1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
//===------ CFIFixup.cpp - Insert CFI remember/restore instructions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass inserts the necessary instructions to adjust for the inconsistency
// of the call-frame information caused by final machine basic block layout.
// The pass relies in constraints LLVM imposes on the placement of
// save/restore points (cf. ShrinkWrap) and has certain preconditions about
// placement of CFI instructions:
// * For any two CFI instructions of the function prologue one dominates
// and is post-dominated by the other.
// * The function possibly contains multiple epilogue blocks, where each
// epilogue block is complete and self-contained, i.e. CSR restore
// instructions (and the corresponding CFI instructions)
// are not split across two or more blocks.
// * CFI instructions are not contained in any loops.
// Thus, during execution, at the beginning and at the end of each basic block,
// following the prologue, the function can be in one of two states:
// - "has a call frame", if the function has executed the prologue, and
// has not executed any epilogue
// - "does not have a call frame", if the function has not executed the
// prologue, or has executed an epilogue
// which can be computed by a single RPO traversal.
// The location of the prologue is determined by finding the first block in the
// reverse traversal which contains CFI instructions.
// In order to accommodate backends which do not generate unwind info in
// epilogues we compute an additional property "strong no call frame on entry",
// which is set for the entry point of the function and for every block
// reachable from the entry along a path that does not execute the prologue. If
// this property holds, it takes precedence over the "has a call frame"
// property.
// From the point of view of the unwind tables, the "has/does not have call
// frame" state at beginning of each block is determined by the state at the end
// of the previous block, in layout order. Where these states differ, we insert
// compensating CFI instructions, which come in two flavours:
// - CFI instructions, which reset the unwind table state to the initial one.
// This is done by a target specific hook and is expected to be trivial
// to implement, for example it could be:
// .cfi_def_cfa <sp>, 0
// .cfi_same_value <rN>
// .cfi_same_value <rN-1>
// ...
// where <rN> are the callee-saved registers.
// - CFI instructions, which reset the unwind table state to the one
// created by the function prologue. These are
// .cfi_restore_state
// .cfi_remember_state
// In this case we also insert a `.cfi_remember_state` after the last CFI
// instruction in the function prologue.
//
// Known limitations:
// * the pass cannot handle an epilogue preceding the prologue in the basic
// block layout
// * the pass does not handle functions where SP is used as a frame pointer and
// SP adjustments up and down are done in different basic blocks (TODO)
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CFIFixup.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "cfi-fixup"
char CFIFixup::ID = 0;
INITIALIZE_PASS(CFIFixup, "cfi-fixup",
"Insert CFI remember/restore state instructions", false, false)
FunctionPass *llvm::createCFIFixup() { return new CFIFixup(); }
static bool isPrologueCFIInstruction(const MachineInstr &MI) {
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
MI.getFlag(MachineInstr::FrameSetup);
}
static bool containsEpilogue(const MachineBasicBlock &MBB) {
return llvm::any_of(llvm::reverse(MBB), [](const auto &MI) {
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
MI.getFlag(MachineInstr::FrameDestroy);
});
}
static MachineBasicBlock *
findPrologueEnd(MachineFunction &MF, MachineBasicBlock::iterator &PrologueEnd) {
// Even though we should theoretically traverse the blocks in post-order, we
// can't encode correctly cases where prologue blocks are not laid out in
// topological order. Then, assuming topological order, we can just traverse
// the function in reverse.
for (MachineBasicBlock &MBB : reverse(MF)) {
for (MachineInstr &MI : reverse(MBB.instrs())) {
if (!isPrologueCFIInstruction(MI))
continue;
PrologueEnd = std::next(MI.getIterator());
return &MBB;
}
}
return nullptr;
}
bool CFIFixup::runOnMachineFunction(MachineFunction &MF) {
const TargetFrameLowering &TFL = *MF.getSubtarget().getFrameLowering();
if (!TFL.enableCFIFixup(MF))
return false;
const unsigned NumBlocks = MF.getNumBlockIDs();
if (NumBlocks < 2)
return false;
// Find the prologue and the point where we can issue the first
// `.cfi_remember_state`.
