1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
//===- MachineDominators.cpp - Machine Dominator Calculation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators on machine functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
using namespace llvm;
namespace llvm {
// Always verify dominfo if expensive checking is enabled.
#ifdef EXPENSIVE_CHECKS
bool VerifyMachineDomInfo = true;
#else
bool VerifyMachineDomInfo = false;
#endif
} // namespace llvm
static cl::opt<bool, true> VerifyMachineDomInfoX(
"verify-machine-dom-info", cl::location(VerifyMachineDomInfo), cl::Hidden,
cl::desc("Verify machine dominator info (time consuming)"));
namespace llvm {
template class DomTreeNodeBase<MachineBasicBlock>;
template class DominatorTreeBase<MachineBasicBlock, false>; // DomTreeBase
namespace DomTreeBuilder {
template void Calculate<MBBDomTree>(MBBDomTree &DT);
template void CalculateWithUpdates<MBBDomTree>(MBBDomTree &DT, MBBUpdates U);
template void InsertEdge<MBBDomTree>(MBBDomTree &DT, MachineBasicBlock *From,
MachineBasicBlock *To);
template void DeleteEdge<MBBDomTree>(MBBDomTree &DT, MachineBasicBlock *From,
MachineBasicBlock *To);
template void ApplyUpdates<MBBDomTree>(MBBDomTree &DT, MBBDomTreeGraphDiff &,
MBBDomTreeGraphDiff *);
template bool Verify<MBBDomTree>(const MBBDomTree &DT,
MBBDomTree::VerificationLevel VL);
} // namespace DomTreeBuilder
}
bool MachineDominatorTree::invalidate(
MachineFunction &, const PreservedAnalyses &PA,
MachineFunctionAnalysisManager::Invalidator &) {
// Check whether the analysis, all analyses on machine functions, or the
// machine function's CFG have been preserved.
auto PAC = PA.getChecker<MachineDominatorTreeAnalysis>();
return !PAC.preserved() &&
!PAC.preservedSet<AllAnalysesOn<MachineFunction>>() &&
!PAC.preservedSet<CFGAnalyses>();
}
AnalysisKey MachineDominatorTreeAnalysis::Key;
MachineDominatorTreeAnalysis::Result
MachineDominatorTreeAnalysis::run(MachineFunction &MF,
MachineFunctionAnalysisManager &) {
return MachineDominatorTree(MF);
}
PreservedAnalyses
MachineDominatorTreePrinterPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
OS << "MachineDominatorTree for machine function: " << MF.getName() << '\n';
MFAM.getResult<MachineDominatorTreeAnalysis>(MF).print(OS);
return PreservedAnalyses::all();
}
char MachineDominatorTreeWrapperPass::ID = 0;
INITIALIZE_PASS(MachineDominatorTreeWrapperPass, "machinedomtree",
"MachineDominator Tree Construction", true, true)
MachineDominatorTreeWrapperPass::MachineDominatorTreeWrapperPass()
: MachineFunctionPass(ID) {
initializeMachineDominatorTreeWrapperPassPass(
*PassRegistry::getPassRegistry());
}
void MachineDominatorTree::calculate(MachineFunction &F) {
CriticalEdgesToSplit.clear();
NewBBs.clear();
recalculate(F);
}
char &llvm::MachineDominatorsID = MachineDominatorTreeWrapperPass::ID;
bool MachineDominatorTreeWrapperPass::runOnMachineFunction(MachineFunction &F) {
DT = MachineDominatorTree(F);
return false;
}
void MachineDominatorTreeWrapperPass::releaseMemory() { DT.reset(); }
void MachineDominatorTreeWrapperPass::verifyAnalysis() const {
if (VerifyMachineDomInfo && DT)
if (!DT->verify(MachineDominatorTree::VerificationLevel::Basic))
report_fatal_error("MachineDominatorTree verification failed!");
}
void MachineDominatorTreeWrapperPass::print(raw_ostream &OS,
const Module *) const {
if (DT)
DT->print(OS);
}
void MachineDominatorTree::applySplitCriticalEdges() const {
// Bail out early if there is nothing to do.
if (CriticalEdgesToSplit.empty())
return;
// For each element in CriticalEdgesToSplit, remember whether or not element
// is the new immediate domminator of its successor. The mapping is done by
// index, i.e., the information for the ith element of CriticalEdgesToSplit is
// the ith element of IsNewIDom.
SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true);
size_t Idx = 0;
// Collect all the dominance properties info, before invalidating
// the underlying DT.
for (CriticalEdge &Edge : CriticalEdgesToSplit) {
// Update dominator information.
MachineBasicBlock *Succ = Edge.ToBB;
MachineDomTreeNode *SuccDTNode = Base::getNode(Succ);
for (MachineBasicBlock *PredBB : Succ->predecessors()) {
if (PredBB == Edge.NewBB)
continue;
// If we are in this situation:
// FromBB1 FromBB2
// + +
// + + + +
// + + + +
// ... Split1 Split2 ...
// + +
// + +
// +
// Succ
// Instead of checking the domiance property with Split2, we check it with
// FromBB2 since Split2 is still unknown of the underlying DT structure.
if (NewBBs.count(PredBB)) {
assert(PredBB->pred_size() == 1 && "A basic block resulting from a "
"critical edge split has more "
"than one predecessor!");
PredBB = *PredBB->pred_begin();
}
if (!Base::dominates(SuccDTNode, Base::getNode(PredBB))) {
IsNewIDom[Idx] = false;
break;
}
}
++Idx;
}
// Now, update DT with the collected dominance properties info.
Idx = 0;
for (CriticalEdge &Edge : CriticalEdgesToSplit) {
// We know FromBB dominates NewBB.
MachineDomTreeNode *NewDTNode =
const_cast<MachineDominatorTree *>(this)->Base::addNewBlock(
Edge.NewBB, Edge.FromBB);
// If all the other predecessors of "Succ" are dominated by "Succ" itself
// then the new block is the new immediate dominator of "Succ". Otherwise,
// the new block doesn't dominate anything.
if (IsNewIDom[Idx])
const_cast<MachineDominatorTree *>(this)->Base::changeImmediateDominator(
Base::getNode(Edge.ToBB), NewDTNode);
++Idx;
}
NewBBs.clear();
CriticalEdgesToSplit.clear();
}
|