Aggregates;
DenseMap<const BasicBlock *, VarFragMap> LiveIn;
DenseMap<const BasicBlock *, VarFragMap> LiveOut;
struct FragMemLoc {
unsigned Var;
unsigned Base;
unsigned OffsetInBits;
unsigned SizeInBits;
DebugLoc DL;
};
using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>;
/// BBInsertBeforeMap holds a description for the set of location defs to be
/// inserted after the analysis is complete. It is updated during the dataflow
/// and the entry for a block is CLEARED each time it is (re-)visited. After
/// the dataflow is complete, each block entry will contain the set of defs
/// calculated during the final (fixed-point) iteration.
DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
static bool intervalMapsAreEqual(const FragsInMemMap &A,
const FragsInMemMap &B) {
auto AIt = A.begin(), AEnd = A.end();
auto BIt = B.begin(), BEnd = B.end();
for (; AIt != AEnd; ++AIt, ++BIt) {
if (BIt == BEnd)
return false; // B has fewer elements than A.
if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
return false; // Interval is different.
if (*AIt != *BIt)
return false; // Value at interval is different.
}
// AIt == AEnd. Check BIt is also now at end.
return BIt == BEnd;
}
static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
if (A.size() != B.size())
return false;
for (const auto &APair : A) {
auto BIt = B.find(APair.first);
if (BIt == B.end())
return false;
if (!intervalMapsAreEqual(APair.second, BIt->second))
return false;
}
return true;
}
/// Return a string for the value that \p BaseID represents.
std::string toString(unsigned BaseID) {
if (BaseID)
return Bases[BaseID].getVariableLocationOp(0)->getName().str();
else
return "None";
}
/// Format string describing an FragsInMemMap (IntervalMap) interval.
std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
std::string String;
std::stringstream S(String);
if (It.valid()) {
S << "[" << It.start() << ", " << It.stop()
<< "): " << toString(It.value());
} else {
S << "invalid iterator (end)";
}
if (Newline)
S << "\n";
return S.str();
};
FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
FragsInMemMap Result(IntervalMapAlloc);
for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
LLVM_DEBUG(dbgs() << "a " << toString(AIt));
// This is basically copied from process() and inverted (process is
// performing something like a union whereas this is more of an
// intersect).
// There's no work to do if interval `a` overlaps no fragments in map `B`.
if (!B.overlaps(AIt.start(), AIt.stop()))
continue;
// Does StartBit intersect an existing fragment?
auto FirstOverlap = B.find(AIt.start());
assert(FirstOverlap != B.end());
bool IntersectStart = FirstOverlap.start() < AIt.start();
LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
<< ", IntersectStart: " << IntersectStart << "\n");
// Does EndBit intersect an existing fragment?
auto LastOverlap = B.find(AIt.stop());
bool IntersectEnd =
LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
<< ", IntersectEnd: " << IntersectEnd << "\n");
// Check if both ends of `a` intersect the same interval `b`.
if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
// Insert `a` (`a` is contained in `b`) if the values match.
// [ a ]
// [ - b - ]
// -
// [ r ]
LLVM_DEBUG(dbgs() << "- a is contained within "
<< toString(FirstOverlap));
if (*AIt && *AIt == *FirstOverlap)
Result.insert(AIt.start(), AIt.stop(), *AIt);
} else {
// There's an overlap but `a` is not fully contained within
// `b`. Shorten any end-point intersections.
// [ - a - ]
// [ - b - ]
// -
// [ r ]
auto Next = FirstOverlap;
if (IntersectStart) {
LLVM_DEBUG(dbgs() << "- insert intersection of a and "
<< toString(FirstOverlap));
if (*AIt && *AIt == *FirstOverlap)
Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
++Next;
}
// [ - a - ]
// [ - b - ]
// -
// [ r ]
if (IntersectEnd) {
LLVM_DEBUG(dbgs() << "- insert intersection of a and "
<< toString(LastOverlap));
if (*AIt && *AIt == *LastOverlap)
Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
}
// Insert all intervals in map `B` that are contained within interval
// `a` where the values match.
// [ - - a - - ]
// [ b1 ] [ b2 ]
// -
// [ r1 ] [ r2 ]
while (Next != B.end() && Next.start() < AIt.stop() &&
Next.stop() <= AIt.stop()) {
LLVM_DEBUG(dbgs()
<< "- insert intersection of a and " << toString(Next));
if (*AIt && *AIt == *Next)
Result.insert(Next.start(), Next.stop(), *Next);
++Next;
}
}
}
return Result;
}
/// Meet \p A and \p B, storing the result in \p A.
void meetVars(VarFragMap &A, const VarFragMap &B) {
// Meet A and B.
//
// Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
for (auto It = A.begin(), End = A.end(); It != End; ++It) {
unsigned AVar = It->first;
FragsInMemMap &AFrags = It->second;
auto BIt = B.find(AVar);
if (BIt == B.end()) {
A.erase(It);
continue; // Var has no bits defined in B.
}
LLVM_DEBUG(dbgs() << "meet fragment maps for "
<< Aggregates[AVar].first->getName() << "\n");
AFrags = meetFragments(AFrags, BIt->second);
}
}
bool meet(const BasicBlock &BB,
const SmallPtrSet<BasicBlock *, 16> &Visited) {
LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
<< "\n");
VarFragMap BBLiveIn;
bool FirstMeet = true;
// LiveIn locs for BB is the meet of the already-processed preds' LiveOut
// locs.
for (const BasicBlock *Pred : predecessors(&BB)) {
// Ignore preds that haven't been processed yet. This is essentially the
// same as initialising all variables to implicit top value (⊤) which is
// the identity value for the meet operation.
if (!Visited.count(Pred))
continue;
auto PredLiveOut = LiveOut.find(Pred);
assert(PredLiveOut != LiveOut.end());
if (FirstMeet) {
LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
BBLiveIn = PredLiveOut->second;
FirstMeet = false;
} else {
LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
<< "\n");
meetVars(BBLiveIn, PredLiveOut->second);
}
// An empty set is ⊥ for the intersect-like meet operation. If we've
// already got ⊥ there's no need to run the code - we know the result is
// ⊥ since `meet(a, ⊥) = ⊥`.
if (BBLiveIn.size() == 0)
break;
}
auto CurrentLiveInEntry = LiveIn.find(&BB);
// If there's no LiveIn entry for the block yet, add it.
if (CurrentLiveInEntry == LiveIn.end()) {
LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
<< "\n");
LiveIn[&BB] = std::move(BBLiveIn);
return /*Changed=*/true;
}
// If the LiveIn set has changed (expensive check) update it and return
// true.
if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
CurrentLiveInEntry->second = std::move(BBLiveIn);
return /*Changed=*/true;
}
LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
return /*Changed=*/false;
}
void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
unsigned StartBit, unsigned EndBit, unsigned Base,
DebugLoc DL) {
assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
if (!Base)
return;
FragMemLoc Loc;
Loc.Var = Var;
Loc.OffsetInBits = StartBit;
Loc.SizeInBits = EndBit - StartBit;
assert(Base && "Expected a non-zero ID for Base address");
Loc.Base = Base;
Loc.DL = DL;
BBInsertBeforeMap[&BB][Before].push_back(Loc);
LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
<< " bits [" << StartBit << ", " << EndBit << ")\n");
}
/// Inserts a new dbg def if the interval found when looking up \p StartBit
/// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
/// indicates - assuming StartBit->EndBit has just been inserted - that the
/// slice has been coalesced in the map).
void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
unsigned StartBit, unsigned EndBit, unsigned Base,
DebugLoc DL, const FragsInMemMap &FragMap) {
if (!CoalesceAdjacentFragments)
return;
// We've inserted the location into the map. The map will have coalesced
// adjacent intervals (variable fragments) that describe the same memory
// location. Use this knowledge to insert a debug location that describes
// that coalesced fragment. This may eclipse other locs we've just
// inserted. This is okay as redundant locs will be cleaned up later.
auto CoalescedFrag = FragMap.find(StartBit);
// Bail if no coalescing has taken place.
if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
return;
LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
<< " to " << CoalescedFrag.stop() << "\n");
insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
Base, DL);
}
void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
VarFragMap &LiveSet) {
DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
if (skipVariable(DbgVar.getVariable()))
return;
// Don't bother doing anything for this variables if we know it's fully
// promoted. We're only interested in variables that (sometimes) live on
// the stack here.
if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
return;
unsigned Var = Aggregates.insert(
DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
// [StartBit: EndBit) are the bits affected by this def.
const DIExpression *DIExpr = VarLoc.Expr;
unsigned StartBit;
unsigned EndBit;
if (auto Frag = DIExpr->getFragmentInfo()) {
StartBit = Frag->OffsetInBits;
EndBit = StartBit + Frag->SizeInBits;
} else {
assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
StartBit = 0;
EndBit = *DbgVar.getVariable()->getSizeInBits();
}
// We will only fill fragments for simple memory-describing dbg.value
// intrinsics. If the fragment offset is the same as the offset from the
// base pointer, do The Thing, otherwise fall back to normal dbg.value
// behaviour. AssignmentTrackingLowering has generated DIExpressions
// written in terms of the base pointer.
// TODO: Remove this condition since the fragment offset doesn't always
// equal the offset from base pointer (e.g. for a SROA-split variable).
const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
const unsigned Base =
DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
? Bases.insert(VarLoc.Values)
: 0;
LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
<< StartBit << ", " << EndBit << "): " << toString(Base)
<< "\n");
// First of all, any locs that use mem that are disrupted need reinstating.
