1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
|
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This register allocator allocates registers to a basic block at a
/// time, attempting to keep values in registers and reusing registers as
/// appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/RegAllocFast.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocCommon.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads, "Number of loads added");
STATISTIC(NumCoalesced, "Number of copies coalesced");
// FIXME: Remove this switch when all testcases are fixed!
static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
cl::Hidden);
static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator",
createFastRegisterAllocator);
namespace {
/// Assign ascending index for instructions in machine basic block. The index
/// can be used to determine dominance between instructions in same MBB.
class InstrPosIndexes {
public:
void unsetInitialized() { IsInitialized = false; }
void init(const MachineBasicBlock &MBB) {
CurMBB = &MBB;
Instr2PosIndex.clear();
uint64_t LastIndex = 0;
for (const MachineInstr &MI : MBB) {
LastIndex += InstrDist;
Instr2PosIndex[&MI] = LastIndex;
}
}
/// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign
/// index without affecting existing instruction's index. Return true if all
/// instructions index has been reassigned.
bool getIndex(const MachineInstr &MI, uint64_t &Index) {
if (!IsInitialized) {
init(*MI.getParent());
IsInitialized = true;
Index = Instr2PosIndex.at(&MI);
return true;
}
assert(MI.getParent() == CurMBB && "MI is not in CurMBB");
auto It = Instr2PosIndex.find(&MI);
if (It != Instr2PosIndex.end()) {
Index = It->second;
return false;
}
// Distance is the number of consecutive unassigned instructions including
// MI. Start is the first instruction of them. End is the next of last
// instruction of them.
// e.g.
// |Instruction| A | B | C | MI | D | E |
// | Index | 1024 | | | | | 2048 |
//
// In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End
// is E.
unsigned Distance = 1;
MachineBasicBlock::const_iterator Start = MI.getIterator(),
End = std::next(Start);
while (Start != CurMBB->begin() &&
!Instr2PosIndex.count(&*std::prev(Start))) {
--Start;
++Distance;
}
while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) {
++End;
++Distance;
}
// LastIndex is initialized to last used index prior to MI or zero.
// In previous example, LastIndex is 1024, EndIndex is 2048;
uint64_t LastIndex =
Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start));
uint64_t Step;
if (End == CurMBB->end())
Step = static_cast<uint64_t>(InstrDist);
else {
// No instruction uses index zero.
uint64_t EndIndex = Instr2PosIndex.at(&*End);
assert(EndIndex > LastIndex && "Index must be ascending order");
unsigned NumAvailableIndexes = EndIndex - LastIndex - 1;
// We want index gap between two adjacent MI is as same as possible. Given
// total A available indexes, D is number of consecutive unassigned
// instructions, S is the step.
// |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->|
// There're S-1 available indexes between unassigned instruction and its
// predecessor. There're A-S*D available indexes between the last
// unassigned instruction and its successor.
// Ideally, we want
// S-1 = A-S*D
// then
// S = (A+1)/(D+1)
// An valid S must be integer greater than zero, so
// S <= (A+1)/(D+1)
// =>
// A-S*D >= 0
// That means we can safely use (A+1)/(D+1) as step.
// In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432,
// 1636, 1840.
Step = (NumAvailableIndexes + 1) / (Distance + 1);
}
// Reassign index for all instructions if number of new inserted
// instructions exceed slot or all instructions are new.
if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) {
init(*CurMBB);
Index = Instr2PosIndex.at(&MI);
return true;
}
for (auto I = Start; I != End; ++I) {
LastIndex += Step;
Instr2PosIndex[&*I] = LastIndex;
}
Index = Instr2PosIndex.at(&MI);
return false;
}
private:
bool IsInitialized = false;
enum { InstrDist = 1024 };
const MachineBasicBlock *CurMBB = nullptr;
DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex;
};
class RegAllocFastImpl {
public:
RegAllocFastImpl(const RegAllocFilterFunc F = nullptr,
bool ClearVirtRegs_ = true)
: ShouldAllocateRegisterImpl(F), StackSlotForVirtReg(-1),
ClearVirtRegs(ClearVirtRegs_) {}
private:
MachineFrameInfo *MFI = nullptr;
MachineRegisterInfo *MRI = nullptr;
const TargetRegisterInfo *TRI = nullptr;
const TargetInstrInfo *TII = nullptr;
RegisterClassInfo RegClassInfo;
const RegAllocFilterFunc ShouldAllocateRegisterImpl;
/// Basic block currently being allocated.
MachineBasicBlock *MBB = nullptr;
/// Maps virtual regs to the frame index where these values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
/// Everything we know about a live virtual register.
struct LiveReg {
MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
Register VirtReg; ///< Virtual register number.
MCPhysReg PhysReg = 0; ///< Currently held here.
bool LiveOut = false; ///< Register is possibly live out.
bool Reloaded = false; ///< Register was reloaded.
bool Error = false; ///< Could not allocate.
explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
unsigned getSparseSetIndex() const {
return Register::virtReg2Index(VirtReg);
}
};
using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>;
/// This map contains entries for each virtual register that is currently
/// available in a physical register.
LiveRegMap LiveVirtRegs;
/// Stores assigned virtual registers present in the bundle MI.
DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
/// List of DBG_VALUE that we encountered without the vreg being assigned
/// because they were placed after the last use of the vreg.
DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
/// Has a bit set for every virtual register for which it was determined
/// that it is alive across blocks.
BitVector MayLiveAcrossBlocks;
/// State of a register unit.
enum RegUnitState {
/// A free register is not currently in use and can be allocated
/// immediately without checking aliases.
regFree,
/// A pre-assigned register has been assigned before register allocation
/// (e.g., setting up a call parameter).
regPreAssigned,
/// Used temporarily in reloadAtBegin() to mark register units that are
/// live-in to the basic block.
regLiveIn,
/// A register state may also be a virtual register number, indication
/// that the physical register is currently allocated to a virtual
/// register. In that case, LiveVirtRegs contains the inverse mapping.
