1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
//===-- BasicBlockSections.cpp ---=========--------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BasicBlockSections implementation.
//
// The purpose of this pass is to assign sections to basic blocks when
// -fbasic-block-sections= option is used. Further, with profile information
// only the subset of basic blocks with profiles are placed in separate sections
// and the rest are grouped in a cold section. The exception handling blocks are
// treated specially to ensure they are all in one seciton.
//
// Basic Block Sections
// ====================
//
// With option, -fbasic-block-sections=list, every function may be split into
// clusters of basic blocks. Every cluster will be emitted into a separate
// section with its basic blocks sequenced in the given order. To get the
// optimized performance, the clusters must form an optimal BB layout for the
// function. We insert a symbol at the beginning of every cluster's section to
// allow the linker to reorder the sections in any arbitrary sequence. A global
// order of these sections would encapsulate the function layout.
// For example, consider the following clusters for a function foo (consisting
// of 6 basic blocks 0, 1, ..., 5).
//
// 0 2
// 1 3 5
//
// * Basic blocks 0 and 2 are placed in one section with symbol `foo`
// referencing the beginning of this section.
// * Basic blocks 1, 3, 5 are placed in a separate section. A new symbol
// `foo.__part.1` will reference the beginning of this section.
// * Basic block 4 (note that it is not referenced in the list) is placed in
// one section, and a new symbol `foo.cold` will point to it.
//
// There are a couple of challenges to be addressed:
//
// 1. The last basic block of every cluster should not have any implicit
// fallthrough to its next basic block, as it can be reordered by the linker.
// The compiler should make these fallthroughs explicit by adding
// unconditional jumps..
//
// 2. All inter-cluster branch targets would now need to be resolved by the
// linker as they cannot be calculated during compile time. This is done
// using static relocations. Further, the compiler tries to use short branch
// instructions on some ISAs for small branch offsets. This is not possible
// for inter-cluster branches as the offset is not determined at compile
// time, and therefore, long branch instructions have to be used for those.
//
// 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission
// needs special handling with basic block sections. DebugInfo needs to be
// emitted with more relocations as basic block sections can break a
// function into potentially several disjoint pieces, and CFI needs to be
// emitted per cluster. This also bloats the object file and binary sizes.
//
// Basic Block Address Map
// ==================
//
// With -fbasic-block-address-map, we emit the offsets of BB addresses of
// every function into the .llvm_bb_addr_map section. Along with the function
// symbols, this allows for mapping of virtual addresses in PMU profiles back to
// the corresponding basic blocks. This logic is implemented in AsmPrinter. This
// pass only assigns the BBSectionType of every function to ``labels``.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/BasicBlockSectionUtils.h"
#include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Target/TargetMachine.h"
#include <optional>
using namespace llvm;
// Placing the cold clusters in a separate section mitigates against poor
// profiles and allows optimizations such as hugepage mapping to be applied at a
// section granularity. Defaults to ".text.split." which is recognized by lld
// via the `-z keep-text-section-prefix` flag.
cl::opt<std::string> llvm::BBSectionsColdTextPrefix(
"bbsections-cold-text-prefix",
cl::desc("The text prefix to use for cold basic block clusters"),
cl::init(".text.split."), cl::Hidden);
static cl::opt<bool> BBSectionsDetectSourceDrift(
"bbsections-detect-source-drift",
cl::desc("This checks if there is a fdo instr. profile hash "
"mismatch for this function"),
cl::init(true), cl::Hidden);
namespace {
class BasicBlockSections : public MachineFunctionPass {
public:
static char ID;
BasicBlockSectionsProfileReaderWrapperPass *BBSectionsProfileReader = nullptr;
BasicBlockSections() : MachineFunctionPass(ID) {
initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Basic Block Sections Analysis";
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Identify basic blocks that need separate sections and prepare to emit them
/// accordingly.
bool runOnMachineFunction(MachineFunction &MF) override;
private:
bool handleBBSections(MachineFunction &MF);
bool handleBBAddrMap(MachineFunction &MF);
};
} // end anonymous namespace
char BasicBlockSections::ID = 0;
INITIALIZE_PASS_BEGIN(
BasicBlockSections, "bbsections-prepare",
"Prepares for basic block sections, by splitting functions "
"into clusters of basic blocks.",
false, false)
INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
INITIALIZE_PASS_END(BasicBlockSections, "bbsections-prepare",
"Prepares for basic block sections, by splitting functions "
"into clusters of basic blocks.",
false, false)
// This function updates and optimizes the branching instructions of every basic
// block in a given function to account for changes in the layout.
static void
updateBranches(MachineFunction &MF,
const SmallVector<MachineBasicBlock *> &PreLayoutFallThroughs) {
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SmallVector<MachineOperand, 4> Cond;
for (auto &MBB : MF) {
auto NextMBBI = std::next(MBB.getIterator());
auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()];
// If this block had a fallthrough before we need an explicit unconditional
// branch to that block if either
// 1- the block ends a section, which means its next block may be
// reorderd by the linker, or
// 2- the fallthrough block is not adjacent to the block in the new
// order.
if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB))
TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
// We do not optimize branches for machine basic blocks ending sections, as
// their adjacent block might be reordered by the linker.
if (MBB.isEndSection())
continue;
// It might be possible to optimize branches by flipping the branch
// condition.
