1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
|
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file This file implements the utility functions used by the GlobalISel
/// pipeline.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/CodeGenCommonISel.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSizeOpts.h"
#include "llvm/CodeGen/RegisterBankInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <numeric>
#include <optional>
#define DEBUG_TYPE "globalisel-utils"
using namespace llvm;
using namespace MIPatternMatch;
Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, Register Reg,
const TargetRegisterClass &RegClass) {
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
return MRI.createVirtualRegister(&RegClass);
return Reg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt,
const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
Register Reg = RegMO.getReg();
// Assume physical registers are properly constrained.
assert(Reg.isVirtual() && "PhysReg not implemented");
// Save the old register class to check whether
// the change notifications will be required.
// TODO: A better approach would be to pass
// the observers to constrainRegToClass().
auto *OldRegClass = MRI.getRegClassOrNull(Reg);
Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
// If we created a new virtual register because the class is not compatible
// then create a copy between the new and the old register.
if (ConstrainedReg != Reg) {
MachineBasicBlock::iterator InsertIt(&InsertPt);
MachineBasicBlock &MBB = *InsertPt.getParent();
// FIXME: The copy needs to have the classes constrained for its operands.
// Use operand's regbank to get the class for old register (Reg).
if (RegMO.isUse()) {
BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), ConstrainedReg)
.addReg(Reg);
} else {
assert(RegMO.isDef() && "Must be a definition");
BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
TII.get(TargetOpcode::COPY), Reg)
.addReg(ConstrainedReg);
}
if (GISelChangeObserver *Observer = MF.getObserver()) {
Observer->changingInstr(*RegMO.getParent());
}
RegMO.setReg(ConstrainedReg);
if (GISelChangeObserver *Observer = MF.getObserver()) {
Observer->changedInstr(*RegMO.getParent());
}
} else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
if (GISelChangeObserver *Observer = MF.getObserver()) {
if (!RegMO.isDef()) {
MachineInstr *RegDef = MRI.getVRegDef(Reg);
Observer->changedInstr(*RegDef);
}
Observer->changingAllUsesOfReg(MRI, Reg);
Observer->finishedChangingAllUsesOfReg();
}
}
return ConstrainedReg;
}
Register llvm::constrainOperandRegClass(
const MachineFunction &MF, const TargetRegisterInfo &TRI,
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
MachineOperand &RegMO, unsigned OpIdx) {
Register Reg = RegMO.getReg();
// Assume physical registers are properly constrained.
assert(Reg.isVirtual() && "PhysReg not implemented");
const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
// Some of the target independent instructions, like COPY, may not impose any
// register class constraints on some of their operands: If it's a use, we can
// skip constraining as the instruction defining the register would constrain
// it.
if (OpRC) {
// Obtain the RC from incoming regbank if it is a proper sub-class. Operands
// can have multiple regbanks for a superclass that combine different
// register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
// resolved by targets during regbankselect should not be overridden.
if (const auto *SubRC = TRI.getCommonSubClass(
OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
OpRC = SubRC;
OpRC = TRI.getAllocatableClass(OpRC);
}
if (!OpRC) {
assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
"Register class constraint is required unless either the "
"instruction is target independent or the operand is a use");
// FIXME: Just bailing out like this here could be not enough, unless we
// expect the users of this function to do the right thing for PHIs and
// COPY:
// v1 = COPY v0
// v2 = COPY v1
// v1 here may end up not being constrained at all. Please notice that to
// reproduce the issue we likely need a destination pattern of a selection
// rule producing such extra copies, not just an input GMIR with them as
// every existing target using selectImpl handles copies before calling it
// and they never reach this function.
return Reg;
}
return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
RegMO);
}
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
assert(!isPreISelGenericOpcode(I.getOpcode()) &&
"A selected instruction is expected");
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
MachineOperand &MO = I.getOperand(OpI);
// There's nothing to be done on non-register operands.
if (!MO.isReg())
continue;
LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
assert(MO.isReg() && "Unsupported non-reg operand");
Register Reg = MO.getReg();
// Physical registers don't need to be constrained.
if (Reg.isPhysical())
continue;
// Register operands with a value of 0 (e.g. predicate operands) don't need
// to be constrained.
if (Reg == 0)
continue;
// If the operand is a vreg, we should constrain its regclass, and only
// insert COPYs if that's impossible.
// constrainOperandRegClass does that for us.
constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
// Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
// done.
if (MO.isUse()) {
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
I.tieOperands(DefIdx, OpI);
}
}
return true;
}
bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
MachineRegisterInfo &MRI) {
// Give up if either DstReg or SrcReg is a physical register.
if (DstReg.isPhysical() || SrcReg.isPhysical())
return false;
// Give up if the types don't match.
if (MRI.getType(DstReg) != MRI.getType(SrcReg))
return false;
// Replace if either DstReg has no constraints or the register
// constraints match.
const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg);
if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg))
return true;
// Otherwise match if the Src is already a regclass that is covered by the Dst
// RegBank.
return DstRBC.is<const RegisterBank *>() && MRI.getRegClassOrNull(SrcReg) &&
DstRBC.get<const RegisterBank *>()->covers(
*MRI.getRegClassOrNull(SrcReg));
}
bool llvm::isTriviallyDead(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
// FIXME: This logical is mostly duplicated with
// DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
// MachineInstr::isLabel?