MachineBasicBlock::iterator PrologueEnd;
MachineBasicBlock *PrologueBlock = findPrologueEnd(MF, PrologueEnd);
if (PrologueBlock == nullptr)
return false;
struct BlockFlags {
bool Reachable : 1;
bool StrongNoFrameOnEntry : 1;
bool HasFrameOnEntry : 1;
bool HasFrameOnExit : 1;
};
SmallVector<BlockFlags, 32> BlockInfo(NumBlocks, {false, false, false, false});
BlockInfo[0].Reachable = true;
BlockInfo[0].StrongNoFrameOnEntry = true;
// Compute the presence/absence of frame at each basic block.
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
for (MachineBasicBlock *MBB : RPOT) {
BlockFlags &Info = BlockInfo[MBB->getNumber()];
// Set to true if the current block contains the prologue or the epilogue,
// respectively.
bool HasPrologue = MBB == PrologueBlock;
bool HasEpilogue = false;
if (Info.HasFrameOnEntry || HasPrologue)
HasEpilogue = containsEpilogue(*MBB);
// If the function has a call frame at the entry of the current block or the
// current block contains the prologue, then the function has a call frame
// at the exit of the block, unless the block contains the epilogue.
Info.HasFrameOnExit = (Info.HasFrameOnEntry || HasPrologue) && !HasEpilogue;
// Set the successors' state on entry.
for (MachineBasicBlock *Succ : MBB->successors()) {
BlockFlags &SuccInfo = BlockInfo[Succ->getNumber()];
SuccInfo.Reachable = true;
SuccInfo.StrongNoFrameOnEntry |=
Info.StrongNoFrameOnEntry && !HasPrologue;
SuccInfo.HasFrameOnEntry = Info.HasFrameOnExit;
}
}
// Walk the blocks of the function in "physical" order.
// Every block inherits the frame state (as recorded in the unwind tables)
// of the previous block. If the intended frame state is different, insert
// compensating CFI instructions.
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
bool Change = false;
// `InsertPt` always points to the point in a preceding block where we have to
// insert a `.cfi_remember_state`, in the case that the current block needs a
// `.cfi_restore_state`.
MachineBasicBlock *InsertMBB = PrologueBlock;
MachineBasicBlock::iterator InsertPt = PrologueEnd;
assert(InsertPt != PrologueBlock->begin() &&
"Inconsistent notion of \"prologue block\"");
// No point starting before the prologue block.
// TODO: the unwind tables will still be incorrect if an epilogue physically
// preceeds the prologue.
MachineFunction::iterator CurrBB = std::next(PrologueBlock->getIterator());
bool HasFrame = BlockInfo[PrologueBlock->getNumber()].HasFrameOnExit;
while (CurrBB != MF.end()) {
const BlockFlags &Info = BlockInfo[CurrBB->getNumber()];
if (!Info.Reachable) {
++CurrBB;
continue;
}
#ifndef NDEBUG
if (!Info.StrongNoFrameOnEntry) {
for (auto *Pred : CurrBB->predecessors()) {
BlockFlags &PredInfo = BlockInfo[Pred->getNumber()];
assert((!PredInfo.Reachable ||
Info.HasFrameOnEntry == PredInfo.HasFrameOnExit) &&
"Inconsistent call frame state");
}
}
#endif
if (!Info.StrongNoFrameOnEntry && Info.HasFrameOnEntry && !HasFrame) {
// Reset to the "after prologue" state.
// Insert a `.cfi_remember_state` into the last block known to have a
// stack frame.
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
BuildMI(*InsertMBB, InsertPt, DebugLoc(),
TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Insert a `.cfi_restore_state` at the beginning of the current block.
CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
InsertPt = BuildMI(*CurrBB, CurrBB->begin(), DebugLoc(),
TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
++InsertPt;
InsertMBB = &*CurrBB;
Change = true;
} else if ((Info.StrongNoFrameOnEntry || !Info.HasFrameOnEntry) &&
HasFrame) {
// Reset to the state upon function entry.
TFL.resetCFIToInitialState(*CurrBB);
Change = true;
}
HasFrame = Info.HasFrameOnExit;
++CurrBB;
}
return Change;
}
|