Cond.clear();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
continue;
MBB.updateTerminator(FTMBB);
}
}
// This function sorts basic blocks according to the cluster's information.
// All explicitly specified clusters of basic blocks will be ordered
// accordingly. All non-specified BBs go into a separate "Cold" section.
// Additionally, if exception handling landing pads end up in more than one
// clusters, they are moved into a single "Exception" section. Eventually,
// clusters are ordered in increasing order of their IDs, with the "Exception"
// and "Cold" succeeding all other clusters.
// FuncClusterInfo represents the cluster information for basic blocks. It
// maps from BBID of basic blocks to their cluster information. If this is
// empty, it means unique sections for all basic blocks in the function.
static void
assignSections(MachineFunction &MF,
const DenseMap<UniqueBBID, BBClusterInfo> &FuncClusterInfo) {
assert(MF.hasBBSections() && "BB Sections is not set for function.");
// This variable stores the section ID of the cluster containing eh_pads (if
// all eh_pads are one cluster). If more than one cluster contain eh_pads, we
// set it equal to ExceptionSectionID.
std::optional<MBBSectionID> EHPadsSectionID;
for (auto &MBB : MF) {
// With the 'all' option, every basic block is placed in a unique section.
// With the 'list' option, every basic block is placed in a section
// associated with its cluster, unless we want individual unique sections
// for every basic block in this function (if FuncClusterInfo is empty).
if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All ||
FuncClusterInfo.empty()) {
// If unique sections are desired for all basic blocks of the function, we
// set every basic block's section ID equal to its original position in
// the layout (which is equal to its number). This ensures that basic
// blocks are ordered canonically.
MBB.setSectionID(MBB.getNumber());
} else {
auto I = FuncClusterInfo.find(*MBB.getBBID());
if (I != FuncClusterInfo.end()) {
MBB.setSectionID(I->second.ClusterID);
} else {
const TargetInstrInfo &TII =
*MBB.getParent()->getSubtarget().getInstrInfo();
if (TII.isMBBSafeToSplitToCold(MBB)) {
// BB goes into the special cold section if it is not specified in the
// cluster info map.
MBB.setSectionID(MBBSectionID::ColdSectionID);
}
}
}
if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() &&
EHPadsSectionID != MBBSectionID::ExceptionSectionID) {
// If we already have one cluster containing eh_pads, this must be updated
// to ExceptionSectionID. Otherwise, we set it equal to the current
// section ID.
EHPadsSectionID = EHPadsSectionID ? MBBSectionID::ExceptionSectionID
: MBB.getSectionID();
}
}
// If EHPads are in more than one section, this places all of them in the
// special exception section.
if (EHPadsSectionID == MBBSectionID::ExceptionSectionID)
for (auto &MBB : MF)
if (MBB.isEHPad())
MBB.setSectionID(*EHPadsSectionID);
}
void llvm::sortBasicBlocksAndUpdateBranches(
MachineFunction &MF, MachineBasicBlockComparator MBBCmp) {
[[maybe_unused]] const MachineBasicBlock *EntryBlock = &MF.front();
SmallVector<MachineBasicBlock *> PreLayoutFallThroughs(MF.getNumBlockIDs());
for (auto &MBB : MF)
PreLayoutFallThroughs[MBB.getNumber()] =
MBB.getFallThrough(/*JumpToFallThrough=*/false);
MF.sort(MBBCmp);
assert(&MF.front() == EntryBlock &&
"Entry block should not be displaced by basic block sections");
// Set IsBeginSection and IsEndSection according to the assigned section IDs.
MF.assignBeginEndSections();
// After reordering basic blocks, we must update basic block branches to
// insert explicit fallthrough branches when required and optimize branches
// when possible.
updateBranches(MF, PreLayoutFallThroughs);
}
// If the exception section begins with a landing pad, that landing pad will
// assume a zero offset (relative to @LPStart) in the LSDA. However, a value of
// zero implies "no landing pad." This function inserts a NOP just before the EH
// pad label to ensure a nonzero offset.