};
/// Maps each physical register to a RegUnitState enum or virtual register.
std::vector<unsigned> RegUnitStates;
SmallVector<MachineInstr *, 32> Coalesced;
/// Track register units that are used in the current instruction, and so
/// cannot be allocated.
///
/// In the first phase (tied defs/early clobber), we consider also physical
/// uses, afterwards, we don't. If the lowest bit isn't set, it's a solely
/// physical use (markPhysRegUsedInInstr), otherwise, it's a normal use. To
/// avoid resetting the entire vector after every instruction, we track the
/// instruction "generation" in the remaining 31 bits -- this means, that if
/// UsedInInstr[Idx] < InstrGen, the register unit is unused. InstrGen is
/// never zero and always incremented by two.
///
/// Don't allocate inline storage: the number of register units is typically
/// quite large (e.g., AArch64 > 100, X86 > 200, AMDGPU > 1000).
uint32_t InstrGen;
SmallVector<unsigned, 0> UsedInInstr;
SmallVector<unsigned, 8> DefOperandIndexes;
// Register masks attached to the current instruction.
SmallVector<const uint32_t *> RegMasks;
// Assign index for each instruction to quickly determine dominance.
InstrPosIndexes PosIndexes;
void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
bool isPhysRegFree(MCPhysReg PhysReg) const;
/// Mark a physreg as used in this instruction.
void markRegUsedInInstr(MCPhysReg PhysReg) {
for (MCRegUnit Unit : TRI->regunits(PhysReg))
UsedInInstr[Unit] = InstrGen | 1;
}
// Check if physreg is clobbered by instruction's regmask(s).
bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
return MachineOperand::clobbersPhysReg(Mask, PhysReg);
});
}
/// Check if a physreg or any of its aliases are used in this instruction.
bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
return true;
for (MCRegUnit Unit : TRI->regunits(PhysReg))
if (UsedInInstr[Unit] >= (InstrGen | !LookAtPhysRegUses))
return true;
return false;
}
/// Mark physical register as being used in a register use operand.
/// This is only used by the special livethrough handling code.
void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
assert(UsedInInstr[Unit] <= InstrGen && "non-phys use before phys use?");
UsedInInstr[Unit] = InstrGen;
}
}
/// Remove mark of physical register being used in the instruction.
void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
for (MCRegUnit Unit : TRI->regunits(PhysReg))
UsedInInstr[Unit] = 0;
}
enum : unsigned {
spillClean = 50,
spillDirty = 100,
spillPrefBonus = 20,
spillImpossible = ~0u
};
public:
bool ClearVirtRegs;
bool runOnMachineFunction(MachineFunction &MF);
private:
void allocateBasicBlock(MachineBasicBlock &MBB);
void addRegClassDefCounts(MutableArrayRef<unsigned> RegClassDefCounts,
Register Reg) const;
void findAndSortDefOperandIndexes(const MachineInstr &MI);
void allocateInstruction(MachineInstr &MI);
void handleDebugValue(MachineInstr &MI);
void handleBundle(MachineInstr &MI);
bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
void freePhysReg(MCPhysReg PhysReg);
unsigned calcSpillCost(MCPhysReg PhysReg) const;
LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
}
LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
}
void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
bool LookAtPhysRegUses = false);
void allocVirtRegUndef(MachineOperand &MO);
void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
MCPhysReg Reg);
bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
Register VirtReg);
bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
bool LookAtPhysRegUses = false);
bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg);
MachineBasicBlock::iterator
getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
SmallSet<Register, 2> &PrologLiveIns) const;
void reloadAtBegin(MachineBasicBlock &MBB);
bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
Register traceCopies(Register VirtReg) const;
Register traceCopyChain(Register Reg) const;
bool shouldAllocateRegister(const Register Reg) const;
int getStackSpaceFor(Register VirtReg);
void spill(MachineBasicBlock::iterator Before, Register VirtReg,
MCPhysReg AssignedReg, bool Kill, bool LiveOut);
void reload(MachineBasicBlock::iterator Before, Register VirtReg,
MCPhysReg PhysReg);
bool mayLiveOut(Register VirtReg);
bool mayLiveIn(Register VirtReg);
void dumpState() const;
};
class RegAllocFast : public MachineFunctionPass {
RegAllocFastImpl Impl;
public:
static char ID;
RegAllocFast(const RegAllocFilterFunc F = nullptr, bool ClearVirtRegs_ = true)
: MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {}
bool runOnMachineFunction(MachineFunction &MF) override {
return Impl.runOnMachineFunction(MF);
}
StringRef getPassName() const override { return "Fast Register Allocator"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
MachineFunctionProperties getSetProperties() const override {
if (Impl.ClearVirtRegs) {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
return MachineFunctionProperties();
}
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::IsSSA);
}
};
} // end anonymous namespace
char RegAllocFast::ID = 0;
INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
false)
bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const {
assert(Reg.isVirtual());
if (!ShouldAllocateRegisterImpl)
return true;
return ShouldAllocateRegisterImpl(*TRI, *MRI, Reg);
}
void RegAllocFastImpl::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
for (MCRegUnit Unit : TRI->regunits(PhysReg))
RegUnitStates[Unit] = NewState;
}
bool RegAllocFastImpl::isPhysRegFree(MCPhysReg PhysReg) const {
for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
if (RegUnitStates[Unit] != regFree)
return false;
}
return true;
}
/// This allocates space for the specified virtual register to be held on the
/// stack.
int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
// Already has space allocated?
if (SS != -1)
return SS;
// Allocate a new stack object for this spill location...