// Don't delete frame allocation labels.
if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
return false;
// LIFETIME markers should be preserved even if they seem dead.
if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
MI.getOpcode() == TargetOpcode::LIFETIME_END)
return false;
// If we can move an instruction, we can remove it. Otherwise, it has
// a side-effect of some sort.
bool SawStore = false;
if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
return false;
// Instructions without side-effects are dead iff they only define dead vregs.
for (const auto &MO : MI.all_defs()) {
Register Reg = MO.getReg();
if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
return false;
}
return true;
}
static void reportGISelDiagnostic(DiagnosticSeverity Severity,
MachineFunction &MF,
const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
bool IsFatal = Severity == DS_Error &&
TPC.isGlobalISelAbortEnabled();
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || IsFatal)
R << (" (in function: " + MF.getName() + ")").str();
if (IsFatal)
report_fatal_error(Twine(R.getMsg()));
else
MORE.emit(R);
}
void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
MachineOptimizationRemarkMissed &R) {
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
}
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
MachineOptimizationRemarkEmitter &MORE,
const char *PassName, StringRef Msg,
const MachineInstr &MI) {
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
MI.getDebugLoc(), MI.getParent());
R << Msg;
// Printing MI is expensive; only do it if expensive remarks are enabled.
if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
R << ": " << ore::MNV("Inst", MI);
reportGISelFailure(MF, TPC, MORE, R);
}
std::optional<APInt> llvm::getIConstantVRegVal(Register VReg,
const MachineRegisterInfo &MRI) {
std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
VReg, MRI, /*LookThroughInstrs*/ false);
assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
"Value found while looking through instrs");
if (!ValAndVReg)
return std::nullopt;
return ValAndVReg->Value;
}
std::optional<int64_t>
llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
if (Val && Val->getBitWidth() <= 64)
return Val->getSExtValue();
return std::nullopt;
}
namespace {
// This function is used in many places, and as such, it has some
// micro-optimizations to try and make it as fast as it can be.
//
// - We use template arguments to avoid an indirect call caused by passing a
// function_ref/std::function
// - GetAPCstValue does not return std::optional<APInt> as that's expensive.
// Instead it returns true/false and places the result in a pre-constructed
// APInt.
//
// Please change this function carefully and benchmark your changes.
template <bool (*IsConstantOpcode)(const MachineInstr *),
bool (*GetAPCstValue)(const MachineInstr *MI, APInt &)>
std::optional<ValueAndVReg>
getConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI,
bool LookThroughInstrs = true,
bool LookThroughAnyExt = false) {
SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
MachineInstr *MI;
while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
LookThroughInstrs) {
switch (MI->getOpcode()) {
case TargetOpcode::G_ANYEXT:
if (!LookThroughAnyExt)
return std::nullopt;
[[fallthrough]];
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
SeenOpcodes.push_back(std::make_pair(
MI->getOpcode(),
MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
VReg = MI->getOperand(1).getReg();
break;
case TargetOpcode::COPY:
VReg = MI->getOperand(1).getReg();
if (VReg.isPhysical())
return std::nullopt;
break;
case TargetOpcode::G_INTTOPTR:
VReg = MI->getOperand(1).getReg();
break;
default:
return std::nullopt;
}
}
if (!MI || !IsConstantOpcode(MI))
return std::nullopt;
APInt Val;
if (!GetAPCstValue(MI, Val))
return std::nullopt;
for (auto &Pair : reverse(SeenOpcodes)) {
switch (Pair.first) {
case TargetOpcode::G_TRUNC:
Val = Val.trunc(Pair.second);
break;
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
Val = Val.sext(Pair.second);
break;
case TargetOpcode::G_ZEXT:
Val = Val.zext(Pair.second);
break;
}
}
return ValueAndVReg{std::move(Val), VReg};
}
bool isIConstant(const MachineInstr *MI) {
if (!MI)
return false;
return MI->getOpcode() == TargetOpcode::G_CONSTANT;
}
bool isFConstant(const MachineInstr *MI) {
if (!MI)
return false;
return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
}
bool isAnyConstant(const MachineInstr *MI) {
if (!MI)
return false;
unsigned Opc = MI->getOpcode();
return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
}
bool getCImmAsAPInt(const MachineInstr *MI, APInt &Result) {
const MachineOperand &CstVal = MI->getOperand(1);
if (!CstVal.isCImm())
return false;
Result = CstVal.getCImm()->getValue();
return true;
}
bool getCImmOrFPImmAsAPInt(const MachineInstr *MI, APInt &Result) {
const MachineOperand &CstVal = MI->getOperand(1);
if (CstVal.isCImm())
Result = CstVal.getCImm()->getValue();
else if (CstVal.isFPImm())
Result = CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
else
return false;
return true;
}
} // end anonymous namespace
std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
return getConstantVRegValWithLookThrough<isIConstant, getCImmAsAPInt>(
VReg, MRI, LookThroughInstrs);
}
std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
bool LookThroughAnyExt) {
return getConstantVRegValWithLookThrough<isAnyConstant,
getCImmOrFPImmAsAPInt>(
VReg, MRI, LookThroughInstrs, LookThroughAnyExt);
}
std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
auto Reg =
getConstantVRegValWithLookThrough<isFConstant, getCImmOrFPImmAsAPInt>(
VReg, MRI, LookThroughInstrs);
if (!Reg)
return std::nullopt;
return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
Reg->VReg};
}
const ConstantFP *
llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
MachineInstr *MI = MRI.getVRegDef(VReg);
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
return nullptr;
return MI->getOperand(1).getFPImm();
}
std::optional<DefinitionAndSourceRegister>
llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
Register DefSrcReg = Reg;
auto *DefMI = MRI.getVRegDef(Reg);
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
if (!DstTy.isValid())
return std::nullopt;
unsigned Opc = DefMI->getOpcode();
while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
Register SrcReg = DefMI->getOperand(1).getReg();
auto SrcTy = MRI.getType(SrcReg);
if (!SrcTy.isValid())
break;
DefMI = MRI.getVRegDef(SrcReg);
DefSrcReg = SrcReg;
Opc = DefMI->getOpcode();
}
return DefinitionAndSourceRegister{DefMI, DefSrcReg};
}
MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
std::optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->MI : nullptr;
}
Register llvm::getSrcRegIgnoringCopies(Register Reg,
const MachineRegisterInfo &MRI) {
std::optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
return DefSrcReg ? DefSrcReg->Reg : Register();
}
void llvm::extractParts(Register Reg, LLT Ty, int NumParts,
SmallVectorImpl<Register> &VRegs,
MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI) {
for (int i = 0; i < NumParts; ++i)
VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
MIRBuilder.buildUnmerge(VRegs, Reg);
}
bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy,
SmallVectorImpl<Register> &VRegs,
SmallVectorImpl<Register> &LeftoverRegs,
MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI) {
assert(!LeftoverTy.isValid() && "this is an out argument");
unsigned RegSize = RegTy.getSizeInBits();
unsigned MainSize = MainTy.getSizeInBits();
unsigned NumParts = RegSize / MainSize;
unsigned LeftoverSize = RegSize - NumParts * MainSize;
// Use an unmerge when possible.