// Unfortunately, IntervalMap doesn't let us insert intervals that overlap
// with existing intervals so this code involves a lot of fiddling around
// with intervals to do that manually.
auto FragIt = LiveSet.find(Var);
// Check if the variable does not exist in the map.
if (FragIt == LiveSet.end()) {
// Add this variable to the BB map.
auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
assert(P.second && "Var already in map?");
// Add the interval to the fragment map.
P.first->second.insert(StartBit, EndBit, Base);
return;
}
// The variable has an entry in the map.
FragsInMemMap &FragMap = FragIt->second;
// First check the easy case: the new fragment `f` doesn't overlap with any
// intervals.
if (!FragMap.overlaps(StartBit, EndBit)) {
LLVM_DEBUG(dbgs() << "- No overlaps\n");
FragMap.insert(StartBit, EndBit, Base);
coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
FragMap);
return;
}
// There is at least one overlap.
// Does StartBit intersect an existing fragment?
auto FirstOverlap = FragMap.find(StartBit);
assert(FirstOverlap != FragMap.end());
bool IntersectStart = FirstOverlap.start() < StartBit;
// Does EndBit intersect an existing fragment?
auto LastOverlap = FragMap.find(EndBit);
bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
// Check if both ends of `f` intersect the same interval `i`.
if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
// Shorten `i` so that there's space to insert `f`.
// [ f ]
// [ - i - ]
// +
// [ i ][ f ][ i ]
// Save values for use after inserting a new interval.
auto EndBitOfOverlap = FirstOverlap.stop();
unsigned OverlapValue = FirstOverlap.value();
// Shorten the overlapping interval.
FirstOverlap.setStop(StartBit);
insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
OverlapValue, VarLoc.DL);
// Insert a new interval to represent the end part.
FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
VarLoc.DL);
// Insert the new (middle) fragment now there is space.
FragMap.insert(StartBit, EndBit, Base);
} else {
// There's an overlap but `f` may not be fully contained within
// `i`. Shorten any end-point intersections so that we can then
// insert `f`.
// [ - f - ]
// [ - i - ]
// | |
// [ i ]
// Shorten any end-point intersections.
if (IntersectStart) {
LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
// Split off at the intersection.
FirstOverlap.setStop(StartBit);
insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
*FirstOverlap, VarLoc.DL);
}
// [ - f - ]
// [ - i - ]
// | |
// [ i ]
if (IntersectEnd) {
LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
// Split off at the intersection.
LastOverlap.setStart(EndBit);
insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
VarLoc.DL);
}
LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
// FirstOverlap and LastOverlap have been shortened such that they're
// no longer overlapping with [StartBit, EndBit). Delete any overlaps
// that remain (these will be fully contained within `f`).
// [ - f - ] }
// [ - i - ] } Intersection shortening that has happened above.
// | | }
// [ i ] }
// -----------------
// [i2 ] } Intervals fully contained within `f` get erased.
// -----------------
// [ - f - ][ i ] } Completed insertion.
auto It = FirstOverlap;
if (IntersectStart)
++It; // IntersectStart: first overlap has been shortened.
while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
It.erase(); // This increments It after removing the interval.
}
// We've dealt with all the overlaps now!
assert(!FragMap.overlaps(StartBit, EndBit));
LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
FragMap.insert(StartBit, EndBit, Base);
}
coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
FragMap);
}
bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
void process(BasicBlock &BB, VarFragMap &LiveSet) {
BBInsertBeforeMap[&BB].clear();
for (auto &I : BB) {
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
if (const auto *Locs = FnVarLocs->getWedge(&DVR)) {
for (const VarLocInfo &Loc : *Locs) {
addDef(Loc, &DVR, *I.getParent(), LiveSet);
}
}
}
if (const auto *Locs = FnVarLocs->getWedge(&I)) {
for (const VarLocInfo &Loc : *Locs) {
addDef(Loc, &I, *I.getParent(), LiveSet);
}
}
}
}
public:
MemLocFragmentFill(Function &Fn,
const DenseSet<DebugAggregate> *VarsWithStackSlot,
bool CoalesceAdjacentFragments)
: Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
/// Add variable locations to \p FnVarLocs so that any bits of a variable
/// with a memory location have that location explicitly reinstated at each
/// subsequent variable location definition that that doesn't overwrite those
/// bits. i.e. after a variable location def, insert new defs for the memory
/// location with fragments for the difference of "all bits currently in
/// memory" and "the fragment of the second def". e.g.
///
/// Before:
///
/// var x bits 0 to 63: value in memory
/// more instructions
/// var x bits 0 to 31: value is %0
///
/// After:
///
/// var x bits 0 to 63: value in memory
/// more instructions
/// var x bits 0 to 31: value is %0
/// var x bits 32 to 61: value in memory ; <-- new loc def
///
void run(FunctionVarLocsBuilder *FnVarLocs) {
if (!EnableMemLocFragFill)
return;
this->FnVarLocs = FnVarLocs;
// Prepare for traversal.
//
ReversePostOrderTraversal<Function *> RPOT(&Fn);
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist;
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Pending;
DenseMap<unsigned int, BasicBlock *> OrderToBB;
DenseMap<BasicBlock *, unsigned int> BBToOrder;
{ // Init OrderToBB and BBToOrder.
unsigned int RPONumber = 0;
for (BasicBlock *BB : RPOT) {
OrderToBB[RPONumber] = BB;
BBToOrder[BB] = RPONumber;
Worklist.push(RPONumber);
++RPONumber;
}
LiveIn.init(RPONumber);
LiveOut.init(RPONumber);
}
// Perform the traversal.
//
// This is a standard "intersect of predecessor outs" dataflow problem. To
// solve it, we perform meet() and process() using the two worklist method
// until the LiveIn data for each block becomes unchanging.
//
// This dataflow is essentially working on maps of sets and at each meet we
// intersect the maps and the mapped sets. So, initialized live-in maps
// monotonically decrease in value throughout the dataflow.
SmallPtrSet<BasicBlock *, 16> Visited;
while (!Worklist.empty() || !Pending.empty()) {
// We track what is on the pending worklist to avoid inserting the same
// thing twice. We could avoid this with a custom priority queue, but
// this is probably not worth it.
SmallPtrSet<BasicBlock *, 16> OnPending;
LLVM_DEBUG(dbgs() << "Processing Worklist\n");
while (!Worklist.empty()) {
BasicBlock *BB = OrderToBB[Worklist.top()];
LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
Worklist.pop();
bool InChanged = meet(*BB, Visited);
// Always consider LiveIn changed on the first visit.
InChanged |= Visited.insert(BB).second;
if (InChanged) {
LLVM_DEBUG(dbgs()
<< BB->getName() << " has new InLocs, process it\n");
// Mutate a copy of LiveIn while processing BB. Once we've processed
// the terminator LiveSet is the LiveOut set for BB.
// This is an expensive copy!
VarFragMap LiveSet = LiveIn[BB];
// Process the instructions in the block.
process(*BB, LiveSet);
// Relatively expensive check: has anything changed in LiveOut for BB?
if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
LLVM_DEBUG(dbgs() << BB->getName()
<< " has new OutLocs, add succs to worklist: [ ");
LiveOut[BB] = std::move(LiveSet);
for (BasicBlock *Succ : successors(BB)) {
if (OnPending.insert(Succ).second) {
LLVM_DEBUG(dbgs() << Succ->getName() << " ");
Pending.push(BBToOrder[Succ]);
}
}
LLVM_DEBUG(dbgs() << "]\n");
}
}
}
Worklist.swap(Pending);
// At this point, pending must be empty, since it was just the empty
// worklist
assert(Pending.empty() && "Pending should be empty");
}
// Insert new location defs.
for (auto &Pair : BBInsertBeforeMap) {
InsertMap &Map = Pair.second;
for (auto &Pair : Map) {
auto InsertBefore = Pair.first;
assert(InsertBefore && "should never be null");
auto FragMemLocs = Pair.second;
auto &Ctx = Fn.getContext();
for (auto &FragMemLoc : FragMemLocs) {
DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
if (FragMemLoc.SizeInBits !=
*Aggregates[FragMemLoc.Var].first->getSizeInBits())
Expr = *DIExpression::createFragmentExpression(
Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
FragMemLoc.OffsetInBits / 8);
DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
FragMemLoc.DL.getInlinedAt());
FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
Bases[FragMemLoc.Base]);
}
}
}
}
};
/// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
/// that interprets assignment tracking debug info metadata and stores in IR to
/// create a map of variable locations.
class AssignmentTrackingLowering {
public:
/// The kind of location in use for a variable, where Mem is the stack home,
/// Val is an SSA value or const, and None means that there is not one single
/// kind (either because there are multiple or because there is none; it may
/// prove useful to split this into two values in the future).
///
/// LocKind is a join-semilattice with the partial order:
/// None > Mem, Val
///
/// i.e.
/// join(Mem, Mem) = Mem
/// join(Val, Val) = Val
/// join(Mem, Val) = None
/// join(None, Mem) = None
/// join(None, Val) = None
/// join(None, None) = None
///
/// Note: the order is not `None > Val > Mem` because we're using DIAssignID
/// to name assignments and are not tracking the actual stored values.
/// Therefore currently there's no way to ensure that Mem values and Val
/// values are the same. This could be a future extension, though it's not
/// clear that many additional locations would be recovered that way in
/// practice as the likelihood of this sitation arising naturally seems
/// incredibly low.
enum class LocKind { Mem, Val, None };
/// An abstraction of the assignment of a value to a variable or memory
/// location.
///
/// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
/// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
/// can't) know the ID of the last assignment that took place.