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
unsigned Size = TRI->getSpillSize(RC);
Align Alignment = TRI->getSpillAlign(RC);
int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A,
const MachineInstr &B) {
uint64_t IndexA, IndexB;
PosIndexes.getIndex(A, IndexA);
if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB)))
PosIndexes.getIndex(A, IndexA);
return IndexA < IndexB;
}
/// Returns false if \p VirtReg is known to not live out of the current block.
bool RegAllocFastImpl::mayLiveOut(Register VirtReg) {
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
// Cannot be live-out if there are no successors.
return !MBB->succ_empty();
}
const MachineInstr *SelfLoopDef = nullptr;
// If this block loops back to itself, it is necessary to check whether the
// use comes after the def.
if (MBB->isSuccessor(MBB)) {
// Find the first def in the self loop MBB.
for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
if (DefInst.getParent() != MBB) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
} else {
if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef))
SelfLoopDef = &DefInst;
}
}
if (!SelfLoopDef) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
}
}
// See if the first \p Limit uses of the register are all in the current
// block.
static const unsigned Limit = 8;
unsigned C = 0;
for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
if (UseInst.getParent() != MBB || ++C >= Limit) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
// Cannot be live-out if there are no successors.
return !MBB->succ_empty();
}
if (SelfLoopDef) {
// Try to handle some simple cases to avoid spilling and reloading every
// value inside a self looping block.
if (SelfLoopDef == &UseInst ||
!dominates(PosIndexes, *SelfLoopDef, UseInst)) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
}
}
}
return false;
}
/// Returns false if \p VirtReg is known to not be live into the current block.
bool RegAllocFastImpl::mayLiveIn(Register VirtReg) {
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
return !MBB->pred_empty();
// See if the first \p Limit def of the register are all in the current block.
static const unsigned Limit = 8;
unsigned C = 0;
for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
if (DefInst.getParent() != MBB || ++C >= Limit) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return !MBB->pred_empty();
}
}
return false;
}
/// Insert spill instruction for \p AssignedReg before \p Before. Update
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before,
Register VirtReg, MCPhysReg AssignedReg, bool Kill,
bool LiveOut) {
LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in "
<< printReg(AssignedReg, TRI));
int FI = getStackSpaceFor(VirtReg);
LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI,
VirtReg);
++NumStores;
MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
// When we spill a virtual register, we will have spill instructions behind
// every definition of it, meaning we can switch all the DBG_VALUEs over
// to just reference the stack slot.
SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
SpilledOperandsMap;
for (MachineOperand *MO : LRIDbgOperands)
SpilledOperandsMap[MO->getParent()].push_back(MO);
for (auto MISpilledOperands : SpilledOperandsMap) {
MachineInstr &DBG = *MISpilledOperands.first;
// We don't have enough support for tracking operands of DBG_VALUE_LISTs.
if (DBG.isDebugValueList())
continue;
MachineInstr *NewDV = buildDbgValueForSpill(
*MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
assert(NewDV->getParent() == MBB && "dangling parent pointer");
(void)NewDV;
LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
if (LiveOut) {
// We need to insert a DBG_VALUE at the end of the block if the spill slot
// is live out, but there is another use of the value after the
// spill. This will allow LiveDebugValues to see the correct live out
// value to propagate to the successors.
MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
MBB->insert(FirstTerm, ClonedDV);
LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
}
// Rewrite unassigned dbg_values to use the stack slot.
// TODO We can potentially do this for list debug values as well if we know
// how the dbg_values are getting unassigned.
if (DBG.isNonListDebugValue()) {
MachineOperand &MO = DBG.getDebugOperand(0);
if (MO.isReg() && MO.getReg() == 0) {
updateDbgValueForSpill(DBG, FI, 0);
}
}
}
// Now this register is spilled there is should not be any DBG_VALUE
// pointing to this register because they are all pointing to spilled value
// now.
LRIDbgOperands.clear();
}
/// Insert reload instruction for \p PhysReg before \p Before.
void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before,
Register VirtReg, MCPhysReg PhysReg) {
LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
<< printReg(PhysReg, TRI) << '\n');
int FI = getStackSpaceFor(VirtReg);
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg);
++NumLoads;
}
/// Get basic block begin insertion point.
/// This is not just MBB.begin() because surprisingly we have EH_LABEL
/// instructions marking the begin of a basic block. This means we must insert
/// new instructions after such labels...
MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint(
MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
MachineBasicBlock::iterator I = MBB.begin();
while (I != MBB.end()) {
if (I->isLabel()) {
++I;
continue;
}
// Most reloads should be inserted after prolog instructions.
if (!TII->isBasicBlockPrologue(*I))
break;
// However if a prolog instruction reads a register that needs to be
// reloaded, the reload should be inserted before the prolog.
for (MachineOperand &MO : I->operands()) {
if (MO.isReg())
PrologLiveIns.insert(MO.getReg());
}
++I;
}
return I;
}
/// Reload all currently assigned virtual registers.
void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) {
if (LiveVirtRegs.empty())
return;
for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
MCPhysReg Reg = P.PhysReg;
// Set state to live-in. This possibly overrides mappings to virtual
// registers but we don't care anymore at this point.
setPhysRegState(Reg, regLiveIn);
}
SmallSet<Register, 2> PrologLiveIns;
// The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
// of spilling here is deterministic, if arbitrary.
MachineBasicBlock::iterator InsertBefore =
getMBBBeginInsertionPoint(MBB, PrologLiveIns);
for (const LiveReg &LR : LiveVirtRegs) {
MCPhysReg PhysReg = LR.PhysReg;
if (PhysReg == 0)
continue;
MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
if (RegUnitStates[FirstUnit] == regLiveIn)
continue;
assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
"no reload in start block. Missing vreg def?");
if (PrologLiveIns.count(PhysReg)) {
// FIXME: Theoretically this should use an insert point skipping labels
// but I'm not sure how labels should interact with prolog instruction
// that need reloads.
reload(MBB.begin(), LR.VirtReg, PhysReg);
} else
reload(InsertBefore, LR.VirtReg, PhysReg);
}
LiveVirtRegs.clear();
}
/// Handle the direct use of a physical register. Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
assert(Register::isPhysicalRegister(Reg) && "expected physreg");
bool displacedAny = displacePhysReg(MI, Reg);
setPhysRegState(Reg, regPreAssigned);
markRegUsedInInstr(Reg);
return displacedAny;
}
bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
bool displacedAny = displacePhysReg(MI, Reg);
setPhysRegState(Reg, regPreAssigned);
return displacedAny;
}
/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
/// similar to defineVirtReg except the physreg is reserved instead of
/// allocated.
bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
bool displacedAny = false;
for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
switch (unsigned VirtReg = RegUnitStates[Unit]) {
default: {
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
MachineBasicBlock::iterator ReloadBefore =
std::next((MachineBasicBlock::iterator)MI.getIterator());
reload(ReloadBefore, VirtReg, LRI->PhysReg);
setPhysRegState(LRI->PhysReg, regFree);
LRI->PhysReg = 0;
LRI->Reloaded = true;
displacedAny = true;
break;
}
case regPreAssigned:
RegUnitStates[Unit] = regFree;
displacedAny = true;
break;
case regFree:
break;
}
}
return displacedAny;
}
void RegAllocFastImpl::freePhysReg(MCPhysReg PhysReg) {
LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
case regFree:
LLVM_DEBUG(dbgs() << '\n');
return;
case regPreAssigned:
LLVM_DEBUG(dbgs() << '\n');
setPhysRegState(PhysReg, regFree);
return;
default: {
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end());
LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
setPhysRegState(LRI->PhysReg, regFree);
LRI->PhysReg = 0;
}
return;
}
}
/// Return the cost of spilling clearing out PhysReg and aliases so it is free
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
/// disabled - it can be allocated directly.
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const {
for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
switch (unsigned VirtReg = RegUnitStates[Unit]) {
case regFree:
break;
case regPreAssigned:
LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
<< printReg(PhysReg, TRI) << '\n');
return spillImpossible;
default: {
bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
findLiveVirtReg(VirtReg)->LiveOut;
return SureSpill ? spillClean : spillDirty;
}
}
}
return 0;
}
void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition,
Register VirtReg,
MCPhysReg Reg) {
auto UDBGValIter = DanglingDbgValues.find(VirtReg);
if (UDBGValIter == DanglingDbgValues.end())
return;
SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second;
for (MachineInstr *DbgValue : Dangling) {
assert(DbgValue->isDebugValue());
if (!DbgValue->hasDebugOperandForReg(VirtReg))
continue;
// Test whether the physreg survives from the definition to the DBG_VALUE.
MCPhysReg SetToReg = Reg;
unsigned Limit = 20;
for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
E = DbgValue->getIterator();
I != E; ++I) {
if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
<< '\n');
SetToReg = 0;
break;
}
}
for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
MO.setReg(SetToReg);
if (SetToReg != 0)
MO.setIsRenamable();
}
}
Dangling.clear();
}
/// This method updates local state so that we know that PhysReg is the
/// proper container for VirtReg now. The physical register must not be used
/// for anything else when this is called.
void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
MCPhysReg PhysReg) {
Register VirtReg = LR.VirtReg;
LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
<< printReg(PhysReg, TRI) << '\n');
assert(LR.PhysReg == 0 && "Already assigned a physreg");
assert(PhysReg != 0 && "Trying to assign no register");
LR.PhysReg = PhysReg;
setPhysRegState(PhysReg, VirtReg);
assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
}
static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); }
Register RegAllocFastImpl::traceCopyChain(Register Reg) const {
static const unsigned ChainLengthLimit = 3;
unsigned C = 0;
do {
if (Reg.isPhysical())
return Reg;
assert(Reg.isVirtual());
MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
if (!VRegDef || !isCoalescable(*VRegDef))
return 0;
Reg = VRegDef->getOperand(1).getReg();
} while (++C <= ChainLengthLimit);
return 0;
}
/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
/// chain of copies to check whether we reach a physical register we can
/// coalesce with.
Register RegAllocFastImpl::traceCopies(Register VirtReg) const {
static const unsigned DefLimit = 3;
unsigned C = 0;
for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
if (isCoalescable(MI)) {
Register Reg = MI.getOperand(1).getReg();
Reg = traceCopyChain(Reg);
if (Reg.isValid())
return Reg;
}
if (++C >= DefLimit)
break;
}
return Register();
}
/// Allocates a physical register for VirtReg.
void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR,
Register Hint0, bool LookAtPhysRegUses) {
const Register VirtReg = LR.VirtReg;
assert(LR.PhysReg == 0);
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
<< " in class " << TRI->getRegClassName(&RC)
<< " with hint " << printReg(Hint0, TRI) << '\n');
// Take hint when possible.
if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
!isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
// Take hint if the register is currently free.
if (isPhysRegFree(Hint0)) {
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
<< '\n');
assignVirtToPhysReg(MI, LR, Hint0);
return;
} else {
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
<< " occupied\n");
}
} else {
Hint0 = Register();
}
// Try other hint.
Register Hint1 = traceCopies(VirtReg);
if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
!isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
// Take hint if the register is currently free.
if (isPhysRegFree(Hint1)) {
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
<< '\n');
assignVirtToPhysReg(MI, LR, Hint1);
return;
} else {
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
<< " occupied\n");
}
} else {
Hint1 = Register();
}
MCPhysReg BestReg = 0;
unsigned BestCost = spillImpossible;
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
for (MCPhysReg PhysReg : AllocationOrder) {
LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
LLVM_DEBUG(dbgs() << "already used in instr.\n");
continue;
}
unsigned Cost = calcSpillCost(PhysReg);
LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
// Immediate take a register with cost 0.
if (Cost == 0) {
assignVirtToPhysReg(MI, LR, PhysReg);
return;
}
if (PhysReg == Hint0 || PhysReg == Hint1)
Cost -= spillPrefBonus;
if (Cost < BestCost) {
BestReg = PhysReg;
BestCost = Cost;
}
}
if (!BestReg) {
// Nothing we can do: Report an error and keep going with an invalid
// allocation.