if (LeftoverSize == 0) {
for (unsigned I = 0; I < NumParts; ++I)
VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
MIRBuilder.buildUnmerge(VRegs, Reg);
return true;
}
// Try to use unmerge for irregular vector split where possible
// For example when splitting a <6 x i32> into <4 x i32> with <2 x i32>
// leftover, it becomes:
// <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1
// <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3
if (RegTy.isVector() && MainTy.isVector()) {
unsigned RegNumElts = RegTy.getNumElements();
unsigned MainNumElts = MainTy.getNumElements();
unsigned LeftoverNumElts = RegNumElts % MainNumElts;
// If can unmerge to LeftoverTy, do it
if (MainNumElts % LeftoverNumElts == 0 &&
RegNumElts % LeftoverNumElts == 0 &&
RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() &&
LeftoverNumElts > 1) {
LeftoverTy =
LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits());
// Unmerge the SrcReg to LeftoverTy vectors
SmallVector<Register, 4> UnmergeValues;
extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues,
MIRBuilder, MRI);
// Find how many LeftoverTy makes one MainTy
unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts;
unsigned NumOfLeftoverVal =
((RegNumElts % MainNumElts) / LeftoverNumElts);
// Create as many MainTy as possible using unmerged value
SmallVector<Register, 4> MergeValues;
for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) {
MergeValues.push_back(UnmergeValues[I]);
if (MergeValues.size() == LeftoverPerMain) {
VRegs.push_back(
MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0));
MergeValues.clear();
}
}
// Populate LeftoverRegs with the leftovers
for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal;
I < UnmergeValues.size(); I++) {
LeftoverRegs.push_back(UnmergeValues[I]);
}
return true;
}
}
// Perform irregular split. Leftover is last element of RegPieces.
if (MainTy.isVector()) {
SmallVector<Register, 8> RegPieces;
extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder,
MRI);
for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
VRegs.push_back(RegPieces[i]);
LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
LeftoverTy = MRI.getType(LeftoverRegs[0]);
return true;
}
LeftoverTy = LLT::scalar(LeftoverSize);
// For irregular sizes, extract the individual parts.
for (unsigned I = 0; I != NumParts; ++I) {
Register NewReg = MRI.createGenericVirtualRegister(MainTy);
VRegs.push_back(NewReg);
MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
}
for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
Offset += LeftoverSize) {
Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
LeftoverRegs.push_back(NewReg);
MIRBuilder.buildExtract(NewReg, Reg, Offset);
}
return true;
}
void llvm::extractVectorParts(Register Reg, unsigned NumElts,
SmallVectorImpl<Register> &VRegs,
MachineIRBuilder &MIRBuilder,
MachineRegisterInfo &MRI) {
LLT RegTy = MRI.getType(Reg);
assert(RegTy.isVector() && "Expected a vector type");
LLT EltTy = RegTy.getElementType();
LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
unsigned RegNumElts = RegTy.getNumElements();
unsigned LeftoverNumElts = RegNumElts % NumElts;
unsigned NumNarrowTyPieces = RegNumElts / NumElts;
// Perfect split without leftover
if (LeftoverNumElts == 0)
return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder,
MRI);
// Irregular split. Provide direct access to all elements for artifact
// combiner using unmerge to elements. Then build vectors with NumElts
// elements. Remaining element(s) will be (used to build vector) Leftover.
SmallVector<Register, 8> Elts;
extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI);
unsigned Offset = 0;
// Requested sub-vectors of NarrowTy.
for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0));
}
// Leftover element(s).
if (LeftoverNumElts == 1) {
VRegs.push_back(Elts[Offset]);
} else {
LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
VRegs.push_back(
MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0));
}
}
MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
const MachineRegisterInfo &MRI) {
MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
}
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
if (Size == 32)
return APFloat(float(Val));
if (Size == 64)
return APFloat(Val);
if (Size != 16)
llvm_unreachable("Unsupported FPConstant size");
bool Ignored;
APFloat APF(Val);
APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
return APF;
}
std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode,
const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
if (!MaybeOp2Cst)
return std::nullopt;
auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
if (!MaybeOp1Cst)
return std::nullopt;
const APInt &C1 = MaybeOp1Cst->Value;
const APInt &C2 = MaybeOp2Cst->Value;
switch (Opcode) {
default:
break;
case TargetOpcode::G_ADD:
return C1 + C2;
case TargetOpcode::G_PTR_ADD:
// Types can be of different width here.
// Result needs to be the same width as C1, so trunc or sext C2.
return C1 + C2.sextOrTrunc(C1.getBitWidth());
case TargetOpcode::G_AND:
return C1 & C2;
case TargetOpcode::G_ASHR:
return C1.ashr(C2);
case TargetOpcode::G_LSHR:
return C1.lshr(C2);
case TargetOpcode::G_MUL:
return C1 * C2;
case TargetOpcode::G_OR:
return C1 | C2;
case TargetOpcode::G_SHL:
return C1 << C2;
case TargetOpcode::G_SUB:
return C1 - C2;
case TargetOpcode::G_XOR:
return C1 ^ C2;
case TargetOpcode::G_UDIV:
if (!C2.getBoolValue())
break;
return C1.udiv(C2);
case TargetOpcode::G_SDIV:
if (!C2.getBoolValue())
break;
return C1.sdiv(C2);
case TargetOpcode::G_UREM:
if (!C2.getBoolValue())
break;
return C1.urem(C2);
case TargetOpcode::G_SREM:
if (!C2.getBoolValue())
break;
return C1.srem(C2);
case TargetOpcode::G_SMIN:
return APIntOps::smin(C1, C2);
case TargetOpcode::G_SMAX:
return APIntOps::smax(C1, C2);
case TargetOpcode::G_UMIN:
return APIntOps::umin(C1, C2);
case TargetOpcode::G_UMAX:
return APIntOps::umax(C1, C2);
}
return std::nullopt;
}
std::optional<APFloat>
llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
const Register Op2, const MachineRegisterInfo &MRI) {
const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
if (!Op2Cst)
return std::nullopt;
const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
if (!Op1Cst)
return std::nullopt;
APFloat C1 = Op1Cst->getValueAPF();
const APFloat &C2 = Op2Cst->getValueAPF();
switch (Opcode) {
case TargetOpcode::G_FADD:
C1.add(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FSUB:
C1.subtract(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FMUL:
C1.multiply(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FDIV:
C1.divide(C2, APFloat::rmNearestTiesToEven);
return C1;
case TargetOpcode::G_FREM:
C1.mod(C2);
return C1;
case TargetOpcode::G_FCOPYSIGN:
C1.copySign(C2);
return C1;
case TargetOpcode::G_FMINNUM:
return minnum(C1, C2);
case TargetOpcode::G_FMAXNUM:
return maxnum(C1, C2);
case TargetOpcode::G_FMINIMUM:
return minimum(C1, C2);
case TargetOpcode::G_FMAXIMUM:
return maximum(C1, C2);
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE:
// FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
// follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
// and currently there isn't a nice wrapper in APFloat for the version with
// correct snan handling.