///
/// The Status of the Assignment (Known or NoneOrPhi) is another
/// join-semilattice. The partial order is:
/// NoneOrPhi > Known {id_0, id_1, ...id_N}
///
/// i.e. for all values x and y where x != y:
/// join(x, x) = x
/// join(x, y) = NoneOrPhi
using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DbgVariableRecord *>;
struct Assignment {
enum S { Known, NoneOrPhi } Status;
/// ID of the assignment. nullptr if Status is not Known.
DIAssignID *ID;
/// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
/// May be nullptr.
AssignRecord Source;
bool isSameSourceAssignment(const Assignment &Other) const {
// Don't include Source in the equality check. Assignments are
// defined by their ID, not debug intrinsic(s).
return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
}
void dump(raw_ostream &OS) {
static const char *LUT[] = {"Known", "NoneOrPhi"};
OS << LUT[Status] << "(id=";
if (ID)
OS << ID;
else
OS << "null";
OS << ", s=";
if (Source.isNull())
OS << "null";
else if (isa<DbgAssignIntrinsic *>(Source))
OS << Source.get<DbgAssignIntrinsic *>();
else
OS << Source.get<DbgVariableRecord *>();
OS << ")";
}
static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
return Assignment(Known, ID, Source);
}
static Assignment make(DIAssignID *ID, DbgVariableRecord *Source) {
assert(Source->isDbgAssign() &&
"Cannot make an assignment from a non-assign DbgVariableRecord");
return Assignment(Known, ID, Source);
}
static Assignment make(DIAssignID *ID, AssignRecord Source) {
return Assignment(Known, ID, Source);
}
static Assignment makeFromMemDef(DIAssignID *ID) {
return Assignment(Known, ID);
}
static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); }
// Again, need a Top value?
Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this?
Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) {
// If the Status is Known then we expect there to be an assignment ID.
assert(Status == NoneOrPhi || ID);
}
Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
: Status(Status), ID(ID), Source(Source) {
// If the Status is Known then we expect there to be an assignment ID.
assert(Status == NoneOrPhi || ID);
}
Assignment(S Status, DIAssignID *ID, DbgVariableRecord *Source)
: Status(Status), ID(ID), Source(Source) {
// If the Status is Known then we expect there to be an assignment ID.
assert(Status == NoneOrPhi || ID);
}
Assignment(S Status, DIAssignID *ID, AssignRecord Source)
: Status(Status), ID(ID), Source(Source) {
// If the Status is Known then we expect there to be an assignment ID.
assert(Status == NoneOrPhi || ID);
}
};
using AssignmentMap = SmallVector<Assignment>;
using LocMap = SmallVector<LocKind>;
using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
using UntaggedStoreAssignmentMap =
DenseMap<const Instruction *,
SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
private:
/// The highest numbered VariableID for partially promoted variables plus 1,
/// the values for which start at 1.
unsigned TrackedVariablesVectorSize = 0;
/// Map a variable to the set of variables that it fully contains.
OverlapMap VarContains;
/// Map untagged stores to the variable fragments they assign to. Used by
/// processUntaggedInstruction.
UntaggedStoreAssignmentMap UntaggedStoreVars;
// Machinery to defer inserting dbg.values.
using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>;
InstInsertMap InsertBeforeMap;
/// Clear the location definitions currently cached for insertion after /p
/// After.
void resetInsertionPoint(Instruction &After);
void resetInsertionPoint(DbgVariableRecord &After);
// emitDbgValue can be called with:
// Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DbgVariableRecord*]
// Since AssignRecord can be cast to one of the latter two types, and all
// other types have a shared interface, we use a template to handle the latter
// three types, and an explicit overload for AssignRecord that forwards to
// the template version with the right type.
void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After);
template <typename T>
void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After);
static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
const AssignmentMap &B) {
return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
return A[VarID].isSameSourceAssignment(B[VarID]);
});
}
/// Represents the stack and debug assignments in a block. Used to describe
/// the live-in and live-out values for blocks, as well as the "current"
/// value as we process each instruction in a block.
struct BlockInfo {
/// The set of variables (VariableID) being tracked in this block.
BitVector VariableIDsInBlock;
/// Dominating assignment to memory for each variable, indexed by
/// VariableID.
AssignmentMap StackHomeValue;
/// Dominating assignemnt to each variable, indexed by VariableID.
AssignmentMap DebugValue;
/// Location kind for each variable. LiveLoc indicates whether the
/// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
/// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
/// preference. This cannot be derived by inspecting DebugValue and
/// StackHomeValue due to the fact that there's no distinction in
/// Assignment (the class) between whether an assignment is unknown or a
/// merge of multiple assignments (both are Status::NoneOrPhi). In other
/// words, the memory location may well be valid while both DebugValue and
/// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
/// Indexed by VariableID.
LocMap LiveLoc;
public:
enum AssignmentKind { Stack, Debug };
const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
switch (Kind) {
case Stack:
return StackHomeValue;
case Debug:
return DebugValue;
}
llvm_unreachable("Unknown AssignmentKind");
}
AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
return const_cast<AssignmentMap &>(
const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
}
bool isVariableTracked(VariableID Var) const {
return VariableIDsInBlock[static_cast<unsigned>(Var)];
}
const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
assert(isVariableTracked(Var) && "Var not tracked in block");
return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
}
LocKind getLocKind(VariableID Var) const {
assert(isVariableTracked(Var) && "Var not tracked in block");
return LiveLoc[static_cast<unsigned>(Var)];
}
/// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
/// fragments contained win \p Var.
void setLocKind(VariableID Var, LocKind K) {
VariableIDsInBlock.set(static_cast<unsigned>(Var));
LiveLoc[static_cast<unsigned>(Var)] = K;
}
/// Set the assignment in the \p Kind assignment map for \p Var only: does
/// not set the assignment for VariableIDs of fragments contained win \p
/// Var.
void setAssignment(AssignmentKind Kind, VariableID Var,
const Assignment &AV) {
VariableIDsInBlock.set(static_cast<unsigned>(Var));
getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
}
/// Return true if there is an assignment matching \p AV in the \p Kind
/// assignment map. Does consider assignments for VariableIDs of fragments
/// contained win \p Var.
bool hasAssignment(AssignmentKind Kind, VariableID Var,
const Assignment &AV) const {
if (!isVariableTracked(Var))
return false;
return AV.isSameSourceAssignment(getAssignment(Kind, Var));
}
/// Compare every element in each map to determine structural equality
/// (slow).
bool operator==(const BlockInfo &Other) const {
return VariableIDsInBlock == Other.VariableIDsInBlock &&
LiveLoc == Other.LiveLoc &&
mapsAreEqual(VariableIDsInBlock, StackHomeValue,
Other.StackHomeValue) &&
mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
}
bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
bool isValid() {
return LiveLoc.size() == DebugValue.size() &&
LiveLoc.size() == StackHomeValue.size();
}
/// Clear everything and initialise with ⊤-values for all variables.
void init(int NumVars) {
StackHomeValue.clear();
DebugValue.clear();
LiveLoc.clear();
VariableIDsInBlock = BitVector(NumVars);
StackHomeValue.insert(StackHomeValue.begin(), NumVars,
Assignment::makeNoneOrPhi());
DebugValue.insert(DebugValue.begin(), NumVars,
Assignment::makeNoneOrPhi());
LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
}
/// Helper for join.
template <typename ElmtType, typename FnInputType>
static void joinElmt(int Index, SmallVector<ElmtType> &Target,
const SmallVector<ElmtType> &A,
const SmallVector<ElmtType> &B,
ElmtType (*Fn)(FnInputType, FnInputType)) {
Target[Index] = Fn(A[Index], B[Index]);
}
/// See comment for AssignmentTrackingLowering::joinBlockInfo.
static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
// Join A and B.
//
// Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
// Difference = join(x, ⊤) for x where Var(x) is in A xor B
// Join = Intersect ∪ Difference
//
// This is achieved by performing a join on elements from A and B with
// variables common to both A and B (join elements indexed by var
// intersect), then adding ⊤-value elements for vars in A xor B. The
// latter part is equivalent to performing join on elements with variables
// in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
// BlockInfo::init initializes all variable entries to the ⊤ value so we
// don't need to explicitly perform that step as Join.VariableIDsInBlock
// is set to the union of the variables in A and B at the end of this
// function.
BlockInfo Join;
Join.init(NumVars);
BitVector Intersect = A.VariableIDsInBlock;
Intersect &= B.VariableIDsInBlock;
for (auto VarID : Intersect.set_bits()) {
joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
joinAssignment);
joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
joinAssignment);
}
Join.VariableIDsInBlock = A.VariableIDsInBlock;
Join.VariableIDsInBlock |= B.VariableIDsInBlock;
assert(Join.isValid());
return Join;
}
};
Function &Fn;
const DataLayout &Layout;
const DenseSet<DebugAggregate> *VarsWithStackSlot;
FunctionVarLocsBuilder *FnVarLocs;
DenseMap<const BasicBlock *, BlockInfo> LiveIn;
DenseMap<const BasicBlock *, BlockInfo> LiveOut;
/// Helper for process methods to track variables touched each frame.
DenseSet<VariableID> VarsTouchedThisFrame;
/// The set of variables that sometimes are not located in their stack home.
DenseSet<DebugAggregate> NotAlwaysStackHomed;
VariableID getVariableID(const DebugVariable &Var) {
return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
}
/// Join the LiveOut values of preds that are contained in \p Visited into
/// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
/// values monotonically increase. See the @link joinMethods join methods
/// @endlink documentation for more info.
bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
///@name joinMethods
/// Functions that implement `join` (the least upper bound) for the
/// join-semilattice types used in the dataflow. There is an explicit bottom
/// value (⊥) for some types and and explicit top value (⊤) for all types.