if (MI.isInlineAsm())
MI.emitError("inline assembly requires more registers than available");
else
MI.emitError("ran out of registers during register allocation");
LR.Error = true;
LR.PhysReg = 0;
return;
}
displacePhysReg(MI, BestReg);
assignVirtToPhysReg(MI, LR, BestReg);
}
void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) {
assert(MO.isUndef() && "expected undef use");
Register VirtReg = MO.getReg();
assert(VirtReg.isVirtual() && "Expected virtreg");
if (!shouldAllocateRegister(VirtReg))
return;
LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
MCPhysReg PhysReg;
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
PhysReg = LRI->PhysReg;
} else {
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
assert(!AllocationOrder.empty() && "Allocation order must not be empty");
PhysReg = AllocationOrder[0];
}
unsigned SubRegIdx = MO.getSubReg();
if (SubRegIdx != 0) {
PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
MO.setSubReg(0);
}
MO.setReg(PhysReg);
MO.setIsRenamable(true);
}
/// Variation of defineVirtReg() with special handling for livethrough regs
/// (tied or earlyclobber) that may interfere with preassigned uses.
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI,
unsigned OpNum,
Register VirtReg) {
if (!shouldAllocateRegister(VirtReg))
return false;
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
if (LRI != LiveVirtRegs.end()) {
MCPhysReg PrevReg = LRI->PhysReg;
if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
<< " (tied/earlyclobber resolution)\n");
freePhysReg(PrevReg);
LRI->PhysReg = 0;
allocVirtReg(MI, *LRI, 0, true);
MachineBasicBlock::iterator InsertBefore =
std::next((MachineBasicBlock::iterator)MI.getIterator());
LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
<< printReg(PrevReg, TRI) << '\n');
BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
TII->get(TargetOpcode::COPY), PrevReg)
.addReg(LRI->PhysReg, llvm::RegState::Kill);
}
MachineOperand &MO = MI.getOperand(OpNum);
if (MO.getSubReg() && !MO.isUndef()) {
LRI->LastUse = &MI;
}
}
return defineVirtReg(MI, OpNum, VirtReg, true);
}
/// Allocates a register for VirtReg definition. Typically the register is
/// already assigned from a use of the virtreg, however we still need to
/// perform an allocation if:
/// - It is a dead definition without any uses.
/// - The value is live out and all uses are in different basic blocks.
///
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum,
Register VirtReg, bool LookAtPhysRegUses) {
assert(VirtReg.isVirtual() && "Not a virtual register");
if (!shouldAllocateRegister(VirtReg))
return false;
MachineOperand &MO = MI.getOperand(OpNum);
LiveRegMap::iterator LRI;
bool New;
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
if (New) {
if (!MO.isDead()) {
if (mayLiveOut(VirtReg)) {
LRI->LiveOut = true;
} else {
// It is a dead def without the dead flag; add the flag now.
MO.setIsDead(true);
}
}
}
if (LRI->PhysReg == 0) {
allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
// If no physical register is available for LRI, we assign one at random
// and bail out of this function immediately.
if (LRI->Error) {
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
if (AllocationOrder.empty())
return setPhysReg(MI, MO, MCRegister::NoRegister);
return setPhysReg(MI, MO, *AllocationOrder.begin());
}
} else {
assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
"TODO: preassign mismatch");
LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
<< " use existing assignment to "
<< printReg(LRI->PhysReg, TRI) << '\n');
}
MCPhysReg PhysReg = LRI->PhysReg;
if (LRI->Reloaded || LRI->LiveOut) {
if (!MI.isImplicitDef()) {
MachineBasicBlock::iterator SpillBefore =
std::next((MachineBasicBlock::iterator)MI.getIterator());
LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut
<< " RL: " << LRI->Reloaded << '\n');
bool Kill = LRI->LastUse == nullptr;
spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
// We need to place additional spills for each indirect destination of an
// INLINEASM_BR.
if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
int FI = StackSlotForVirtReg[VirtReg];
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
for (MachineOperand &MO : MI.operands()) {
if (MO.isMBB()) {
MachineBasicBlock *Succ = MO.getMBB();
TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI,
&RC, TRI, VirtReg);
++NumStores;
Succ->addLiveIn(PhysReg);
}
}
}
LRI->LastUse = nullptr;
}
LRI->LiveOut = false;
LRI->Reloaded = false;
}
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
BundleVirtRegsMap[VirtReg] = PhysReg;
}
markRegUsedInInstr(PhysReg);
return setPhysReg(MI, MO, PhysReg);
}
/// Allocates a register for a VirtReg use.
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO,
Register VirtReg) {
assert(VirtReg.isVirtual() && "Not a virtual register");
if (!shouldAllocateRegister(VirtReg))
return false;
LiveRegMap::iterator LRI;
bool New;
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
if (New) {
if (!MO.isKill()) {
if (mayLiveOut(VirtReg)) {
LRI->LiveOut = true;
} else {
// It is a last (killing) use without the kill flag; add the flag now.
MO.setIsKill(true);
}
}
} else {
assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
}
// If necessary allocate a register.
if (LRI->PhysReg == 0) {
assert(!MO.isTied() && "tied op should be allocated");
Register Hint;
if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
Hint = MI.getOperand(0).getReg();
if (Hint.isVirtual()) {
assert(!shouldAllocateRegister(Hint));
Hint = Register();
} else {
assert(Hint.isPhysical() &&
"Copy destination should already be assigned");
}
}
allocVirtReg(MI, *LRI, Hint, false);
if (LRI->Error) {
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
if (AllocationOrder.empty())
return setPhysReg(MI, MO, MCRegister::NoRegister);
return setPhysReg(MI, MO, *AllocationOrder.begin());
}
}
LRI->LastUse = &MI;
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
}
markRegUsedInInstr(LRI->PhysReg);
return setPhysReg(MI, MO, LRI->PhysReg);
}
/// Changes operand OpNum in MI the refer the PhysReg, considering subregs.
