1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
//===- MachineLoopInfo.cpp - Natural Loop Calculator ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MachineLoopInfo class that is used to identify natural
// loops and determine the loop depth of various nodes of the CFG. Note that
// the loops identified may actually be several natural loops that share the
// same header node... not just a single natural loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/GenericLoopInfoImpl.h"
using namespace llvm;
// Explicitly instantiate methods in LoopInfoImpl.h for MI-level Loops.
template class llvm::LoopBase<MachineBasicBlock, MachineLoop>;
template class llvm::LoopInfoBase<MachineBasicBlock, MachineLoop>;
AnalysisKey MachineLoopAnalysis::Key;
MachineLoopAnalysis::Result
MachineLoopAnalysis::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
return MachineLoopInfo(MFAM.getResult<MachineDominatorTreeAnalysis>(MF));
}
PreservedAnalyses
MachineLoopPrinterPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
OS << "Machine loop info for machine function '" << MF.getName() << "':\n";
MFAM.getResult<MachineLoopAnalysis>(MF).print(OS);
return PreservedAnalyses::all();
}
char MachineLoopInfoWrapperPass::ID = 0;
MachineLoopInfoWrapperPass::MachineLoopInfoWrapperPass()
: MachineFunctionPass(ID) {
initializeMachineLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(MachineLoopInfoWrapperPass, "machine-loops",
"Machine Natural Loop Construction", true, true)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_END(MachineLoopInfoWrapperPass, "machine-loops",
"Machine Natural Loop Construction", true, true)
char &llvm::MachineLoopInfoID = MachineLoopInfoWrapperPass::ID;
bool MachineLoopInfoWrapperPass::runOnMachineFunction(MachineFunction &) {
LI.calculate(getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree());
return false;
}
bool MachineLoopInfo::invalidate(
MachineFunction &, const PreservedAnalyses &PA,
MachineFunctionAnalysisManager::Invalidator &) {
// Check whether the analysis, all analyses on functions, or the function's
// CFG have been preserved.
auto PAC = PA.getChecker<MachineLoopAnalysis>();
return !PAC.preserved() &&
!PAC.preservedSet<AllAnalysesOn<MachineFunction>>() &&
!PAC.preservedSet<CFGAnalyses>();
}
void MachineLoopInfo::calculate(MachineDominatorTree &MDT) {
releaseMemory();
analyze(MDT.getBase());
}
void MachineLoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineDominatorTreeWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineBasicBlock *MachineLoop::getTopBlock() {
MachineBasicBlock *TopMBB = getHeader();
MachineFunction::iterator Begin = TopMBB->getParent()->begin();
if (TopMBB->getIterator() != Begin) {
MachineBasicBlock *PriorMBB = &*std::prev(TopMBB->getIterator());
while (contains(PriorMBB)) {
TopMBB = PriorMBB;
if (TopMBB->getIterator() == Begin)
break;
PriorMBB = &*std::prev(TopMBB->getIterator());
}
}
return TopMBB;
}
MachineBasicBlock *MachineLoop::getBottomBlock() {
MachineBasicBlock *BotMBB = getHeader();
MachineFunction::iterator End = BotMBB->getParent()->end();
if (BotMBB->getIterator() != std::prev(End)) {
MachineBasicBlock *NextMBB = &*std::next(BotMBB->getIterator());
while (contains(NextMBB)) {
BotMBB = NextMBB;
if (BotMBB == &*std::next(BotMBB->getIterator()))
break;
NextMBB = &*std::next(BotMBB->getIterator());
}
}
return BotMBB;
}
MachineBasicBlock *MachineLoop::findLoopControlBlock() const {
if (MachineBasicBlock *Latch = getLoopLatch()) {
if (isLoopExiting(Latch))
return Latch;
else
return getExitingBlock();
}
return nullptr;
}
DebugLoc MachineLoop::getStartLoc() const {
// Try the pre-header first.
if (MachineBasicBlock *PHeadMBB = getLoopPreheader())
if (const BasicBlock *PHeadBB = PHeadMBB->getBasicBlock())
if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
return DL;
// If we have no pre-header or there are no instructions with debug
// info in it, try the header.
if (MachineBasicBlock *HeadMBB = getHeader())
if (const BasicBlock *HeadBB = HeadMBB->getBasicBlock())
return HeadBB->getTerminator()->getDebugLoc();
return DebugLoc();
}
MachineBasicBlock *
MachineLoopInfo::findLoopPreheader(MachineLoop *L, bool SpeculativePreheader,
bool FindMultiLoopPreheader) const {
if (MachineBasicBlock *PB = L->getLoopPreheader())
return PB;
if (!SpeculativePreheader)
return nullptr;
MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch();
if (HB->pred_size() != 2 || HB->hasAddressTaken())
return nullptr;
// Find the predecessor of the header that is not the latch block.