/// By definition:
///
/// Join(A, B) >= A && Join(A, B) >= B
/// Join(A, ⊥) = A
/// Join(A, ⊤) = ⊤
///
/// These invariants are important for monotonicity.
///
/// For the map-type functions, all unmapped keys in an empty map are
/// associated with a bottom value (⊥). This represents their values being
/// unknown. Unmapped keys in non-empty maps (joining two maps with a key
/// only present in one) represents either a variable going out of scope or
/// dropped debug info. It is assumed the key is associated with a top value
/// (⊤) in this case (unknown location / assignment).
///@{
static LocKind joinKind(LocKind A, LocKind B);
static Assignment joinAssignment(const Assignment &A, const Assignment &B);
BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
///@}
/// Process the instructions in \p BB updating \p LiveSet along the way. \p
/// LiveSet must be initialized with the current live-in locations before
/// calling this.
void process(BasicBlock &BB, BlockInfo *LiveSet);
///@name processMethods
/// Methods to process instructions in order to update the LiveSet (current
/// location information).
///@{
void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
/// Update \p LiveSet after encountering an instruction with a DIAssignID
/// attachment, \p I.
void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
/// Update \p LiveSet after encountering an instruciton without a DIAssignID
/// attachment, \p I.
void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet);
void processDbgVariableRecord(DbgVariableRecord &DVR, BlockInfo *LiveSet);
void processDbgValue(
PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord,
BlockInfo *LiveSet);
/// Add an assignment to memory for the variable /p Var.
void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
/// Add an assignment to the variable /p Var.
void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
///@}
/// Set the LocKind for \p Var.
void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
/// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
/// have been called for \p Var first.
LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
/// Return true if \p Var has an assignment in \p M matching \p AV.
bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
VariableID Var, const Assignment &AV);
/// Return the set of VariableIDs corresponding the fragments contained fully
/// within the variable/fragment \p Var.
ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
/// Mark \p Var as having been touched this frame. Note, this applies only
/// to the exact fragment \p Var and not to any fragments contained within.
void touchFragment(VariableID Var);
/// Emit info for variables that are fully promoted.
bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
public:
AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
const DenseSet<DebugAggregate> *VarsWithStackSlot)
: Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
/// Run the analysis, adding variable location info to \p FnVarLocs. Returns
/// true if any variable locations have been added to FnVarLocs.
bool run(FunctionVarLocsBuilder *FnVarLocs);
};
} // namespace
ArrayRef<VariableID>
AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
auto R = VarContains.find(Var);
if (R == VarContains.end())
return std::nullopt;
return R->second;
}
void AssignmentTrackingLowering::touchFragment(VariableID Var) {
VarsTouchedThisFrame.insert(Var);
}
void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
LocKind K) {
auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
LiveSet->setLocKind(Var, K);
touchFragment(Var);
};
SetKind(LiveSet, Var, K);
// Update the LocKind for all fragments contained within Var.
for (VariableID Frag : getContainedFragments(Var))
SetKind(LiveSet, Frag, K);
}
AssignmentTrackingLowering::LocKind
AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
return LiveSet->getLocKind(Var);
}
void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
const Assignment &AV) {
LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
// Use this assigment for all fragments contained within Var, but do not
// provide a Source because we cannot convert Var's value to a value for the
// fragment.
Assignment FragAV = AV;
FragAV.Source = nullptr;
for (VariableID Frag : getContainedFragments(Var))
LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
}
void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
const Assignment &AV) {
LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
// Use this assigment for all fragments contained within Var, but do not
// provide a Source because we cannot convert Var's value to a value for the
// fragment.
Assignment FragAV = AV;
FragAV.Source = nullptr;
for (VariableID Frag : getContainedFragments(Var))
LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
}
static DIAssignID *getIDFromInst(const Instruction &I) {
return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
}
static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
return cast<DIAssignID>(DAI.getAssignID());
}
static DIAssignID *getIDFromMarker(const DbgVariableRecord &DVR) {
assert(DVR.isDbgAssign() &&
"Cannot get a DIAssignID from a non-assign DbgVariableRecord!");
return DVR.getAssignID();
}
/// Return true if \p Var has an assignment in \p M matching \p AV.
bool AssignmentTrackingLowering::hasVarWithAssignment(
BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
const Assignment &AV) {
if (!LiveSet->hasAssignment(Kind, Var, AV))
return false;
// Check all the frags contained within Var as these will have all been
// mapped to AV at the last store to Var.
for (VariableID Frag : getContainedFragments(Var))
if (!LiveSet->hasAssignment(Kind, Frag, AV))
return false;
return true;
}
#ifndef NDEBUG
const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
using LocKind = AssignmentTrackingLowering::LocKind;
switch (Loc) {
case LocKind::Val:
return "Val";
case LocKind::Mem:
return "Mem";
case LocKind::None:
return "None";
};
llvm_unreachable("unknown LocKind");
}
#endif
VarLocInsertPt getNextNode(const DbgRecord *DVR) {
auto NextIt = ++(DVR->getIterator());
if (NextIt == DVR->getMarker()->getDbgRecordRange().end())
return DVR->getMarker()->MarkedInstr;
return &*NextIt;
}
VarLocInsertPt getNextNode(const Instruction *Inst) {
const Instruction *Next = Inst->getNextNode();
if (!Next->hasDbgRecords())
return Next;
return &*Next->getDbgRecordRange().begin();
}
VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) {
if (isa<const Instruction *>(InsertPt))
return getNextNode(cast<const Instruction *>(InsertPt));
return getNextNode(cast<const DbgRecord *>(InsertPt));
}
DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) {
return cast<DbgAssignIntrinsic>(DVI);
}
DbgVariableRecord *CastToDbgAssign(DbgVariableRecord *DVR) {
assert(DVR->isDbgAssign() &&
"Attempted to cast non-assign DbgVariableRecord to DVRAssign.");
return DVR;
}
void AssignmentTrackingLowering::emitDbgValue(
AssignmentTrackingLowering::LocKind Kind,
AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) {
if (isa<DbgAssignIntrinsic *>(Source))
emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After);
else
emitDbgValue(Kind, cast<DbgVariableRecord *>(Source), After);
}
template <typename T>
void AssignmentTrackingLowering::emitDbgValue(
AssignmentTrackingLowering::LocKind Kind, const T Source,
VarLocInsertPt After) {
DILocation *DL = Source->getDebugLoc();
auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
assert(Expr);
if (!Val)
Val = ValueAsMetadata::get(
PoisonValue::get(Type::getInt1Ty(Source->getContext())));
// Find a suitable insert point.
auto InsertBefore = getNextNode(After);
assert(InsertBefore && "Shouldn't be inserting after a terminator");
VariableID Var = getVariableID(DebugVariable(Source));
VarLocInfo VarLoc;
VarLoc.VariableID = static_cast<VariableID>(Var);
VarLoc.Expr = Expr;
VarLoc.Values = RawLocationWrapper(Val);
VarLoc.DL = DL;
// Insert it into the map for later.
InsertBeforeMap[InsertBefore].push_back(VarLoc);
};
// NOTE: This block can mutate Kind.
if (Kind == LocKind::Mem) {
const auto *Assign = CastToDbgAssign(Source);
// Check the address hasn't been dropped (e.g. the debug uses may not have
// been replaced before deleting a Value).
if (Assign->isKillAddress()) {
// The address isn't valid so treat this as a non-memory def.
Kind = LocKind::Val;
} else {
Value *Val = Assign->getAddress();
DIExpression *Expr = Assign->getAddressExpression();
assert(!Expr->getFragmentInfo() &&
"fragment info should be stored in value-expression only");
// Copy the fragment info over from the value-expression to the new
// DIExpression.
if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
auto FragInfo = *OptFragInfo;
Expr = *DIExpression::createFragmentExpression(
Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
}
// The address-expression has an implicit deref, add it now.
std::tie(Val, Expr) =
walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
Emit(ValueAsMetadata::get(Val), Expr);
return;
}
}
if (Kind == LocKind::Val) {
Emit(Source->getRawLocation(), Source->getExpression());
return;
}
if (Kind == LocKind::None) {
Emit(nullptr, Source->getExpression());
return;
}
}
void AssignmentTrackingLowering::processNonDbgInstruction(
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
if (I.hasMetadata(LLVMContext::MD_DIAssignID))
processTaggedInstruction(I, LiveSet);
else
processUntaggedInstruction(I, LiveSet);
}
void AssignmentTrackingLowering::processUntaggedInstruction(
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
// Interpret stack stores that are not tagged as an assignment in memory for
// the variables associated with that address. These stores may not be tagged
// because a) the store cannot be represented using dbg.assigns (non-const
// length or offset) or b) the tag was accidentally dropped during
// optimisations. For these stores we fall back to assuming that the stack
// home is a valid location for the variables. The benefit is that this
// prevents us missing an assignment and therefore incorrectly maintaining
// earlier location definitions, and in many cases it should be a reasonable
// assumption. However, this will occasionally lead to slight
// inaccuracies. The value of a hoisted untagged store will be visible
// "early", for example.
assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
auto It = UntaggedStoreVars.find(&I);
if (It == UntaggedStoreVars.end())
return; // No variables associated with the store destination.
LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
<< "\n");
// Iterate over the variables that this store affects, add a NoneOrPhi dbg
// and mem def, set lockind to Mem, and emit a location def for each.
for (auto [Var, Info] : It->second) {
// This instruction is treated as both a debug and memory assignment,
// meaning the memory location should be used. We don't have an assignment
// ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
setLocKind(LiveSet, Var, LocKind::Mem);
LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
<< "\n");
// Build the dbg location def to insert.