/// \return true if MI's MachineOperands were re-arranged/invalidated.
bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO,
MCPhysReg PhysReg) {
if (!MO.getSubReg()) {
MO.setReg(PhysReg);
MO.setIsRenamable(true);
return false;
}
// Handle subregister index.
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
MO.setIsRenamable(true);
// Note: We leave the subreg number around a little longer in case of defs.
// This is so that the register freeing logic in allocateInstruction can still
// recognize this as subregister defs. The code there will clear the number.
if (!MO.isDef())
MO.setSubReg(0);
// A kill flag implies killing the full register. Add corresponding super
// register kill.
if (MO.isKill()) {
MI.addRegisterKilled(PhysReg, TRI, true);
// Conservatively assume implicit MOs were re-arranged
return true;
}
// A <def,read-undef> of a sub-register requires an implicit def of the full
// register.
if (MO.isDef() && MO.isUndef()) {
if (MO.isDead())
MI.addRegisterDead(PhysReg, TRI, true);
else
MI.addRegisterDefined(PhysReg, TRI);
// Conservatively assume implicit MOs were re-arranged
return true;
}
return false;
}
#ifndef NDEBUG
void RegAllocFastImpl::dumpState() const {
for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
++Unit) {
switch (unsigned VirtReg = RegUnitStates[Unit]) {
case regFree:
break;
case regPreAssigned:
dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
break;
case regLiveIn:
llvm_unreachable("Should not have regLiveIn in map");
default: {
dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
if (I->LiveOut || I->Reloaded) {
dbgs() << '[';
if (I->LiveOut)
dbgs() << 'O';
if (I->Reloaded)
dbgs() << 'R';
dbgs() << ']';
}
assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
break;
}
}
}
dbgs() << '\n';
// Check that LiveVirtRegs is the inverse.
for (const LiveReg &LR : LiveVirtRegs) {
Register VirtReg = LR.VirtReg;
assert(VirtReg.isVirtual() && "Bad map key");
MCPhysReg PhysReg = LR.PhysReg;
if (PhysReg != 0) {
assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg");
for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
assert(RegUnitStates[Unit] == VirtReg && "inverse map valid");
}
}
}
}
#endif
/// Count number of defs consumed from each register class by \p Reg
void RegAllocFastImpl::addRegClassDefCounts(
MutableArrayRef<unsigned> RegClassDefCounts, Register Reg) const {
assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
if (Reg.isVirtual()) {
if (!shouldAllocateRegister(Reg))
return;
const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
RCIdx != RCIdxEnd; ++RCIdx) {
const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
// FIXME: Consider aliasing sub/super registers.
if (OpRC->hasSubClassEq(IdxRC))
++RegClassDefCounts[RCIdx];
}
return;
}
for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
RCIdx != RCIdxEnd; ++RCIdx) {
const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
if (IdxRC->contains(*Alias)) {
++RegClassDefCounts[RCIdx];
break;
}
}
}
}
/// Compute \ref DefOperandIndexes so it contains the indices of "def" operands
/// that are to be allocated. Those are ordered in a way that small classes,
/// early clobbers and livethroughs are allocated first.
void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) {
DefOperandIndexes.clear();
LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (MO.readsReg()) {
if (Reg.isPhysical()) {
LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n');
markPhysRegUsedInInstr(Reg);
}
}
if (MO.isDef() && Reg.isVirtual() && shouldAllocateRegister(Reg))
DefOperandIndexes.push_back(I);
}
// Most instructions only have one virtual def, so there's no point in
// computing the possible number of defs for every register class.
if (DefOperandIndexes.size() <= 1)
return;
// Track number of defs which may consume a register from the class. This is
// used to assign registers for possibly-too-small classes first. Example:
// defs are eax, 3 * gr32_abcd, 2 * gr32 => we want to assign the gr32_abcd
// registers first so that the gr32 don't use the gr32_abcd registers before
// we assign these.
SmallVector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
for (const MachineOperand &MO : MI.operands())
if (MO.isReg() && MO.isDef())
addRegClassDefCounts(RegClassDefCounts, MO.getReg());
llvm::sort(DefOperandIndexes, [&](unsigned I0, unsigned I1) {
const MachineOperand &MO0 = MI.getOperand(I0);
const MachineOperand &MO1 = MI.getOperand(I1);
Register Reg0 = MO0.getReg();
Register Reg1 = MO1.getReg();
const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
// Identify regclass that are easy to use up completely just in this
// instruction.
unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
if (SmallClass0 > SmallClass1)
return true;
if (SmallClass0 < SmallClass1)
return false;
// Allocate early clobbers and livethrough operands first.
bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
(MO0.getSubReg() == 0 && !MO0.isUndef());
bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
(MO1.getSubReg() == 0 && !MO1.isUndef());
if (Livethrough0 > Livethrough1)
return true;
if (Livethrough0 < Livethrough1)
return false;
// Tie-break rule: operand index.
return I0 < I1;
});
}
// Returns true if MO is tied and the operand it's tied to is not Undef (not
// Undef is not the same thing as Def).
static bool isTiedToNotUndef(const MachineOperand &MO) {
if (!MO.isTied())
return false;
const MachineInstr &MI = *MO.getParent();
unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO));
const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
return !TiedMO.isUndef();
}
void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) {
// The basic algorithm here is:
// 1. Mark registers of def operands as free
// 2. Allocate registers to use operands and place reload instructions for
// registers displaced by the allocation.
//
// However we need to handle some corner cases:
// - pre-assigned defs and uses need to be handled before the other def/use
// operands are processed to avoid the allocation heuristics clashing with
// the pre-assignment.
// - The "free def operands" step has to come last instead of first for tied
// operands and early-clobbers.