break;
default:
break;
}
return std::nullopt;
}
SmallVector<APInt>
llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
const Register Op2,
const MachineRegisterInfo &MRI) {
auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
if (!SrcVec2)
return SmallVector<APInt>();
auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
if (!SrcVec1)
return SmallVector<APInt>();
SmallVector<APInt> FoldedElements;
for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
SrcVec2->getSourceReg(Idx), MRI);
if (!MaybeCst)
return SmallVector<APInt>();
FoldedElements.push_back(*MaybeCst);
}
return FoldedElements;
}
bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
bool SNaN) {
const MachineInstr *DefMI = MRI.getVRegDef(Val);
if (!DefMI)
return false;
const TargetMachine& TM = DefMI->getMF()->getTarget();
if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
return true;
// If the value is a constant, we can obviously see if it is a NaN or not.
if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
return !FPVal->getValueAPF().isNaN() ||
(SNaN && !FPVal->getValueAPF().isSignaling());
}
if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
for (const auto &Op : DefMI->uses())
if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
return false;
return true;
}
switch (DefMI->getOpcode()) {
default:
break;
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FREM:
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FTAN:
case TargetOpcode::G_FACOS:
case TargetOpcode::G_FASIN:
case TargetOpcode::G_FATAN:
case TargetOpcode::G_FCOSH:
case TargetOpcode::G_FSINH:
case TargetOpcode::G_FTANH:
case TargetOpcode::G_FMA:
case TargetOpcode::G_FMAD:
if (SNaN)
return true;
// TODO: Need isKnownNeverInfinity
return false;
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE: {
if (SNaN)
return true;
// This can return a NaN if either operand is an sNaN, or if both operands
// are NaN.
return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
(isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
}
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM: {
// Only one needs to be known not-nan, since it will be returned if the
// other ends up being one.
return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
}
}
if (SNaN) {
// FP operations quiet. For now, just handle the ones inserted during
// legalization.
switch (DefMI->getOpcode()) {
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FCANONICALIZE:
return true;
default:
return false;
}
}
return false;
}
Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
const MachinePointerInfo &MPO) {
auto PSV = dyn_cast_if_present<const PseudoSourceValue *>(MPO.V);
if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
MachineFrameInfo &MFI = MF.getFrameInfo();
return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
MPO.Offset);
}
if (const Value *V = dyn_cast_if_present<const Value *>(MPO.V)) {
const Module *M = MF.getFunction().getParent();
return V->getPointerAlignment(M->getDataLayout());
}
return Align(1);
}
Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
const TargetInstrInfo &TII,
MCRegister PhysReg,
const TargetRegisterClass &RC,
const DebugLoc &DL, LLT RegTy) {
MachineBasicBlock &EntryMBB = MF.front();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
if (LiveIn) {
MachineInstr *Def = MRI.getVRegDef(LiveIn);
if (Def) {
// FIXME: Should the verifier check this is in the entry block?
assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
return LiveIn;
}
// It's possible the incoming argument register and copy was added during
// lowering, but later deleted due to being/becoming dead. If this happens,
// re-insert the copy.
} else {
// The live in register was not present, so add it.
LiveIn = MF.addLiveIn(PhysReg, &RC);
if (RegTy.isValid())
MRI.setType(LiveIn, RegTy);
}
BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
.addReg(PhysReg);
if (!EntryMBB.isLiveIn(PhysReg))
EntryMBB.addLiveIn(PhysReg);
return LiveIn;
}
std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode,
const Register Op1, uint64_t Imm,
const MachineRegisterInfo &MRI) {
auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
if (MaybeOp1Cst) {
switch (Opcode) {
default:
break;
case TargetOpcode::G_SEXT_INREG: {
LLT Ty = MRI.getType(Op1);
return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
}
}
}
return std::nullopt;
}
std::optional<APInt> llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy,
const Register Op0,
const MachineRegisterInfo &MRI) {
std::optional<APInt> Val = getIConstantVRegVal(Op0, MRI);
if (!Val)
return Val;
const unsigned DstSize = DstTy.getScalarSizeInBits();
switch (Opcode) {
case TargetOpcode::G_SEXT:
return Val->sext(DstSize);
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
// TODO: DAG considers target preference when constant folding any_extend.
return Val->zext(DstSize);
default:
break;
}
llvm_unreachable("unexpected cast opcode to constant fold");
}
std::optional<APFloat>
llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src,
const MachineRegisterInfo &MRI) {
assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
APFloat DstVal(getFltSemanticForLLT(DstTy));
DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
APFloat::rmNearestTiesToEven);
return DstVal;
}
return std::nullopt;
}
std::optional<SmallVector<unsigned>>
llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI,
std::function<unsigned(APInt)> CB) {
LLT Ty = MRI.getType(Src);
SmallVector<unsigned> FoldedCTLZs;
auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> {
auto MaybeCst = getIConstantVRegVal(R, MRI);
if (!MaybeCst)
return std::nullopt;
return CB(*MaybeCst);
};
if (Ty.isVector()) {
// Try to constant fold each element.
auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
if (!BV)
return std::nullopt;
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
FoldedCTLZs.emplace_back(*MaybeFold);
continue;
}
return std::nullopt;
}
return FoldedCTLZs;
}
if (auto MaybeCst = tryFoldScalar(Src)) {
FoldedCTLZs.emplace_back(*MaybeCst);
return FoldedCTLZs;
}
return std::nullopt;
}
std::optional<SmallVector<APInt>>
llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2,
const MachineRegisterInfo &MRI) {
LLT Ty = MRI.getType(Op1);
if (Ty != MRI.getType(Op2))
return std::nullopt;
auto TryFoldScalar = [&MRI, Pred](Register LHS,
Register RHS) -> std::optional<APInt> {
auto LHSCst = getIConstantVRegVal(LHS, MRI);
auto RHSCst = getIConstantVRegVal(RHS, MRI);
if (!LHSCst || !RHSCst)
return std::nullopt;
switch (Pred) {
case CmpInst::Predicate::ICMP_EQ:
return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst));
case CmpInst::Predicate::ICMP_NE:
return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst));
case CmpInst::Predicate::ICMP_UGT:
return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst));
case CmpInst::Predicate::ICMP_UGE:
return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst));
case CmpInst::Predicate::ICMP_ULT:
return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst));
case CmpInst::Predicate::ICMP_ULE:
return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst));
case CmpInst::Predicate::ICMP_SGT:
return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst));
case CmpInst::Predicate::ICMP_SGE:
return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst));
case CmpInst::Predicate::ICMP_SLT:
return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst));
case CmpInst::Predicate::ICMP_SLE:
return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst));
default:
return std::nullopt;
}
};
SmallVector<APInt> FoldedICmps;
if (Ty.isVector()) {
// Try to constant fold each element.
auto *BV1 = getOpcodeDef<GBuildVector>(Op1, MRI);
auto *BV2 = getOpcodeDef<GBuildVector>(Op2, MRI);
if (!BV1 || !BV2)
return std::nullopt;
assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors");
for (unsigned I = 0; I < BV1->getNumSources(); ++I) {
if (auto MaybeFold =
TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) {
FoldedICmps.emplace_back(*MaybeFold);
continue;
}
return std::nullopt;
}
return FoldedICmps;
}
if (auto MaybeCst = TryFoldScalar(Op1, Op2)) {
FoldedICmps.emplace_back(*MaybeCst);
return FoldedICmps;
}
return std::nullopt;
}
bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
GISelKnownBits *KB) {
std::optional<DefinitionAndSourceRegister> DefSrcReg =
getDefSrcRegIgnoringCopies(Reg, MRI);
if (!DefSrcReg)
return false;
const MachineInstr &MI = *DefSrcReg->MI;
const LLT Ty = MRI.getType(Reg);
switch (MI.getOpcode()) {
case TargetOpcode::G_CONSTANT: {
unsigned BitWidth = Ty.getScalarSizeInBits();
const ConstantInt *CI = MI.getOperand(1).getCImm();
return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
}
case TargetOpcode::G_SHL: {
// A left-shift of a constant one will have exactly one bit set because
// shifting the bit off the end is undefined.
// TODO: Constant splat
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
if (*ConstLHS == 1)
return true;
}
break;
}
case TargetOpcode::G_LSHR: {
if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
if (ConstLHS->isSignMask())
return true;
}
break;
}
case TargetOpcode::G_BUILD_VECTOR: {
// TODO: Probably should have a recursion depth guard since you could have
// bitcasted vector elements.
for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
return false;
return true;
}
case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
// Only handle constants since we would need to know if number of leading
// zeros is greater than the truncation amount.
const unsigned BitWidth = Ty.getScalarSizeInBits();
for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
auto Const = getIConstantVRegVal(MO.getReg(), MRI);
if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
return false;
}
return true;
}
default:
break;
}
if (!KB)
return false;
// More could be done here, though the above checks are enough
// to handle some common cases.
// Fall back to computeKnownBits to catch other known cases.
KnownBits Known = KB->getKnownBits(Reg);
return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
}
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
AU.addPreserved<StackProtector>();
}
LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
return OrigTy;
if (OrigTy.isVector() && TargetTy.isVector()) {
LLT OrigElt = OrigTy.getElementType();
LLT TargetElt = TargetTy.getElementType();
// TODO: The docstring for this function says the intention is to use this
// function to build MERGE/UNMERGE instructions. It won't be the case that
// we generate a MERGE/UNMERGE between fixed and scalable vector types. We
// could implement getLCMType between the two in the future if there was a
// need, but it is not worth it now as this function should not be used in
// that way.
assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
(OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
"getLCMType not implemented between fixed and scalable vectors.");
if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(),
TargetTy.getElementCount().getKnownMinValue());
// Prefer the original element type.
ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy(
TargetTy.getElementCount().getKnownMinValue());
return LLT::vector(Mul.divideCoefficientBy(GCDMinElts),
OrigTy.getElementType());
}
unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(),
TargetTy.getSizeInBits().getKnownMinValue());
return LLT::vector(
ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()),
OrigElt);
}
// One type is scalar, one type is vector
if (OrigTy.isVector() || TargetTy.isVector()) {
LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy;
LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy;
LLT EltTy = VecTy.getElementType();
LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy;
// Prefer scalar type from OrigTy.
if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits())
return LLT::vector(VecTy.getElementCount(), OrigEltTy);
// Different size scalars. Create vector with the same total size.
// LCM will take fixed/scalable from VecTy.
unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() *
VecTy.getElementCount().getKnownMinValue(),
ScalarTy.getSizeInBits().getFixedValue());
// Prefer type from OrigTy
return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(),
VecTy.getElementCount().isScalable()),
OrigEltTy);
}
// At this point, both types are scalars of different size
unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(),
TargetTy.getSizeInBits().getFixedValue());
// Preserve pointer types.
if (LCM == OrigTy.getSizeInBits())
return OrigTy;
if (LCM == TargetTy.getSizeInBits())
return TargetTy;
return LLT::scalar(LCM);
}
LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) ||
(OrigTy.isFixedVector() && TargetTy.isScalableVector()))
llvm_unreachable(
"getCoverTy not implemented between fixed and scalable vectors.");
if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
(OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
return getLCMType(OrigTy, TargetTy);
unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue();
unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue();
if (OrigTyNumElts % TargetTyNumElts == 0)
return OrigTy;
unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
OrigTy.getElementType());
}
LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits())
return OrigTy;
if (OrigTy.isVector() && TargetTy.isVector()) {
LLT OrigElt = OrigTy.getElementType();
// TODO: The docstring for this function says the intention is to use this
// function to build MERGE/UNMERGE instructions. It won't be the case that
// we generate a MERGE/UNMERGE between fixed and scalable vector types. We
// could implement getGCDType between the two in the future if there was a
// need, but it is not worth it now as this function should not be used in
// that way.
assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) ||
(OrigTy.isFixedVector() && !TargetTy.isScalableVector())) &&
"getGCDType not implemented between fixed and scalable vectors.");
unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(),
TargetTy.getSizeInBits().getKnownMinValue());
if (GCD == OrigElt.getSizeInBits())
return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
OrigElt);
// Cannot produce original element type, but both have vscale in common.
if (GCD < OrigElt.getSizeInBits())
return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()),
GCD);
return LLT::vector(
ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(),
OrigTy.isScalable()),
OrigElt);
}
// If one type is vector and the element size matches the scalar size, then
// the gcd is the scalar type.
if (OrigTy.isVector() &&
OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits())
return OrigTy.getElementType();
if (TargetTy.isVector() &&
TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits())
return OrigTy;
// At this point, both types are either scalars of different type or one is a
// vector and one is a scalar. If both types are scalars, the GCD type is the
// GCD between the two scalar sizes. If one is vector and one is scalar, then
// the GCD type is the GCD between the scalar and the vector element size.
LLT OrigScalar = OrigTy.getScalarType();
LLT TargetScalar = TargetTy.getScalarType();
unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(),
TargetScalar.getSizeInBits().getFixedValue());
return LLT::scalar(GCD);
}
std::optional<int> llvm::getSplatIndex(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
"Only G_SHUFFLE_VECTOR can have a splat index!");
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
// If all elements are undefined, this shuffle can be considered a splat.
// Return 0 for better potential for callers to simplify.
if (FirstDefinedIdx == Mask.end())
return 0;
// Make sure all remaining elements are either undef or the same
// as the first non-undef value.
int SplatValue = *FirstDefinedIdx;
if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
[&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
return std::nullopt;
return SplatValue;
}
static bool isBuildVectorOp(unsigned Opcode) {
return Opcode == TargetOpcode::G_BUILD_VECTOR ||
Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
}
namespace {
std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
if (!MI)
return std::nullopt;
bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS;
if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp)
return std::nullopt;
std::optional<ValueAndVReg> SplatValAndReg;
for (MachineOperand &Op : MI->uses()) {
Register Element = Op.getReg();
// If we have a G_CONCAT_VECTOR, we recursively look into the
// vectors that we're concatenating to see if they're splats.
auto ElementValAndReg =
isConcatVectorsOp
? getAnyConstantSplat(Element, MRI, AllowUndef)
: getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
// If AllowUndef, treat undef as value that will result in a constant splat.
if (!ElementValAndReg) {
if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
continue;
return std::nullopt;
}
// Record splat value
if (!SplatValAndReg)
SplatValAndReg = ElementValAndReg;
// Different constant than the one already recorded, not a constant splat.
if (SplatValAndReg->Value != ElementValAndReg->Value)
return std::nullopt;
}
return SplatValAndReg;
}
} // end anonymous namespace
bool llvm::isBuildVectorConstantSplat(const Register Reg,
const MachineRegisterInfo &MRI,
int64_t SplatValue, bool AllowUndef) {
if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
return false;
}
bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
int64_t SplatValue, bool AllowUndef) {
return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
AllowUndef);
}
std::optional<APInt>
llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) {
if (auto SplatValAndReg =
getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
if (std::optional<ValueAndVReg> ValAndVReg =
getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI))
return ValAndVReg->Value;
}
return std::nullopt;
}
std::optional<APInt>
llvm::getIConstantSplatVal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
}
std::optional<int64_t>
llvm::getIConstantSplatSExtVal(const Register Reg,
const MachineRegisterInfo &MRI) {
if (auto SplatValAndReg =
getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
return std::nullopt;
}
std::optional<int64_t>
llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
const MachineRegisterInfo &MRI) {
return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
}
std::optional<FPValueAndVReg>
llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI,
bool AllowUndef) {
if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
return std::nullopt;
}
bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
}
bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndef) {
return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
}
std::optional<RegOrConstant>
llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) {
unsigned Opc = MI.getOpcode();
if (!isBuildVectorOp(Opc))
return std::nullopt;
if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
return RegOrConstant(*Splat);
auto Reg = MI.getOperand(1).getReg();
if (any_of(drop_begin(MI.operands(), 2),
[&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
return std::nullopt;
return RegOrConstant(Reg);
}
static bool isConstantScalar(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowFP = true,
bool AllowOpaqueConstants = true) {
switch (MI.getOpcode()) {
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_IMPLICIT_DEF:
return true;
case TargetOpcode::G_FCONSTANT:
return AllowFP;
case TargetOpcode::G_GLOBAL_VALUE:
case TargetOpcode::G_FRAME_INDEX:
case TargetOpcode::G_BLOCK_ADDR:
case TargetOpcode::G_JUMP_TABLE:
return AllowOpaqueConstants;
default:
return false;
}
}
bool llvm::isConstantOrConstantVector(MachineInstr &MI,
const MachineRegisterInfo &MRI) {
Register Def = MI.getOperand(0).getReg();
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
return true;
GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
if (!BV)
return false;
for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
continue;
return false;
}
return true;
}
bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowFP, bool AllowOpaqueConstants) {
if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
return true;
if (!isBuildVectorOp(MI.getOpcode()))
return false;
const unsigned NumOps = MI.getNumOperands();
for (unsigned I = 1; I != NumOps; ++I) {
const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
return false;
}
return true;
}
std::optional<APInt>
llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
const MachineRegisterInfo &MRI) {
Register Def = MI.getOperand(0).getReg();
if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
return C->Value;
auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
if (!MaybeCst)
return std::nullopt;
const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