//
// DIExpression: Add fragment and offset.
DebugVariable V = FnVarLocs->getVariable(Var);
DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
if (auto Frag = V.getFragment()) {
auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
Frag->SizeInBits);
assert(R && "unexpected createFragmentExpression failure");
DIE = *R;
}
SmallVector<uint64_t, 3> Ops;
if (Info.OffsetInBits)
Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
Ops.push_back(dwarf::DW_OP_deref);
DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
/*EntryValue=*/false);
// Find a suitable insert point, before the next instruction or DbgRecord
// after I.
auto InsertBefore = getNextNode(&I);
assert(InsertBefore && "Shouldn't be inserting after a terminator");
// Get DILocation for this unrecorded assignment.
DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
const DILocation *DILoc = DILocation::get(
Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
VarLocInfo VarLoc;
VarLoc.VariableID = static_cast<VariableID>(Var);
VarLoc.Expr = DIE;
VarLoc.Values = RawLocationWrapper(
ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
VarLoc.DL = DILoc;
// 3. Insert it into the map for later.
InsertBeforeMap[InsertBefore].push_back(VarLoc);
}
}
void AssignmentTrackingLowering::processTaggedInstruction(
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
auto Linked = at::getAssignmentMarkers(&I);
auto LinkedDPAssigns = at::getDVRAssignmentMarkers(&I);
// No dbg.assign intrinsics linked.
// FIXME: All vars that have a stack slot this store modifies that don't have
// a dbg.assign linked to it should probably treat this like an untagged
// store.
if (Linked.empty() && LinkedDPAssigns.empty())
return;
LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
auto ProcessLinkedAssign = [&](auto *Assign) {
VariableID Var = getVariableID(DebugVariable(Assign));
// Something has gone wrong if VarsWithStackSlot doesn't contain a variable
// that is linked to a store.
assert(VarsWithStackSlot->count(getAggregate(Assign)) &&
"expected Assign's variable to have stack slot");
Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
addMemDef(LiveSet, Var, AV);
LLVM_DEBUG(dbgs() << " linked to " << *Assign << "\n");
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
<< " -> ");
// The last assignment to the stack is now AV. Check if the last debug
// assignment has a matching Assignment.
if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
// The StackHomeValue and DebugValue for this variable match so we can
// emit a stack home location here.
LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
LLVM_DEBUG(dbgs() << " Debug val: ";
LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
dbgs() << "\n");
setLocKind(LiveSet, Var, LocKind::Mem);
emitDbgValue(LocKind::Mem, Assign, &I);
return;
}
// The StackHomeValue and DebugValue for this variable do not match. I.e.
// The value currently stored in the stack is not what we'd expect to
// see, so we cannot use emit a stack home location here. Now we will
// look at the live LocKind for the variable and determine an appropriate
// dbg.value to emit.
LocKind PrevLoc = getLocKind(LiveSet, Var);
switch (PrevLoc) {
case LocKind::Val: {
// The value in memory in memory has changed but we're not currently
// using the memory location. Do nothing.
LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
setLocKind(LiveSet, Var, LocKind::Val);
} break;
case LocKind::Mem: {
// There's been an assignment to memory that we were using as a
// location for this variable, and the Assignment doesn't match what
// we'd expect to see in memory.
Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
if (DbgAV.Status == Assignment::NoneOrPhi) {
// We need to terminate any previously open location now.
LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
setLocKind(LiveSet, Var, LocKind::None);
emitDbgValue(LocKind::None, Assign, &I);
} else {
// The previous DebugValue Value can be used here.
LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
setLocKind(LiveSet, Var, LocKind::Val);
if (DbgAV.Source) {
emitDbgValue(LocKind::Val, DbgAV.Source, &I);
} else {
// PrevAV.Source is nullptr so we must emit undef here.
emitDbgValue(LocKind::None, Assign, &I);
}
}
} break;
case LocKind::None: {
// There's been an assignment to memory and we currently are
// not tracking a location for the variable. Do not emit anything.
LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
setLocKind(LiveSet, Var, LocKind::None);
} break;
}
};
for (DbgAssignIntrinsic *DAI : Linked)
ProcessLinkedAssign(DAI);
for (DbgVariableRecord *DVR : LinkedDPAssigns)
ProcessLinkedAssign(DVR);
}
void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign,
BlockInfo *LiveSet) {
auto ProcessDbgAssignImpl = [&](auto *DbgAssign) {
// Only bother tracking variables that are at some point stack homed. Other
// variables can be dealt with trivially later.
if (!VarsWithStackSlot->count(getAggregate(DbgAssign)))
return;
VariableID Var = getVariableID(DebugVariable(DbgAssign));
Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign);
addDbgDef(LiveSet, Var, AV);
LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";);
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
<< " -> ");
// Check if the DebugValue and StackHomeValue both hold the same
// Assignment.
if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
// They match. We can use the stack home because the debug intrinsics
// state that an assignment happened here, and we know that specific
// assignment was the last one to take place in memory for this variable.
LocKind Kind;
if (DbgAssign->isKillAddress()) {
LLVM_DEBUG(
dbgs()
<< "Val, Stack matches Debug program but address is killed\n";);
Kind = LocKind::Val;
} else {
LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
Kind = LocKind::Mem;
};
setLocKind(LiveSet, Var, Kind);
emitDbgValue(Kind, DbgAssign, DbgAssign);
} else {
// The last assignment to the memory location isn't the one that we want
// to show to the user so emit a dbg.value(Value). Value may be undef.
LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
setLocKind(LiveSet, Var, LocKind::Val);
emitDbgValue(LocKind::Val, DbgAssign, DbgAssign);
}
};
if (isa<DbgVariableRecord *>(Assign))
return ProcessDbgAssignImpl(cast<DbgVariableRecord *>(Assign));
return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign));
}
void AssignmentTrackingLowering::processDbgValue(
PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord,
BlockInfo *LiveSet) {
auto ProcessDbgValueImpl = [&](auto *DbgValue) {
// Only other tracking variables that are at some point stack homed.
// Other variables can be dealt with trivally later.
if (!VarsWithStackSlot->count(getAggregate(DbgValue)))
return;
VariableID Var = getVariableID(DebugVariable(DbgValue));
// We have no ID to create an Assignment with so we mark this assignment as
// NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
// the assignment responsible for setting this value.
// This is fine; dbg.values are essentially interchangable with unlinked
// dbg.assigns, and some passes such as mem2reg and instcombine add them to
// PHIs for promoted variables.
Assignment AV = Assignment::makeNoneOrPhi();
addDbgDef(LiveSet, Var, AV);
LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";);
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
<< " -> Val, dbg.value override");
setLocKind(LiveSet, Var, LocKind::Val);
emitDbgValue(LocKind::Val, DbgValue, DbgValue);
};
if (isa<DbgVariableRecord *>(DbgValueRecord))
return ProcessDbgValueImpl(cast<DbgVariableRecord *>(DbgValueRecord));
return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord));
}
template <typename T> static bool hasZeroSizedFragment(T &DbgValue) {
if (auto F = DbgValue.getExpression()->getFragmentInfo())
return F->SizeInBits == 0;
return false;
}
void AssignmentTrackingLowering::processDbgInstruction(
DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
if (!DVI)
return;
// Ignore assignments to zero bits of the variable.
if (hasZeroSizedFragment(*DVI))
return;
if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
processDbgAssign(DAI, LiveSet);
else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
processDbgValue(DVI, LiveSet);
}
void AssignmentTrackingLowering::processDbgVariableRecord(
DbgVariableRecord &DVR, AssignmentTrackingLowering::BlockInfo *LiveSet) {
// Ignore assignments to zero bits of the variable.
if (hasZeroSizedFragment(DVR))
return;
if (DVR.isDbgAssign())
processDbgAssign(&DVR, LiveSet);
else if (DVR.isDbgValue())
processDbgValue(&DVR, LiveSet);
}
void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
assert(!After.isTerminator() && "Can't insert after a terminator");
auto *R = InsertBeforeMap.find(getNextNode(&After));
if (R == InsertBeforeMap.end())
return;
R->second.clear();
}
void AssignmentTrackingLowering::resetInsertionPoint(DbgVariableRecord &After) {
auto *R = InsertBeforeMap.find(getNextNode(&After));
if (R == InsertBeforeMap.end())
return;
R->second.clear();
}
void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
// If the block starts with DbgRecords, we need to process those DbgRecords as
// their own frame without processing any instructions first.
bool ProcessedLeadingDbgRecords = !BB.begin()->hasDbgRecords();
for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
assert(VarsTouchedThisFrame.empty());
// Process the instructions in "frames". A "frame" includes a single
// non-debug instruction followed any debug instructions before the
// next non-debug instruction.
// Skip the current instruction if it has unprocessed DbgRecords attached
// (see comment above `ProcessedLeadingDbgRecords`).
if (ProcessedLeadingDbgRecords) {
// II is now either a debug intrinsic, a non-debug instruction with no
// attached DbgRecords, or a non-debug instruction with attached processed
// DbgRecords.