void llvm::avoidZeroOffsetLandingPad(MachineFunction &MF) {
for (auto &MBB : MF) {
if (MBB.isBeginSection() && MBB.isEHPad()) {
MachineBasicBlock::iterator MI = MBB.begin();
while (!MI->isEHLabel())
++MI;
MF.getSubtarget().getInstrInfo()->insertNoop(MBB, MI);
}
}
}
bool llvm::hasInstrProfHashMismatch(MachineFunction &MF) {
if (!BBSectionsDetectSourceDrift)
return false;
const char MetadataName[] = "instr_prof_hash_mismatch";
auto *Existing = MF.getFunction().getMetadata(LLVMContext::MD_annotation);
if (Existing) {
MDTuple *Tuple = cast<MDTuple>(Existing);
for (const auto &N : Tuple->operands())
if (N.equalsStr(MetadataName))
return true;
}
return false;
}
// Identify, arrange, and modify basic blocks which need separate sections
// according to the specification provided by the -fbasic-block-sections flag.
bool BasicBlockSections::handleBBSections(MachineFunction &MF) {
auto BBSectionsType = MF.getTarget().getBBSectionsType();
if (BBSectionsType == BasicBlockSection::None)
return false;
// Check for source drift. If the source has changed since the profiles
// were obtained, optimizing basic blocks might be sub-optimal.
// This only applies to BasicBlockSection::List as it creates
// clusters of basic blocks using basic block ids. Source drift can
// invalidate these groupings leading to sub-optimal code generation with
// regards to performance.
if (BBSectionsType == BasicBlockSection::List &&
hasInstrProfHashMismatch(MF))
return false;
// Renumber blocks before sorting them. This is useful for accessing the
// original layout positions and finding the original fallthroughs.
MF.RenumberBlocks();
if (BBSectionsType == BasicBlockSection::Labels) {
MF.setBBSectionsType(BBSectionsType);
return true;
}
DenseMap<UniqueBBID, BBClusterInfo> FuncClusterInfo;
if (BBSectionsType == BasicBlockSection::List) {
auto [HasProfile, ClusterInfo] =
getAnalysis<BasicBlockSectionsProfileReaderWrapperPass>()
.getClusterInfoForFunction(MF.getName());
if (!HasProfile)
return false;
for (auto &BBClusterInfo : ClusterInfo) {
FuncClusterInfo.try_emplace(BBClusterInfo.BBID, BBClusterInfo);
}
}
MF.setBBSectionsType(BBSectionsType);
assignSections(MF, FuncClusterInfo);
const MachineBasicBlock &EntryBB = MF.front();
auto EntryBBSectionID = EntryBB.getSectionID();
// Helper function for ordering BB sections as follows:
// * Entry section (section including the entry block).
// * Regular sections (in increasing order of their Number).
// ...
// * Exception section
// * Cold section
auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS,
const MBBSectionID &RHS) {
// We make sure that the section containing the entry block precedes all the
// other sections.
if (LHS == EntryBBSectionID || RHS == EntryBBSectionID)
return LHS == EntryBBSectionID;
return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type;
};
// We sort all basic blocks to make sure the basic blocks of every cluster are
// contiguous and ordered accordingly. Furthermore, clusters are ordered in
// increasing order of their section IDs, with the exception and the
// cold section placed at the end of the function.
// Also, we force the entry block of the function to be placed at the
// beginning of the function, regardless of the requested order.
auto Comparator = [&](const MachineBasicBlock &X,
const MachineBasicBlock &Y) {
auto XSectionID = X.getSectionID();
auto YSectionID = Y.getSectionID();
if (XSectionID != YSectionID)
return MBBSectionOrder(XSectionID, YSectionID);
// Make sure that the entry block is placed at the beginning.
if (&X == &EntryBB || &Y == &EntryBB)
return &X == &EntryBB;
// If the two basic block are in the same section, the order is decided by
// their position within the section.
if (XSectionID.Type == MBBSectionID::SectionType::Default)
return FuncClusterInfo.lookup(*X.getBBID()).PositionInCluster <
FuncClusterInfo.lookup(*Y.getBBID()).PositionInCluster;
return X.getNumber() < Y.getNumber();
};
sortBasicBlocksAndUpdateBranches(MF, Comparator);
avoidZeroOffsetLandingPad(MF);
return true;
}
// When the BB address map needs to be generated, this renumbers basic blocks to
// make them appear in increasing order of their IDs in the function. This
// avoids the need to store basic block IDs in the BB address map section, since
// they can be determined implicitly.
bool BasicBlockSections::handleBBAddrMap(MachineFunction &MF) {
if (MF.getTarget().getBBSectionsType() == BasicBlockSection::Labels)
return false;
if (!MF.getTarget().Options.BBAddrMap)
return false;
MF.RenumberBlocks();
return true;
}
bool BasicBlockSections::runOnMachineFunction(MachineFunction &MF) {
// First handle the basic block sections.
auto R1 = handleBBSections(MF);
// Handle basic block address map after basic block sections are finalized.
auto R2 = handleBBAddrMap(MF);
return R1 || R2;
}
void BasicBlockSections::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<BasicBlockSectionsProfileReaderWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionPass *llvm::createBasicBlockSectionsPass() {
return new BasicBlockSections();
}
|