return APInt(ScalarSize, *MaybeCst, true);
}
bool llvm::isNullOrNullSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI, bool AllowUndefs) {
switch (MI.getOpcode()) {
case TargetOpcode::G_IMPLICIT_DEF:
return AllowUndefs;
case TargetOpcode::G_CONSTANT:
return MI.getOperand(1).getCImm()->isNullValue();
case TargetOpcode::G_FCONSTANT: {
const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
return FPImm->isZero() && !FPImm->isNegative();
}
default:
if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
return false;
return isBuildVectorAllZeros(MI, MRI);
}
}
bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
bool AllowUndefs) {
switch (MI.getOpcode()) {
case TargetOpcode::G_IMPLICIT_DEF:
return AllowUndefs;
case TargetOpcode::G_CONSTANT:
return MI.getOperand(1).getCImm()->isAllOnesValue();
default:
if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
return false;
return isBuildVectorAllOnes(MI, MRI);
}
}
bool llvm::matchUnaryPredicate(
const MachineRegisterInfo &MRI, Register Reg,
std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
return Match(nullptr);
// TODO: Also handle fconstant
if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
return Match(Def->getOperand(1).getCImm());
if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
return false;
for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
Register SrcElt = Def->getOperand(I).getReg();
const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
if (!Match(nullptr))
return false;
continue;
}
if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
!Match(SrcDef->getOperand(1).getCImm()))
return false;
}
return true;
}
bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
return Val & 0x1;
case TargetLowering::ZeroOrOneBooleanContent:
return Val == 1;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return Val == -1;
}
llvm_unreachable("Invalid boolean contents");
}
bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val,
bool IsVector, bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
return ~Val & 0x1;
case TargetLowering::ZeroOrOneBooleanContent:
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return Val == 0;
}
llvm_unreachable("Invalid boolean contents");
}
int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
bool IsFP) {
switch (TLI.getBooleanContents(IsVector, IsFP)) {
case TargetLowering::UndefinedBooleanContent:
case TargetLowering::ZeroOrOneBooleanContent:
return 1;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
return -1;
}
llvm_unreachable("Invalid boolean contents");
}
bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
const auto &F = MBB.getParent()->getFunction();
return F.hasOptSize() || F.hasMinSize() ||
llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
}
void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver,
SmallInstListTy &DeadInstChain) {
for (MachineOperand &Op : MI.uses()) {
if (Op.isReg() && Op.getReg().isVirtual())
DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
}
LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
DeadInstChain.remove(&MI);
MI.eraseFromParent();
if (LocObserver)
LocObserver->checkpoint(false);
}
void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver) {
SmallInstListTy DeadInstChain;
for (MachineInstr *MI : DeadInstrs)
saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
while (!DeadInstChain.empty()) {
MachineInstr *Inst = DeadInstChain.pop_back_val();
if (!isTriviallyDead(*Inst, MRI))
continue;
saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
}
}
void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
LostDebugLocObserver *LocObserver) {
return eraseInstrs({&MI}, MRI, LocObserver);
}
void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) {
for (auto &Def : MI.defs()) {
assert(Def.isReg() && "Must be a reg");
SmallVector<MachineOperand *, 16> DbgUsers;
for (auto &MOUse : MRI.use_operands(Def.getReg())) {
MachineInstr *DbgValue = MOUse.getParent();
// Ignore partially formed DBG_VALUEs.
if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) {
DbgUsers.push_back(&MOUse);
}
}
if (!DbgUsers.empty()) {
salvageDebugInfoForDbgValue(MRI, MI, DbgUsers);
}
}
}
bool llvm::isPreISelGenericFloatingPointOpcode(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_FABS:
case TargetOpcode::G_FADD:
case TargetOpcode::G_FCANONICALIZE:
case TargetOpcode::G_FCEIL:
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_FCOPYSIGN:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FEXP2:
case TargetOpcode::G_FEXP:
case TargetOpcode::G_FFLOOR:
case TargetOpcode::G_FLOG10:
case TargetOpcode::G_FLOG2:
case TargetOpcode::G_FLOG:
case TargetOpcode::G_FMA:
case TargetOpcode::G_FMAD:
case TargetOpcode::G_FMAXIMUM:
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FMAXNUM_IEEE:
case TargetOpcode::G_FMINIMUM:
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FNEARBYINT:
case TargetOpcode::G_FNEG:
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPOW:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FREM:
case TargetOpcode::G_FRINT:
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FTAN:
case TargetOpcode::G_FACOS:
case TargetOpcode::G_FASIN:
case TargetOpcode::G_FATAN:
case TargetOpcode::G_FCOSH:
case TargetOpcode::G_FSINH:
case TargetOpcode::G_FTANH:
case TargetOpcode::G_FSQRT:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_INTRINSIC_ROUND:
case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
case TargetOpcode::G_INTRINSIC_TRUNC:
return true;
default:
return false;
}
}
/// Shifts return poison if shiftwidth is larger than the bitwidth.
static bool shiftAmountKnownInRange(Register ShiftAmount,
const MachineRegisterInfo &MRI) {
LLT Ty = MRI.getType(ShiftAmount);
if (Ty.isScalableVector())
return false; // Can't tell, just return false to be safe
if (Ty.isScalar()) {
std::optional<ValueAndVReg> Val =
getIConstantVRegValWithLookThrough(ShiftAmount, MRI);
if (!Val)
return false;
return Val->Value.ult(Ty.getScalarSizeInBits());
}
GBuildVector *BV = getOpcodeDef<GBuildVector>(ShiftAmount, MRI);
if (!BV)
return false;
unsigned Sources = BV->getNumSources();
for (unsigned I = 0; I < Sources; ++I) {
std::optional<ValueAndVReg> Val =
getIConstantVRegValWithLookThrough(BV->getSourceReg(I), MRI);
if (!Val)
return false;
if (!Val->Value.ult(Ty.getScalarSizeInBits()))
return false;
}
return true;
}
namespace {
enum class UndefPoisonKind {
PoisonOnly = (1 << 0),
UndefOnly = (1 << 1),
UndefOrPoison = PoisonOnly | UndefOnly,
};
}
static bool includesPoison(UndefPoisonKind Kind) {
return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
}
static bool includesUndef(UndefPoisonKind Kind) {
return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
}
static bool canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
bool ConsiderFlagsAndMetadata,
UndefPoisonKind Kind) {
MachineInstr *RegDef = MRI.getVRegDef(Reg);
if (ConsiderFlagsAndMetadata && includesPoison(Kind))
if (auto *GMI = dyn_cast<GenericMachineInstr>(RegDef))
if (GMI->hasPoisonGeneratingFlags())
return true;
// Check whether opcode is a poison/undef-generating operation.