// II has not been processed.
if (!isa<DbgInfoIntrinsic>(&*II)) {
if (II->isTerminator())
break;
resetInsertionPoint(*II);
processNonDbgInstruction(*II, LiveSet);
assert(LiveSet->isValid());
++II;
}
}
// II is now either a debug intrinsic, a non-debug instruction with no
// attached DbgRecords, or a non-debug instruction with attached unprocessed
// DbgRecords.
if (II != EI && II->hasDbgRecords()) {
// Skip over non-variable debug records (i.e., labels). They're going to
// be read from IR (possibly re-ordering them within the debug record
// range) rather than from the analysis results.
for (DbgVariableRecord &DVR : filterDbgVars(II->getDbgRecordRange())) {
resetInsertionPoint(DVR);
processDbgVariableRecord(DVR, LiveSet);
assert(LiveSet->isValid());
}
}
ProcessedLeadingDbgRecords = true;
while (II != EI) {
auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
if (!Dbg)
break;
resetInsertionPoint(*II);
processDbgInstruction(*Dbg, LiveSet);
assert(LiveSet->isValid());
++II;
}
// II is now a non-debug instruction either with no attached DbgRecords, or
// with attached processed DbgRecords. II has not been processed, and all
// debug instructions or DbgRecords in the frame preceding II have been
// processed.
// We've processed everything in the "frame". Now determine which variables
// cannot be represented by a dbg.declare.
for (auto Var : VarsTouchedThisFrame) {
LocKind Loc = getLocKind(LiveSet, Var);
// If a variable's LocKind is anything other than LocKind::Mem then we
// must note that it cannot be represented with a dbg.declare.
// Note that this check is enough without having to check the result of
// joins() because for join to produce anything other than Mem after
// we've already seen a Mem we'd be joining None or Val with Mem. In that
// case, we've already hit this codepath when we set the LocKind to Val
// or None in that block.
if (Loc != LocKind::Mem) {
DebugVariable DbgVar = FnVarLocs->getVariable(Var);
DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
NotAlwaysStackHomed.insert(Aggr);
}
}
VarsTouchedThisFrame.clear();
}
}
AssignmentTrackingLowering::LocKind
AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
// Partial order:
// None > Mem, Val
return A == B ? A : LocKind::None;
}
AssignmentTrackingLowering::Assignment
AssignmentTrackingLowering::joinAssignment(const Assignment &A,
const Assignment &B) {
// Partial order:
// NoneOrPhi(null, null) > Known(v, ?s)
// If either are NoneOrPhi the join is NoneOrPhi.
// If either value is different then the result is
// NoneOrPhi (joining two values is a Phi).
if (!A.isSameSourceAssignment(B))
return Assignment::makeNoneOrPhi();
if (A.Status == Assignment::NoneOrPhi)
return Assignment::makeNoneOrPhi();
// Source is used to lookup the value + expression in the debug program if
// the stack slot gets assigned a value earlier than expected. Because
// we're only tracking the one dbg.assign, we can't capture debug PHIs.
// It's unlikely that we're losing out on much coverage by avoiding that
// extra work.
// The Source may differ in this situation:
// Pred.1:
// dbg.assign i32 0, ..., !1, ...
// Pred.2:
// dbg.assign i32 1, ..., !1, ...
// Here the same assignment (!1) was performed in both preds in the source,
// but we can't use either one unless they are identical (e.g. .we don't
// want to arbitrarily pick between constant values).
auto JoinSource = [&]() -> AssignRecord {
if (A.Source == B.Source)
return A.Source;
if (!A.Source || !B.Source)
return AssignRecord();
assert(isa<DbgVariableRecord *>(A.Source) ==
isa<DbgVariableRecord *>(B.Source));
if (isa<DbgVariableRecord *>(A.Source) &&
cast<DbgVariableRecord *>(A.Source)->isEquivalentTo(
*cast<DbgVariableRecord *>(B.Source)))
return A.Source;
if (isa<DbgAssignIntrinsic *>(A.Source) &&
cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo(
cast<DbgAssignIntrinsic *>(B.Source)))
return A.Source;
return AssignRecord();
};
AssignRecord Source = JoinSource();
assert(A.Status == B.Status && A.Status == Assignment::Known);
assert(A.ID == B.ID);
return Assignment::make(A.ID, Source);
}
AssignmentTrackingLowering::BlockInfo
AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
const BlockInfo &B) {
return BlockInfo::join(A, B, TrackedVariablesVectorSize);
}
bool AssignmentTrackingLowering::join(
const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
SmallVector<const BasicBlock *> VisitedPreds;
// Ignore backedges if we have not visited the predecessor yet. As the
// predecessor hasn't yet had locations propagated into it, most locations
// will not yet be valid, so treat them as all being uninitialized and
// potentially valid. If a location guessed to be correct here is
// invalidated later, we will remove it when we revisit this block. This
// is essentially the same as initialising all LocKinds and Assignments to
// an implicit ⊥ value which is the identity value for the join operation.
for (const BasicBlock *Pred : predecessors(&BB)) {
if (Visited.count(Pred))
VisitedPreds.push_back(Pred);
}
// No preds visited yet.
if (VisitedPreds.empty()) {
auto It = LiveIn.try_emplace(&BB, BlockInfo());
bool DidInsert = It.second;
if (DidInsert)
It.first->second.init(TrackedVariablesVectorSize);
return /*Changed*/ DidInsert;
}
// Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
if (VisitedPreds.size() == 1) {
const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
auto CurrentLiveInEntry = LiveIn.find(&BB);
// Check if there isn't an entry, or there is but the LiveIn set has
// changed (expensive check).
if (CurrentLiveInEntry == LiveIn.end())
LiveIn.insert(std::make_pair(&BB, PredLiveOut));
else if (PredLiveOut != CurrentLiveInEntry->second)
CurrentLiveInEntry->second = PredLiveOut;
else
return /*Changed*/ false;
return /*Changed*/ true;
}
// More than one pred. Join LiveOuts of blocks 1 and 2.
assert(VisitedPreds.size() > 1);
const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
// Join the LiveOuts of subsequent blocks.
ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
for (const BasicBlock *Pred : Tail) {
const auto &PredLiveOut = LiveOut.find(Pred);
assert(PredLiveOut != LiveOut.end() &&
"block should have been processed already");
BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
}
// Save the joined result for BB.
auto CurrentLiveInEntry = LiveIn.find(&BB);
// Check if there isn't an entry, or there is but the LiveIn set has changed
// (expensive check).
if (CurrentLiveInEntry == LiveIn.end())
LiveIn.try_emplace(&BB, std::move(BBLiveIn));
else if (BBLiveIn != CurrentLiveInEntry->second)
CurrentLiveInEntry->second = std::move(BBLiveIn);
else
return /*Changed*/ false;
return /*Changed*/ true;
}
/// Return true if A fully contains B.
static bool fullyContains(DIExpression::FragmentInfo A,
DIExpression::FragmentInfo B) {
auto ALeft = A.OffsetInBits;
auto BLeft = B.OffsetInBits;
if (BLeft < ALeft)
return false;
auto ARight = ALeft + A.SizeInBits;
auto BRight = BLeft + B.SizeInBits;
if (BRight > ARight)
return false;
return true;
}
static std::optional<at::AssignmentInfo>
getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
// Don't bother checking if this is an AllocaInst. We know this
// instruction has no tag which means there are no variables associated
// with it.
if (const auto *SI = dyn_cast<StoreInst>(&I))
return at::getAssignmentInfo(Layout, SI);
if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
return at::getAssignmentInfo(Layout, MI);
// Alloca or non-store-like inst.
return std::nullopt;
}
DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) {
return dyn_cast<DbgDeclareInst>(DVI);
}
DbgVariableRecord *DynCastToDbgDeclare(DbgVariableRecord *DVR) {
return DVR->isDbgDeclare() ? DVR : nullptr;
}
/// Build a map of {Variable x: Variables y} where all variable fragments
/// contained within the variable fragment x are in set y. This means that
/// y does not contain all overlaps because partial overlaps are excluded.
///
/// While we're iterating over the function, add single location defs for
/// dbg.declares to \p FnVarLocs.
///
/// Variables that are interesting to this pass in are added to
/// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
/// the last interesting variable plus 1, meaning variables with ID 1
/// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
/// subsequent variables are either stack homed or fully promoted.
///
/// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
/// the stored-to variable fragments.
///
/// These tasks are bundled together to reduce the number of times we need
/// to iterate over the function as they can be achieved together in one pass.
static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
const DenseSet<DebugAggregate> &VarsWithStackSlot,
AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
unsigned &TrackedVariablesVectorSize) {
DenseSet<DebugVariable> Seen;
// Map of Variable: [Fragments].
DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
// Iterate over all instructions:
// - dbg.declare -> add single location variable record
// - dbg.* -> Add fragments to FragmentMap
// - untagged store -> Add fragments to FragmentMap and update
// UntaggedStoreVars.
// We need to add fragments for untagged stores too so that we can correctly
// clobber overlapped fragment locations later.
SmallVector<DbgDeclareInst *> InstDeclares;
SmallVector<DbgVariableRecord *> DPDeclares;
auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) {
if (auto *Declare = DynCastToDbgDeclare(Record)) {
DeclareList.push_back(Declare);
return;
}
DebugVariable DV = DebugVariable(Record);
DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
if (!VarsWithStackSlot.contains(DA))
return;
if (Seen.insert(DV).second)
FragmentMap[DA].push_back(DV);
};
for (auto &BB : Fn) {
for (auto &I : BB) {
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
ProcessDbgRecord(&DVR, DPDeclares);
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
ProcessDbgRecord(DII, InstDeclares);
} else if (auto Info = getUntaggedStoreAssignmentInfo(
I, Fn.getDataLayout())) {
// Find markers linked to this alloca.
auto HandleDbgAssignForStore = [&](auto *Assign) {
std::optional<DIExpression::FragmentInfo> FragInfo;
// Skip this assignment if the affected bits are outside of the
// variable fragment.
if (!at::calculateFragmentIntersect(
I.getDataLayout(), Info->Base,
Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) ||
(FragInfo && FragInfo->SizeInBits == 0))
return;
// FragInfo from calculateFragmentIntersect is nullopt if the
// resultant fragment matches DAI's fragment or entire variable - in
// which case copy the fragment info from DAI. If FragInfo is still
// nullopt after the copy it means "no fragment info" instead, which
// is how it is usually interpreted.
if (!FragInfo)
FragInfo = Assign->getExpression()->getFragmentInfo();
DebugVariable DV =
DebugVariable(Assign->getVariable(), FragInfo,
Assign->getDebugLoc().getInlinedAt());
DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
if (!VarsWithStackSlot.contains(DA))
return;
// Cache this info for later.
