1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
//===-- CallBrPrepare - Prepare callbr for code generation ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers callbrs in LLVM IR in order to to assist SelectionDAG's
// codegen.
//
// In particular, this pass assists in inserting register copies for the output
// values of a callbr along the edges leading to the indirect target blocks.
// Though the output SSA value is defined by the callbr instruction itself in
// the IR representation, the value cannot be copied to the appropriate virtual
// registers prior to jumping to an indirect label, since the jump occurs
// within the user-provided assembly blob.
//
// Instead, those copies must occur separately at the beginning of each
// indirect target. That requires that we create a separate SSA definition in
// each of them (via llvm.callbr.landingpad), and may require splitting
// critical edges so we have a location to place the intrinsic. Finally, we
// remap users of the original callbr output SSA value to instead point to the
// appropriate llvm.callbr.landingpad value.
//
// Ideally, this could be done inside SelectionDAG, or in the
// MachineInstruction representation, without the use of an IR-level intrinsic.
// But, within the current framework, it’s simpler to implement as an IR pass.
// (If support for callbr in GlobalISel is implemented, it’s worth considering
// whether this is still required.)
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CallBrPrepare.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
#define DEBUG_TYPE "callbr-prepare"
static bool SplitCriticalEdges(ArrayRef<CallBrInst *> CBRs, DominatorTree &DT);
static bool InsertIntrinsicCalls(ArrayRef<CallBrInst *> CBRs,
DominatorTree &DT);
static void UpdateSSA(DominatorTree &DT, CallBrInst *CBR, CallInst *Intrinsic,
SSAUpdater &SSAUpdate);
static SmallVector<CallBrInst *, 2> FindCallBrs(Function &Fn);
namespace {
class CallBrPrepare : public FunctionPass {
public:
CallBrPrepare() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &Fn) override;
static char ID;
};
} // end anonymous namespace
PreservedAnalyses CallBrPreparePass::run(Function &Fn,
FunctionAnalysisManager &FAM) {
bool Changed = false;
SmallVector<CallBrInst *, 2> CBRs = FindCallBrs(Fn);
if (CBRs.empty())
return PreservedAnalyses::all();
auto &DT = FAM.getResult<DominatorTreeAnalysis>(Fn);
Changed |= SplitCriticalEdges(CBRs, DT);
Changed |= InsertIntrinsicCalls(CBRs, DT);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
char CallBrPrepare::ID = 0;
INITIALIZE_PASS_BEGIN(CallBrPrepare, "callbrprepare", "Prepare callbr", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(CallBrPrepare, "callbrprepare", "Prepare callbr", false,
false)
FunctionPass *llvm::createCallBrPass() { return new CallBrPrepare(); }
void CallBrPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTreeWrapperPass>();
}
SmallVector<CallBrInst *, 2> FindCallBrs(Function &Fn) {
SmallVector<CallBrInst *, 2> CBRs;
for (BasicBlock &BB : Fn)
if (auto *CBR = dyn_cast<CallBrInst>(BB.getTerminator()))
if (!CBR->getType()->isVoidTy() && !CBR->use_empty())
CBRs.push_back(CBR);
return CBRs;
}
bool SplitCriticalEdges(ArrayRef<CallBrInst *> CBRs, DominatorTree &DT) {
bool Changed = false;
CriticalEdgeSplittingOptions Options(&DT);
Options.setMergeIdenticalEdges();
// The indirect destination might be duplicated between another parameter...
// %0 = callbr ... [label %x, label %x]
// ...hence MergeIdenticalEdges and AllowIndentical edges, but we don't need
// to split the default destination if it's duplicated between an indirect
// destination...
// %1 = callbr ... to label %x [label %x]
// ...hence starting at 1 and checking against successor 0 (aka the default
// destination).