switch (RegDef->getOpcode()) {
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_CONSTANT_FOLD_BARRIER:
return false;
case TargetOpcode::G_SHL:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
return includesPoison(Kind) &&
!shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
// fptosi/ui yields poison if the resulting value does not fit in the
// destination type.
return true;
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTTZ:
case TargetOpcode::G_ABS:
case TargetOpcode::G_CTPOP:
case TargetOpcode::G_BSWAP:
case TargetOpcode::G_BITREVERSE:
case TargetOpcode::G_FSHL:
case TargetOpcode::G_FSHR:
case TargetOpcode::G_SMAX:
case TargetOpcode::G_SMIN:
case TargetOpcode::G_UMAX:
case TargetOpcode::G_UMIN:
case TargetOpcode::G_PTRMASK:
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SSUBO:
case TargetOpcode::G_UADDO:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_SMULO:
case TargetOpcode::G_UMULO:
case TargetOpcode::G_SADDSAT:
case TargetOpcode::G_UADDSAT:
case TargetOpcode::G_SSUBSAT:
case TargetOpcode::G_USUBSAT:
return false;
case TargetOpcode::G_SSHLSAT:
case TargetOpcode::G_USHLSAT:
return includesPoison(Kind) &&
!shiftAmountKnownInRange(RegDef->getOperand(2).getReg(), MRI);
case TargetOpcode::G_INSERT_VECTOR_ELT: {
GInsertVectorElement *Insert = cast<GInsertVectorElement>(RegDef);
if (includesPoison(Kind)) {
std::optional<ValueAndVReg> Index =
getIConstantVRegValWithLookThrough(Insert->getIndexReg(), MRI);
if (!Index)
return true;
LLT VecTy = MRI.getType(Insert->getVectorReg());
return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
}
return false;
}
case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
GExtractVectorElement *Extract = cast<GExtractVectorElement>(RegDef);
if (includesPoison(Kind)) {
std::optional<ValueAndVReg> Index =
getIConstantVRegValWithLookThrough(Extract->getIndexReg(), MRI);
if (!Index)
return true;
LLT VecTy = MRI.getType(Extract->getVectorReg());
return Index->Value.uge(VecTy.getElementCount().getKnownMinValue());
}
return false;
}
case TargetOpcode::G_SHUFFLE_VECTOR: {
GShuffleVector *Shuffle = cast<GShuffleVector>(RegDef);
ArrayRef<int> Mask = Shuffle->getMask();
return includesPoison(Kind) && is_contained(Mask, -1);
}
case TargetOpcode::G_FNEG:
case TargetOpcode::G_PHI:
case TargetOpcode::G_SELECT:
case TargetOpcode::G_UREM:
case TargetOpcode::G_SREM:
case TargetOpcode::G_FREEZE:
case TargetOpcode::G_ICMP:
case TargetOpcode::G_FCMP:
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FREM:
case TargetOpcode::G_PTR_ADD:
return false;
default:
return !isa<GCastOp>(RegDef) && !isa<GBinOp>(RegDef);
}
}
static bool isGuaranteedNotToBeUndefOrPoison(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth,
UndefPoisonKind Kind) {
if (Depth >= MaxAnalysisRecursionDepth)
return false;
MachineInstr *RegDef = MRI.getVRegDef(Reg);
switch (RegDef->getOpcode()) {
case TargetOpcode::G_FREEZE:
return true;
case TargetOpcode::G_IMPLICIT_DEF:
return !includesUndef(Kind);
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
return true;
case TargetOpcode::G_BUILD_VECTOR: {
GBuildVector *BV = cast<GBuildVector>(RegDef);
unsigned NumSources = BV->getNumSources();
for (unsigned I = 0; I < NumSources; ++I)
if (!::isGuaranteedNotToBeUndefOrPoison(BV->getSourceReg(I), MRI,
Depth + 1, Kind))
return false;
return true;
}
case TargetOpcode::G_PHI: {
GPhi *Phi = cast<GPhi>(RegDef);
unsigned NumIncoming = Phi->getNumIncomingValues();
for (unsigned I = 0; I < NumIncoming; ++I)
if (!::isGuaranteedNotToBeUndefOrPoison(Phi->getIncomingValue(I), MRI,
Depth + 1, Kind))
return false;
return true;
}
default: {
auto MOCheck = [&](const MachineOperand &MO) {
if (!MO.isReg())
return true;
return ::isGuaranteedNotToBeUndefOrPoison(MO.getReg(), MRI, Depth + 1,
Kind);
};
return !::canCreateUndefOrPoison(Reg, MRI,
/*ConsiderFlagsAndMetadata=*/true, Kind) &&
all_of(RegDef->uses(), MOCheck);
}
}
}
bool llvm::canCreateUndefOrPoison(Register Reg, const MachineRegisterInfo &MRI,
bool ConsiderFlagsAndMetadata) {
return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
UndefPoisonKind::UndefOrPoison);
}
bool canCreatePoison(Register Reg, const MachineRegisterInfo &MRI,
bool ConsiderFlagsAndMetadata = true) {
return ::canCreateUndefOrPoison(Reg, MRI, ConsiderFlagsAndMetadata,
UndefPoisonKind::PoisonOnly);
}
bool llvm::isGuaranteedNotToBeUndefOrPoison(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
UndefPoisonKind::UndefOrPoison);
}
bool llvm::isGuaranteedNotToBePoison(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
UndefPoisonKind::PoisonOnly);
}
bool llvm::isGuaranteedNotToBeUndef(Register Reg,
const MachineRegisterInfo &MRI,
unsigned Depth) {
return ::isGuaranteedNotToBeUndefOrPoison(Reg, MRI, Depth,
UndefPoisonKind::UndefOnly);
}
Type *llvm::getTypeForLLT(LLT Ty, LLVMContext &C) {
if (Ty.isVector())
return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
Ty.getElementCount());
return IntegerType::get(C, Ty.getSizeInBits());
}
|