UntaggedStoreVars[&I].push_back(
{FnVarLocs->insertVariable(DV), *Info});
if (Seen.insert(DV).second)
FragmentMap[DA].push_back(DV);
};
for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base))
HandleDbgAssignForStore(DAI);
for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(Info->Base))
HandleDbgAssignForStore(DVR);
}
}
}
// Sort the fragment map for each DebugAggregate in ascending
// order of fragment size - there should be no duplicates.
for (auto &Pair : FragmentMap) {
SmallVector<DebugVariable, 8> &Frags = Pair.second;
std::sort(Frags.begin(), Frags.end(),
[](const DebugVariable &Next, const DebugVariable &Elmt) {
return Elmt.getFragmentOrDefault().SizeInBits >
Next.getFragmentOrDefault().SizeInBits;
});
// Check for duplicates.
assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
}
// Build the map.
AssignmentTrackingLowering::OverlapMap Map;
for (auto &Pair : FragmentMap) {
auto &Frags = Pair.second;
for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
// Find the frags that this is contained within.
//
// Because Frags is sorted by size and none have the same offset and
// size, we know that this frag can only be contained by subsequent
// elements.
SmallVector<DebugVariable, 8>::iterator OtherIt = It;
++OtherIt;
VariableID ThisVar = FnVarLocs->insertVariable(*It);
for (; OtherIt != IEnd; ++OtherIt) {
DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
if (fullyContains(OtherFrag, Frag))
Map[OtherVar].push_back(ThisVar);
}
}
}
// VariableIDs are 1-based so the variable-tracking bitvector needs
// NumVariables plus 1 bits.
TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
// Finally, insert the declares afterwards, so the first IDs are all
// partially stack homed vars.
for (auto *DDI : InstDeclares)
FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
DDI->getDebugLoc(), DDI->getWrappedLocation());
for (auto *DVR : DPDeclares)
FnVarLocs->addSingleLocVar(DebugVariable(DVR), DVR->getExpression(),
DVR->getDebugLoc(),
RawLocationWrapper(DVR->getRawLocation()));
return Map;
}
bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
if (Fn.size() > MaxNumBlocks) {
LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
<< ": too many blocks (" << Fn.size() << ")\n");
at::deleteAll(&Fn);
return false;
}
FnVarLocs = FnVarLocsBuilder;
// The general structure here is inspired by VarLocBasedImpl.cpp
// (LiveDebugValues).
// Build the variable fragment overlap map.
// Note that this pass doesn't handle partial overlaps correctly (FWIW
// neither does LiveDebugVariables) because that is difficult to do and
// appears to be rare occurance.
VarContains = buildOverlapMapAndRecordDeclares(
Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
TrackedVariablesVectorSize);
// Prepare for traversal.
ReversePostOrderTraversal<Function *> RPOT(&Fn);
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist;
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Pending;
DenseMap<unsigned int, BasicBlock *> OrderToBB;
DenseMap<BasicBlock *, unsigned int> BBToOrder;
{ // Init OrderToBB and BBToOrder.
unsigned int RPONumber = 0;
for (BasicBlock *BB : RPOT) {
OrderToBB[RPONumber] = BB;
BBToOrder[BB] = RPONumber;
Worklist.push(RPONumber);
++RPONumber;
}
LiveIn.init(RPONumber);
LiveOut.init(RPONumber);
}
// Perform the traversal.
//
// This is a standard "union of predecessor outs" dataflow problem. To solve
// it, we perform join() and process() using the two worklist method until
// the LiveIn data for each block becomes unchanging. The "proof" that this
// terminates can be put together by looking at the comments around LocKind,
// Assignment, and the various join methods, which show that all the elements
// involved are made up of join-semilattices; LiveIn(n) can only
// monotonically increase in value throughout the dataflow.
//
SmallPtrSet<BasicBlock *, 16> Visited;
while (!Worklist.empty()) {
// We track what is on the pending worklist to avoid inserting the same
// thing twice.
SmallPtrSet<BasicBlock *, 16> OnPending;
LLVM_DEBUG(dbgs() << "Processing Worklist\n");
while (!Worklist.empty()) {
BasicBlock *BB = OrderToBB[Worklist.top()];
LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
Worklist.pop();
bool InChanged = join(*BB, Visited);
// Always consider LiveIn changed on the first visit.
InChanged |= Visited.insert(BB).second;
if (InChanged) {
LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
// Mutate a copy of LiveIn while processing BB. After calling process
// LiveSet is the LiveOut set for BB.
BlockInfo LiveSet = LiveIn[BB];
// Process the instructions in the block.
process(*BB, &LiveSet);
// Relatively expensive check: has anything changed in LiveOut for BB?
if (LiveOut[BB] != LiveSet) {
LLVM_DEBUG(dbgs() << BB->getName()
<< " has new OutLocs, add succs to worklist: [ ");
LiveOut[BB] = std::move(LiveSet);
for (BasicBlock *Succ : successors(BB)) {
if (OnPending.insert(Succ).second) {
LLVM_DEBUG(dbgs() << Succ->getName() << " ");
Pending.push(BBToOrder[Succ]);
}
}
LLVM_DEBUG(dbgs() << "]\n");
}
}
}
Worklist.swap(Pending);
// At this point, pending must be empty, since it was just the empty
// worklist
assert(Pending.empty() && "Pending should be empty");
}
// That's the hard part over. Now we just have some admin to do.
// Record whether we inserted any intrinsics.
bool InsertedAnyIntrinsics = false;
// Identify and add defs for single location variables.
//
// Go through all of the defs that we plan to add. If the aggregate variable
// it's a part of is not in the NotAlwaysStackHomed set we can emit a single
// location def and omit the rest. Add an entry to AlwaysStackHomed so that
// we can identify those uneeded defs later.
DenseSet<DebugAggregate> AlwaysStackHomed;
for (const auto &Pair : InsertBeforeMap) {
auto &Vec = Pair.second;
for (VarLocInfo VarLoc : Vec) {
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
// Skip this Var if it's not always stack homed.
if (NotAlwaysStackHomed.contains(Aggr))
continue;
// Skip complex cases such as when different fragments of a variable have
// been split into different allocas. Skipping in this case means falling
// back to using a list of defs (which could reduce coverage, but is no
// less correct).
bool Simple =
VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
if (!Simple) {
NotAlwaysStackHomed.insert(Aggr);
continue;
}
// All source assignments to this variable remain and all stores to any
// part of the variable store to the same address (with varying
// offsets). We can just emit a single location for the whole variable.
//
// Unless we've already done so, create the single location def now.
if (AlwaysStackHomed.insert(Aggr).second) {
assert(!VarLoc.Values.hasArgList());
// TODO: When more complex cases are handled VarLoc.Expr should be
// built appropriately rather than always using an empty DIExpression.
// The assert below is a reminder.
assert(Simple);
VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
InsertedAnyIntrinsics = true;
}
}
}
// Insert the other DEFs.
for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
SmallVector<VarLocInfo> NewDefs;
for (const VarLocInfo &VarLoc : Vec) {
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
// If this variable is always stack homed then we have already inserted a
// dbg.declare and deleted this dbg.value.
if (AlwaysStackHomed.contains(Aggr))
continue;
NewDefs.push_back(VarLoc);
InsertedAnyIntrinsics = true;
}
FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
}
InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
return InsertedAnyIntrinsics;
}
bool AssignmentTrackingLowering::emitPromotedVarLocs(
FunctionVarLocsBuilder *FnVarLocs) {
bool InsertedAnyIntrinsics = false;
// Go through every block, translating debug intrinsics for fully promoted
// variables into FnVarLocs location defs. No analysis required for these.
auto TranslateDbgRecord = [&](auto *Record) {
// Skip variables that haven't been promoted - we've dealt with those
// already.
if (VarsWithStackSlot->contains(getAggregate(Record)))
return;
auto InsertBefore = getNextNode(Record);
assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record),
Record->getExpression(), Record->getDebugLoc(),
RawLocationWrapper(Record->getRawLocation()));
InsertedAnyIntrinsics = true;
};
for (auto &BB : Fn) {
for (auto &I : BB) {
// Skip instructions other than dbg.values and dbg.assigns.
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
if (DVR.isDbgValue() || DVR.isDbgAssign())
TranslateDbgRecord(&DVR);
auto *DVI = dyn_cast<DbgValueInst>(&I);
if (DVI)
TranslateDbgRecord(DVI);
}
}
return InsertedAnyIntrinsics;
}
/// Remove redundant definitions within sequences of consecutive location defs.
/// This is done using a backward scan to keep the last def describing a
/// specific variable/fragment.
///
/// This implements removeRedundantDbgInstrsUsingBackwardScan from
/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
/// FunctionVarLocsBuilder instead of with intrinsics.
static bool
removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
bool Changed = false;
SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
// Scan over the entire block, not just over the instructions mapped by
// FnVarLocs, because wedges in FnVarLocs may only be separated by debug
// instructions.
for (const Instruction &I : reverse(*BB)) {
if (!isa<DbgVariableIntrinsic>(I)) {
// Sequence of consecutive defs ended. Clear map for the next one.