for (CallBrInst *CBR : CBRs)
for (unsigned i = 1, e = CBR->getNumSuccessors(); i != e; ++i)
if (CBR->getSuccessor(i) == CBR->getSuccessor(0) ||
isCriticalEdge(CBR, i, /*AllowIdenticalEdges*/ true))
if (SplitKnownCriticalEdge(CBR, i, Options))
Changed = true;
return Changed;
}
bool InsertIntrinsicCalls(ArrayRef<CallBrInst *> CBRs, DominatorTree &DT) {
bool Changed = false;
SmallPtrSet<const BasicBlock *, 4> Visited;
IRBuilder<> Builder(CBRs[0]->getContext());
for (CallBrInst *CBR : CBRs) {
if (!CBR->getNumIndirectDests())
continue;
SSAUpdater SSAUpdate;
SSAUpdate.Initialize(CBR->getType(), CBR->getName());
SSAUpdate.AddAvailableValue(CBR->getParent(), CBR);
SSAUpdate.AddAvailableValue(CBR->getDefaultDest(), CBR);
for (BasicBlock *IndDest : CBR->getIndirectDests()) {
if (!Visited.insert(IndDest).second)
continue;
Builder.SetInsertPoint(&*IndDest->begin());
CallInst *Intrinsic = Builder.CreateIntrinsic(
CBR->getType(), Intrinsic::callbr_landingpad, {CBR});
SSAUpdate.AddAvailableValue(IndDest, Intrinsic);
UpdateSSA(DT, CBR, Intrinsic, SSAUpdate);
Changed = true;
}
}
return Changed;
}
static bool IsInSameBasicBlock(const Use &U, const BasicBlock *BB) {
const auto *I = dyn_cast<Instruction>(U.getUser());
return I && I->getParent() == BB;
}
#ifndef NDEBUG
static void PrintDebugDomInfo(const DominatorTree &DT, const Use &U,
const BasicBlock *BB, bool IsDefaultDest) {
if (!isa<Instruction>(U.getUser()))
return;
LLVM_DEBUG(dbgs() << "Use: " << *U.getUser() << ", in block "
<< cast<Instruction>(U.getUser())->getParent()->getName()
<< ", is " << (DT.dominates(BB, U) ? "" : "NOT ")
<< "dominated by " << BB->getName() << " ("
<< (IsDefaultDest ? "in" : "") << "direct)\n");
}
#endif
void UpdateSSA(DominatorTree &DT, CallBrInst *CBR, CallInst *Intrinsic,
SSAUpdater &SSAUpdate) {
SmallPtrSet<Use *, 4> Visited;
BasicBlock *DefaultDest = CBR->getDefaultDest();
BasicBlock *LandingPad = Intrinsic->getParent();
SmallVector<Use *, 4> Uses(make_pointer_range(CBR->uses()));
for (Use *U : Uses) {
if (!Visited.insert(U).second)
continue;
#ifndef NDEBUG
PrintDebugDomInfo(DT, *U, LandingPad, /*IsDefaultDest*/ false);
PrintDebugDomInfo(DT, *U, DefaultDest, /*IsDefaultDest*/ true);
#endif
// Don't rewrite the use in the newly inserted intrinsic.
if (const auto *II = dyn_cast<IntrinsicInst>(U->getUser()))
if (II->getIntrinsicID() == Intrinsic::callbr_landingpad)
continue;
// If the Use is in the same BasicBlock as the Intrinsic call, replace
// the Use with the value of the Intrinsic call.
if (IsInSameBasicBlock(*U, LandingPad)) {
U->set(Intrinsic);
continue;
}
// If the Use is dominated by the default dest, do not touch it.
if (DT.dominates(DefaultDest, *U))
continue;
SSAUpdate.RewriteUse(*U);
}
}
bool CallBrPrepare::runOnFunction(Function &Fn) {
bool Changed = false;
SmallVector<CallBrInst *, 2> CBRs = FindCallBrs(Fn);
if (CBRs.empty())
return Changed;
// It's highly likely that most programs do not contain CallBrInsts. Follow a
// similar pattern from SafeStackLegacyPass::runOnFunction to reuse previous
// domtree analysis if available, otherwise compute it lazily. This avoids
// forcing Dominator Tree Construction at -O0 for programs that likely do not
// contain CallBrInsts. It does pessimize programs with callbr at higher
// optimization levels, as the DominatorTree created here is not reused by
// subsequent passes.
DominatorTree *DT;
std::optional<DominatorTree> LazilyComputedDomTree;
if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
DT = &DTWP->getDomTree();
else {
LazilyComputedDomTree.emplace(Fn);
DT = &*LazilyComputedDomTree;
}
if (SplitCriticalEdges(CBRs, *DT))
Changed = true;
if (InsertIntrinsicCalls(CBRs, *DT))
Changed = true;
return Changed;
}
|