File: MachineDominators.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (191 lines) | stat: -rw-r--r-- 6,936 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//===- MachineDominators.cpp - Machine Dominator Calculation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators on machine functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GenericDomTreeConstruction.h"

using namespace llvm;

namespace llvm {
// Always verify dominfo if expensive checking is enabled.
#ifdef EXPENSIVE_CHECKS
bool VerifyMachineDomInfo = true;
#else
bool VerifyMachineDomInfo = false;
#endif
} // namespace llvm

static cl::opt<bool, true> VerifyMachineDomInfoX(
    "verify-machine-dom-info", cl::location(VerifyMachineDomInfo), cl::Hidden,
    cl::desc("Verify machine dominator info (time consuming)"));

namespace llvm {
template class DomTreeNodeBase<MachineBasicBlock>;
template class DominatorTreeBase<MachineBasicBlock, false>; // DomTreeBase

namespace DomTreeBuilder {
template void Calculate<MBBDomTree>(MBBDomTree &DT);
template void CalculateWithUpdates<MBBDomTree>(MBBDomTree &DT, MBBUpdates U);

template void InsertEdge<MBBDomTree>(MBBDomTree &DT, MachineBasicBlock *From,
                                     MachineBasicBlock *To);

template void DeleteEdge<MBBDomTree>(MBBDomTree &DT, MachineBasicBlock *From,
                                     MachineBasicBlock *To);

template void ApplyUpdates<MBBDomTree>(MBBDomTree &DT, MBBDomTreeGraphDiff &,
                                       MBBDomTreeGraphDiff *);

template bool Verify<MBBDomTree>(const MBBDomTree &DT,
                                 MBBDomTree::VerificationLevel VL);
} // namespace DomTreeBuilder
}

bool MachineDominatorTree::invalidate(
    MachineFunction &, const PreservedAnalyses &PA,
    MachineFunctionAnalysisManager::Invalidator &) {
  // Check whether the analysis, all analyses on machine functions, or the
  // machine function's CFG have been preserved.
  auto PAC = PA.getChecker<MachineDominatorTreeAnalysis>();
  return !PAC.preserved() &&
         !PAC.preservedSet<AllAnalysesOn<MachineFunction>>() &&
         !PAC.preservedSet<CFGAnalyses>();
}

AnalysisKey MachineDominatorTreeAnalysis::Key;

MachineDominatorTreeAnalysis::Result
MachineDominatorTreeAnalysis::run(MachineFunction &MF,
                                  MachineFunctionAnalysisManager &) {
  return MachineDominatorTree(MF);
}

PreservedAnalyses
MachineDominatorTreePrinterPass::run(MachineFunction &MF,
                                     MachineFunctionAnalysisManager &MFAM) {
  OS << "MachineDominatorTree for machine function: " << MF.getName() << '\n';
  MFAM.getResult<MachineDominatorTreeAnalysis>(MF).print(OS);
  return PreservedAnalyses::all();
}

char MachineDominatorTreeWrapperPass::ID = 0;

INITIALIZE_PASS(MachineDominatorTreeWrapperPass, "machinedomtree",
                "MachineDominator Tree Construction", true, true)

MachineDominatorTreeWrapperPass::MachineDominatorTreeWrapperPass()
    : MachineFunctionPass(ID) {
  initializeMachineDominatorTreeWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

void MachineDominatorTree::calculate(MachineFunction &F) {
  CriticalEdgesToSplit.clear();
  NewBBs.clear();
  recalculate(F);
}

char &llvm::MachineDominatorsID = MachineDominatorTreeWrapperPass::ID;

bool MachineDominatorTreeWrapperPass::runOnMachineFunction(MachineFunction &F) {
  DT = MachineDominatorTree(F);
  return false;
}

void MachineDominatorTreeWrapperPass::releaseMemory() { DT.reset(); }

void MachineDominatorTreeWrapperPass::verifyAnalysis() const {
  if (VerifyMachineDomInfo && DT)
    if (!DT->verify(MachineDominatorTree::VerificationLevel::Basic))
      report_fatal_error("MachineDominatorTree verification failed!");
}

void MachineDominatorTreeWrapperPass::print(raw_ostream &OS,
                                            const Module *) const {
  if (DT)
    DT->print(OS);
}

void MachineDominatorTree::applySplitCriticalEdges() const {
  // Bail out early if there is nothing to do.
  if (CriticalEdgesToSplit.empty())
    return;

  // For each element in CriticalEdgesToSplit, remember whether or not element
  // is the new immediate domminator of its successor. The mapping is done by
  // index, i.e., the information for the ith element of CriticalEdgesToSplit is
  // the ith element of IsNewIDom.
  SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true);
  size_t Idx = 0;

  // Collect all the dominance properties info, before invalidating
  // the underlying DT.
  for (CriticalEdge &Edge : CriticalEdgesToSplit) {
    // Update dominator information.
    MachineBasicBlock *Succ = Edge.ToBB;
    MachineDomTreeNode *SuccDTNode = Base::getNode(Succ);

    for (MachineBasicBlock *PredBB : Succ->predecessors()) {
      if (PredBB == Edge.NewBB)
        continue;
      // If we are in this situation:
      // FromBB1        FromBB2
      //    +              +
      //   + +            + +
      //  +   +          +   +
      // ...  Split1  Split2 ...
      //           +   +
      //            + +
      //             +
      //            Succ
      // Instead of checking the domiance property with Split2, we check it with
      // FromBB2 since Split2 is still unknown of the underlying DT structure.
      if (NewBBs.count(PredBB)) {
        assert(PredBB->pred_size() == 1 && "A basic block resulting from a "
                                           "critical edge split has more "
                                           "than one predecessor!");
        PredBB = *PredBB->pred_begin();
      }
      if (!Base::dominates(SuccDTNode, Base::getNode(PredBB))) {
        IsNewIDom[Idx] = false;
        break;
      }
    }
    ++Idx;
  }

  // Now, update DT with the collected dominance properties info.
  Idx = 0;
  for (CriticalEdge &Edge : CriticalEdgesToSplit) {
    // We know FromBB dominates NewBB.
    MachineDomTreeNode *NewDTNode =
        const_cast<MachineDominatorTree *>(this)->Base::addNewBlock(
            Edge.NewBB, Edge.FromBB);

    // If all the other predecessors of "Succ" are dominated by "Succ" itself
    // then the new block is the new immediate dominator of "Succ". Otherwise,
    // the new block doesn't dominate anything.
    if (IsNewIDom[Idx])
      const_cast<MachineDominatorTree *>(this)->Base::changeImmediateDominator(
          Base::getNode(Edge.ToBB), NewDTNode);
    ++Idx;
  }
  NewBBs.clear();
  CriticalEdgesToSplit.clear();
}