VariableDefinedBytes.clear();
}
auto HandleLocsForWedge = [&](auto *WedgePosition) {
// Get the location defs that start just before this instruction.
const auto *Locs = FnVarLocs.getWedge(WedgePosition);
if (!Locs)
return;
NumWedgesScanned++;
bool ChangedThisWedge = false;
// The new pruned set of defs, reversed because we're scanning backwards.
SmallVector<VarLocInfo> NewDefsReversed;
// Iterate over the existing defs in reverse.
for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
NumDefsScanned++;
DebugAggregate Aggr =
getAggregate(FnVarLocs.getVariable(RIt->VariableID));
uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
// Cutoff for large variables to prevent expensive bitvector operations.
const uint64_t MaxSizeBytes = 2048;
if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
// If the size is unknown (0) then keep this location def to be safe.
// Do the same for defs of large variables, which would be expensive
// to represent with a BitVector.
NewDefsReversed.push_back(*RIt);
continue;
}
// Only keep this location definition if it is not fully eclipsed by
// other definitions in this wedge that come after it
// Inert the bytes the location definition defines.
auto InsertResult =
VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
bool FirstDefinition = InsertResult.second;
BitVector &DefinedBytes = InsertResult.first->second;
DIExpression::FragmentInfo Fragment =
RIt->Expr->getFragmentInfo().value_or(
DIExpression::FragmentInfo(SizeInBits, 0));
bool InvalidFragment = Fragment.endInBits() > SizeInBits;
uint64_t StartInBytes = Fragment.startInBits() / 8;
uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
// If this defines any previously undefined bytes, keep it.
if (FirstDefinition || InvalidFragment ||
DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
if (!InvalidFragment)
DefinedBytes.set(StartInBytes, EndInBytes);
NewDefsReversed.push_back(*RIt);
continue;
}
// Redundant def found: throw it away. Since the wedge of defs is being
// rebuilt, doing nothing is the same as deleting an entry.
ChangedThisWedge = true;
NumDefsRemoved++;
}
// Un-reverse the defs and replace the wedge with the pruned version.
if (ChangedThisWedge) {
std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed));
NumWedgesChanged++;
Changed = true;
}
};
HandleLocsForWedge(&I);
for (DbgVariableRecord &DVR : reverse(filterDbgVars(I.getDbgRecordRange())))
HandleLocsForWedge(&DVR);
}
return Changed;
}
/// Remove redundant location defs using a forward scan. This can remove a
/// location definition that is redundant due to indicating that a variable has
/// the same value as is already being indicated by an earlier def.
///
/// This implements removeRedundantDbgInstrsUsingForwardScan from
/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
/// FunctionVarLocsBuilder instead of with intrinsics
static bool
removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
bool Changed = false;
DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
VariableMap;
// Scan over the entire block, not just over the instructions mapped by
// FnVarLocs, because wedges in FnVarLocs may only be separated by debug
// instructions.
for (const Instruction &I : *BB) {
// Get the defs that come just before this instruction.
auto HandleLocsForWedge = [&](auto *WedgePosition) {
const auto *Locs = FnVarLocs.getWedge(WedgePosition);
if (!Locs)
return;
NumWedgesScanned++;
bool ChangedThisWedge = false;
// The new pruned set of defs.
SmallVector<VarLocInfo> NewDefs;
// Iterate over the existing defs.
for (const VarLocInfo &Loc : *Locs) {
NumDefsScanned++;
DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
std::nullopt, Loc.DL.getInlinedAt());
auto VMI = VariableMap.find(Key);
// Update the map if we found a new value/expression describing the
// variable, or if the variable wasn't mapped already.
if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
VMI->second.second != Loc.Expr) {
VariableMap[Key] = {Loc.Values, Loc.Expr};
NewDefs.push_back(Loc);
continue;
}
// Did not insert this Loc, which is the same as removing it.
ChangedThisWedge = true;
NumDefsRemoved++;
}
// Replace the existing wedge with the pruned version.
if (ChangedThisWedge) {
FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
NumWedgesChanged++;
Changed = true;
}
};
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
HandleLocsForWedge(&DVR);
HandleLocsForWedge(&I);
}
return Changed;
}
static bool
removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
assert(BB->isEntryBlock());
// Do extra work to ensure that we remove semantically unimportant undefs.
//
// This is to work around the fact that SelectionDAG will hoist dbg.values
// using argument values to the top of the entry block. That can move arg
// dbg.values before undef and constant dbg.values which they previously
// followed. The easiest thing to do is to just try to feed SelectionDAG
// input it's happy with.
//
// Map of {Variable x: Fragments y} where the fragments y of variable x have
// have at least one non-undef location defined already. Don't use directly,
// instead call DefineBits and HasDefinedBits.
SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
VarsWithDef;
// Specify that V (a fragment of A) has a non-undef location.
auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
VarsWithDef[A].insert(V.getFragmentOrDefault());
};
// Return true if a non-undef location has been defined for V (a fragment of
// A). Doesn't imply that the location is currently non-undef, just that a
// non-undef location has been seen previously.
auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
auto FragsIt = VarsWithDef.find(A);
if (FragsIt == VarsWithDef.end())
return false;
return llvm::any_of(FragsIt->second, [V](auto Frag) {
return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
});
};
bool Changed = false;
DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
// Scan over the entire block, not just over the instructions mapped by
// FnVarLocs, because wedges in FnVarLocs may only be separated by debug
// instructions.
for (const Instruction &I : *BB) {
// Get the defs that come just before this instruction.
auto HandleLocsForWedge = [&](auto *WedgePosition) {
const auto *Locs = FnVarLocs.getWedge(WedgePosition);
if (!Locs)
return;
NumWedgesScanned++;
bool ChangedThisWedge = false;
// The new pruned set of defs.
SmallVector<VarLocInfo> NewDefs;
// Iterate over the existing defs.
for (const VarLocInfo &Loc : *Locs) {
NumDefsScanned++;
DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
Loc.DL.getInlinedAt()};
DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
// Remove undef entries that are encountered before any non-undef
// intrinsics from the entry block.
if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
// Did not insert this Loc, which is the same as removing it.
NumDefsRemoved++;
ChangedThisWedge = true;
continue;
}
DefineBits(Aggr, Var);
NewDefs.push_back(Loc);
}
// Replace the existing wedge with the pruned version.
if (ChangedThisWedge) {
FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
NumWedgesChanged++;
Changed = true;
}
};
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
HandleLocsForWedge(&DVR);
HandleLocsForWedge(&I);
}
return Changed;
}
static bool removeRedundantDbgLocs(const BasicBlock *BB,
FunctionVarLocsBuilder &FnVarLocs) {
bool MadeChanges = false;
MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
if (BB->isEntryBlock())
MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
if (MadeChanges)
LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
<< "\n");
return MadeChanges;
}
static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
DenseSet<DebugAggregate> Result;
for (auto &BB : Fn) {
for (auto &I : BB) {
// Any variable linked to an instruction is considered
// interesting. Ideally we only need to check Allocas, however, a
// DIAssignID might get dropped from an alloca but not stores. In that
// case, we need to consider the variable interesting for NFC behaviour
// with this change. TODO: Consider only looking at allocas.
for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
}
for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(&I)) {
Result.insert({DVR->getVariable(), DVR->getDebugLoc().getInlinedAt()});
}
}
}
return Result;
}
static void analyzeFunction(Function &Fn, const DataLayout &Layout,
FunctionVarLocsBuilder *FnVarLocs) {
// The analysis will generate location definitions for all variables, but we
// only need to perform a dataflow on the set of variables which have a stack
// slot. Find those now.
DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
bool Changed = false;
// Use a scope block to clean up AssignmentTrackingLowering before running
// MemLocFragmentFill to reduce peak memory consumption.
{
AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
Changed = Pass.run(FnVarLocs);
}
if (Changed) {
MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
shouldCoalesceFragments(Fn));
Pass.run(FnVarLocs);
// Remove redundant entries. As well as reducing memory consumption and
// avoiding waiting cycles later by burning some now, this has another
// important job. That is to work around some SelectionDAG quirks. See
// removeRedundantDbgLocsUsingForwardScan comments for more info on that.
for (auto &BB : Fn)
removeRedundantDbgLocs(&BB, *FnVarLocs);
}
}
FunctionVarLocs
DebugAssignmentTrackingAnalysis::run(Function &F,
FunctionAnalysisManager &FAM) {
if (!isAssignmentTrackingEnabled(*F.getParent()))
return FunctionVarLocs();
auto &DL = F.getDataLayout();
FunctionVarLocsBuilder Builder;
analyzeFunction(F, DL, &Builder);
// Save these results.
FunctionVarLocs Results;
Results.init(Builder);
return Results;
}
AnalysisKey DebugAssignmentTrackingAnalysis::Key;
PreservedAnalyses
DebugAssignmentTrackingPrinterPass::run(Function &F,
FunctionAnalysisManager &FAM) {
FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F);
return PreservedAnalyses::all();
}
bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
if (!isAssignmentTrackingEnabled(*F.getParent()))
return false;
LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
<< "\n");
auto DL = std::make_unique<DataLayout>(F.getParent());
// Clear previous results.
Results->clear();
FunctionVarLocsBuilder Builder;
analyzeFunction(F, *DL.get(), &Builder);
// Save these results.
Results->init(Builder);
if (PrintResults && isFunctionInPrintList(F.getName()))
Results->print(errs(), F);
// Return false because this pass does not modify the function.
return false;
}
AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
: FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
char AssignmentTrackingAnalysis::ID = 0;
INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
"Assignment Tracking Analysis", false, true)
|