InstrGen += 2;
// In the event we ever get more than 2**31 instructions...
if (LLVM_UNLIKELY(InstrGen == 0)) {
UsedInInstr.assign(UsedInInstr.size(), 0);
InstrGen = 2;
}
RegMasks.clear();
BundleVirtRegsMap.clear();
// Scan for special cases; Apply pre-assigned register defs to state.
bool HasPhysRegUse = false;
bool HasRegMask = false;
bool HasVRegDef = false;
bool HasDef = false;
bool HasEarlyClobber = false;
bool NeedToAssignLiveThroughs = false;
for (MachineOperand &MO : MI.operands()) {
if (MO.isReg()) {
Register Reg = MO.getReg();
if (Reg.isVirtual()) {
if (!shouldAllocateRegister(Reg))
continue;
if (MO.isDef()) {
HasDef = true;
HasVRegDef = true;
if (MO.isEarlyClobber()) {
HasEarlyClobber = true;
NeedToAssignLiveThroughs = true;
}
if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef()))
NeedToAssignLiveThroughs = true;
}
} else if (Reg.isPhysical()) {
if (!MRI->isReserved(Reg)) {
if (MO.isDef()) {
HasDef = true;
bool displacedAny = definePhysReg(MI, Reg);
if (MO.isEarlyClobber())
HasEarlyClobber = true;
if (!displacedAny)
MO.setIsDead(true);
}
if (MO.readsReg())
HasPhysRegUse = true;
}
}
} else if (MO.isRegMask()) {
HasRegMask = true;
RegMasks.push_back(MO.getRegMask());
}
}
// Allocate virtreg defs.
if (HasDef) {
if (HasVRegDef) {
// Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop
// multiple times to ensure no operand is missed.
bool ReArrangedImplicitOps = true;
// Special handling for early clobbers, tied operands or subregister defs:
// Compared to "normal" defs these:
// - Must not use a register that is pre-assigned for a use operand.
// - In order to solve tricky inline assembly constraints we change the
// heuristic to figure out a good operand order before doing
// assignments.
if (NeedToAssignLiveThroughs) {
while (ReArrangedImplicitOps) {
ReArrangedImplicitOps = false;
findAndSortDefOperandIndexes(MI);
for (unsigned OpIdx : DefOperandIndexes) {
MachineOperand &MO = MI.getOperand(OpIdx);
LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
Register Reg = MO.getReg();
if (MO.isEarlyClobber() || isTiedToNotUndef(MO) ||
(MO.getSubReg() && !MO.isUndef())) {
ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg);
} else {
ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg);
}
// Implicit operands of MI were re-arranged,
// re-compute DefOperandIndexes.
if (ReArrangedImplicitOps)
break;
}
}
} else {
// Assign virtual register defs.
while (ReArrangedImplicitOps) {
ReArrangedImplicitOps = false;
for (MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
Register Reg = MO.getReg();
if (Reg.isVirtual()) {
ReArrangedImplicitOps =
defineVirtReg(MI, MI.getOperandNo(&MO), Reg);
if (ReArrangedImplicitOps)
break;
}
}
}
}
}
// Free registers occupied by defs.
// Iterate operands in reverse order, so we see the implicit super register
// defs first (we added them earlier in case of <def,read-undef>).
for (MachineOperand &MO : reverse(MI.operands())) {
if (!MO.isReg() || !MO.isDef())
continue;
Register Reg = MO.getReg();
// subreg defs don't free the full register. We left the subreg number
// around as a marker in setPhysReg() to recognize this case here.
if (Reg.isPhysical() && MO.getSubReg() != 0) {
MO.setSubReg(0);
continue;
}
assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
"tied def assigned to clobbered register");
// Do not free tied operands and early clobbers.
if (isTiedToNotUndef(MO) || MO.isEarlyClobber())
continue;
if (!Reg)
continue;
if (Reg.isVirtual()) {
assert(!shouldAllocateRegister(Reg));
continue;
}
assert(Reg.isPhysical());
if (MRI->isReserved(Reg))
continue;
freePhysReg(Reg);
unmarkRegUsedInInstr(Reg);
}
}
// Displace clobbered registers.
if (HasRegMask) {
assert(!RegMasks.empty() && "expected RegMask");
// MRI bookkeeping.
for (const auto *RM : RegMasks)
MRI->addPhysRegsUsedFromRegMask(RM);
// Displace clobbered registers.
for (const LiveReg &LR : LiveVirtRegs) {
MCPhysReg PhysReg = LR.PhysReg;
if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
displacePhysReg(MI, PhysReg);
}
}
// Apply pre-assigned register uses to state.
if (HasPhysRegUse) {
for (MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.readsReg())
continue;
Register Reg = MO.getReg();
if (!Reg.isPhysical())
continue;
if (MRI->isReserved(Reg))
continue;
if (!usePhysReg(MI, Reg))
MO.setIsKill(true);
}
}
// Allocate virtreg uses and insert reloads as necessary.
// Implicit MOs can get moved/removed by useVirtReg(), so loop multiple
// times to ensure no operand is missed.
bool HasUndefUse = false;
bool ReArrangedImplicitMOs = true;
while (ReArrangedImplicitMOs) {
ReArrangedImplicitMOs = false;
for (MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isUse())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
continue;
if (MO.isUndef()) {
HasUndefUse = true;
continue;
}
// Populate MayLiveAcrossBlocks in case the use block is allocated before
// the def block (removing the vreg uses).
mayLiveIn(Reg);
assert(!MO.isInternalRead() && "Bundles not supported");
assert(MO.readsReg() && "reading use");
ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg);
if (ReArrangedImplicitMOs)
break;
}
}
// Allocate undef operands. This is a separate step because in a situation
// like ` = OP undef %X, %X` both operands need the same register assign
// so we should perform the normal assignment first.
if (HasUndefUse) {
for (MachineOperand &MO : MI.all_uses()) {
Register Reg = MO.getReg();
if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
continue;
assert(MO.isUndef() && "Should only have undef virtreg uses left");
allocVirtRegUndef(MO);
}
}
// Free early clobbers.