MachineBasicBlock *Preheader = nullptr;
for (MachineBasicBlock *P : HB->predecessors()) {
if (P == LB)
continue;
// Sanity.
if (Preheader)
return nullptr;
Preheader = P;
}
// Check if the preheader candidate is a successor of any other loop
// headers. We want to avoid having two loop setups in the same block.
if (!FindMultiLoopPreheader) {
for (MachineBasicBlock *S : Preheader->successors()) {
if (S == HB)
continue;
MachineLoop *T = getLoopFor(S);
if (T && T->getHeader() == S)
return nullptr;
}
}
return Preheader;
}
MDNode *MachineLoop::getLoopID() const {
MDNode *LoopID = nullptr;
if (const auto *MBB = findLoopControlBlock()) {
// If there is a single latch block, then the metadata
// node is attached to its terminating instruction.
const auto *BB = MBB->getBasicBlock();
if (!BB)
return nullptr;
if (const auto *TI = BB->getTerminator())
LoopID = TI->getMetadata(LLVMContext::MD_loop);
} else if (const auto *MBB = getHeader()) {
// There seem to be multiple latch blocks, so we have to
// visit all predecessors of the loop header and check
// their terminating instructions for the metadata.
if (const auto *Header = MBB->getBasicBlock()) {
// Walk over all blocks in the loop.
for (const auto *MBB : this->blocks()) {
const auto *BB = MBB->getBasicBlock();
if (!BB)
return nullptr;
const auto *TI = BB->getTerminator();
if (!TI)
return nullptr;
MDNode *MD = nullptr;
// Check if this terminating instruction jumps to the loop header.
for (const auto *Succ : successors(TI)) {
if (Succ == Header) {
// This is a jump to the header - gather the metadata from it.
MD = TI->getMetadata(LLVMContext::MD_loop);
break;
}
}
if (!MD)
return nullptr;
if (!LoopID)
LoopID = MD;
else if (MD != LoopID)
return nullptr;
}
}
}
if (LoopID &&
(LoopID->getNumOperands() == 0 || LoopID->getOperand(0) != LoopID))
LoopID = nullptr;
return LoopID;
}
bool MachineLoop::isLoopInvariantImplicitPhysReg(Register Reg) const {
MachineFunction *MF = getHeader()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
if (MRI->isConstantPhysReg(Reg))
return true;
if (!MF->getSubtarget()
.getRegisterInfo()
->shouldAnalyzePhysregInMachineLoopInfo(Reg))
return false;
return !llvm::any_of(
MRI->def_instructions(Reg),
[this](const MachineInstr &MI) { return this->contains(&MI); });
}
bool MachineLoop::isLoopInvariant(MachineInstr &I,
const Register ExcludeReg) const {
MachineFunction *MF = I.getParent()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const TargetSubtargetInfo &ST = MF->getSubtarget();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
const TargetInstrInfo *TII = ST.getInstrInfo();
// The instruction is loop invariant if all of its operands are.
for (const MachineOperand &MO : I.operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg == 0) continue;
if (ExcludeReg == Reg)
continue;
// An instruction that uses or defines a physical register can't e.g. be
// hoisted, so mark this as not invariant.
if (Reg.isPhysical()) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
// However, if the physreg is known to always be caller saved/restored
// then this use is safe to hoist.
if (!isLoopInvariantImplicitPhysReg(Reg) &&
!(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())) &&
!TII->isIgnorableUse(MO))
return false;
// Otherwise it's safe to move.
continue;
} else if (!MO.isDead()) {
// A def that isn't dead can't be moved.
return false;
} else if (getHeader()->isLiveIn(Reg)) {
// If the reg is live into the loop, we can't hoist an instruction
// which would clobber it.
return false;
}
}
if (!MO.isUse())
continue;
assert(MRI->getVRegDef(Reg) &&
"Machine instr not mapped for this vreg?!");
// If the loop contains the definition of an operand, then the instruction
// isn't loop invariant.
if (contains(MRI->getVRegDef(Reg)))
return false;
}
// If we got this far, the instruction is loop invariant!
return true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineLoop::dump() const {
print(dbgs());
}
#endif
|