if (HasEarlyClobber) {
for (MachineOperand &MO : reverse(MI.all_defs())) {
if (!MO.isEarlyClobber())
continue;
assert(!MO.getSubReg() && "should be already handled in def processing");
Register Reg = MO.getReg();
if (!Reg)
continue;
if (Reg.isVirtual()) {
assert(!shouldAllocateRegister(Reg));
continue;
}
assert(Reg.isPhysical() && "should have register assigned");
// We sometimes get odd situations like:
// early-clobber %x0 = INSTRUCTION %x0
// which is semantically questionable as the early-clobber should
// apply before the use. But in practice we consider the use to
// happen before the early clobber now. Don't free the early clobber
// register in this case.
if (MI.readsRegister(Reg, TRI))
continue;
freePhysReg(Reg);
}
}
LLVM_DEBUG(dbgs() << "<< " << MI);
if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
MI.getNumOperands() == 2) {
LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
Coalesced.push_back(&MI);
}
}
void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) {
// Ignore DBG_VALUEs that aren't based on virtual registers. These are
// mostly constants and frame indices.
assert(MI.isDebugValue() && "not a DBG_VALUE*");
for (const auto &MO : MI.debug_operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual())
continue;
if (!shouldAllocateRegister(Reg))
continue;
// Already spilled to a stackslot?
int SS = StackSlotForVirtReg[Reg];
if (SS != -1) {
// Modify DBG_VALUE now that the value is in a spill slot.
updateDbgValueForSpill(MI, SS, Reg);
LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
continue;
}
// See if this virtual register has already been allocated to a physical
// register or spilled to a stack slot.
LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
SmallVector<MachineOperand *> DbgOps;
for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
DbgOps.push_back(&Op);
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
// Update every use of Reg within MI.
for (auto &RegMO : DbgOps)
setPhysReg(MI, *RegMO, LRI->PhysReg);
} else {
DanglingDbgValues[Reg].push_back(&MI);
}
// If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
// that future spills of Reg will have DBG_VALUEs.
LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
}
}
void RegAllocFastImpl::handleBundle(MachineInstr &MI) {
MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
++BundledMI;
while (BundledMI->isBundledWithPred()) {
for (MachineOperand &MO : BundledMI->operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
continue;
DenseMap<Register, MCPhysReg>::iterator DI;
DI = BundleVirtRegsMap.find(Reg);
assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
setPhysReg(MI, MO, DI->second);
}
++BundledMI;
}
}
void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) {
this->MBB = &MBB;
LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
PosIndexes.unsetInitialized();
RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
for (const auto &LiveReg : MBB.liveouts())
setPhysRegState(LiveReg.PhysReg, regPreAssigned);
Coalesced.clear();
// Traverse block in reverse order allocating instructions one by one.
for (MachineInstr &MI : reverse(MBB)) {
LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState());
// Special handling for debug values. Note that they are not allowed to
// affect codegen of the other instructions in any way.
if (MI.isDebugValue()) {
handleDebugValue(MI);
continue;
}
allocateInstruction(MI);
// Once BUNDLE header is assigned registers, same assignments need to be
// done for bundled MIs.
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
handleBundle(MI);
}
}
LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState());
// Spill all physical registers holding virtual registers now.
LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
reloadAtBegin(MBB);
// Erase all the coalesced copies. We are delaying it until now because
// LiveVirtRegs might refer to the instrs.
for (MachineInstr *MI : Coalesced)
MBB.erase(MI);
NumCoalesced += Coalesced.size();
for (auto &UDBGPair : DanglingDbgValues) {
for (MachineInstr *DbgValue : UDBGPair.second) {
assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
// Nothing to do if the vreg was spilled in the meantime.
if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
continue;
LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
<< '\n');
DbgValue->setDebugValueUndef();
}
}
DanglingDbgValues.clear();
LLVM_DEBUG(MBB.dump());
}
bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
<< "********** Function: " << MF.getName() << '\n');
MRI = &MF.getRegInfo();
const TargetSubtargetInfo &STI = MF.getSubtarget();
TRI = STI.getRegisterInfo();
TII = STI.getInstrInfo();
MFI = &MF.getFrameInfo();
MRI->freezeReservedRegs();
RegClassInfo.runOnMachineFunction(MF);
unsigned NumRegUnits = TRI->getNumRegUnits();
InstrGen = 0;
UsedInInstr.assign(NumRegUnits, 0);
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
unsigned NumVirtRegs = MRI->getNumVirtRegs();
StackSlotForVirtReg.resize(NumVirtRegs);
LiveVirtRegs.setUniverse(NumVirtRegs);
MayLiveAcrossBlocks.clear();
MayLiveAcrossBlocks.resize(NumVirtRegs);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineBasicBlock &MBB : MF)
allocateBasicBlock(MBB);
if (ClearVirtRegs) {
// All machine operands and other references to virtual registers have been
// replaced. Remove the virtual registers.
MRI->clearVirtRegs();
}
StackSlotForVirtReg.clear();
LiveDbgValueMap.clear();
return true;
}
PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &) {
MFPropsModifier _(*this, MF);
RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs);
bool Changed = Impl.runOnMachineFunction(MF);
if (!Changed)
return PreservedAnalyses::all();
auto PA = getMachineFunctionPassPreservedAnalyses();
PA.preserveSet<CFGAnalyses>();
return PA;
}
void RegAllocFastPass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
bool PrintFilterName = Opts.FilterName != "all";
bool PrintNoClearVRegs = !Opts.ClearVRegs;
bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs;
OS << "regallocfast";
if (PrintFilterName || PrintNoClearVRegs) {
OS << '<';
if (PrintFilterName)
OS << "filter=" << Opts.FilterName;
if (PrintSemicolon)
OS << ';';
if (PrintNoClearVRegs)
OS << "no-clear-vregs";
OS << '>';
}
}
FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); }
FunctionPass *llvm::createFastRegisterAllocator(RegAllocFilterFunc Ftor,
bool ClearVirtRegs) {
return new RegAllocFast(Ftor, ClearVirtRegs);
}
|