1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
//======----------- WindowScheduler.cpp - window scheduler -------------======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Window Scheduling software pipelining algorithm.
//
// The fundamental concept of the window scheduling algorithm involves folding
// the original MBB at a specific position, followed by list scheduling on the
// folded MIs. The optimal scheduling result is then chosen from various folding
// positions as the final scheduling outcome.
//
// The primary challenge in this algorithm lies in generating the folded MIs and
// establishing their dependencies. We have innovatively employed a new MBB,
// created by copying the original MBB three times, known as TripleMBB. This
// TripleMBB enables the convenient implementation of MI folding and dependency
// establishment. To facilitate the algorithm's implementation, we have also
// devised data structures such as OriMIs, TriMIs, TriToOri, and OriToCycle.
//
// Another challenge in the algorithm is the scheduling of phis. Semantically,
// it is difficult to place the phis in the window and perform list scheduling.
// Therefore, we schedule these phis separately after each list scheduling.
//
// The provided implementation is designed for use before the Register Allocator
// (RA). If the target requires implementation after RA, it is recommended to
// reimplement analyseII(), schedulePhi(), and expand(). Additionally,
// target-specific logic can be added in initialize(), preProcess(), and
// postProcess().
//
// Lastly, it is worth mentioning that getSearchIndexes() is an important
// function. We have experimented with more complex heuristics on downstream
// target and achieved favorable results.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/WindowScheduler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachinePipeliner.h"
#include "llvm/CodeGen/ModuloSchedule.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TimeProfiler.h"
using namespace llvm;
#define DEBUG_TYPE "pipeliner"
namespace {
STATISTIC(NumTryWindowSchedule,
"Number of loops that we attempt to use window scheduling");
STATISTIC(NumTryWindowSearch,
"Number of times that we run list schedule in the window scheduling");
STATISTIC(NumWindowSchedule,
"Number of loops that we successfully use window scheduling");
STATISTIC(NumFailAnalyseII,
"Window scheduling abort due to the failure of the II analysis");
cl::opt<unsigned>
WindowSearchNum("window-search-num",
cl::desc("The number of searches per loop in the window "
"algorithm. 0 means no search number limit."),
cl::Hidden, cl::init(6));
cl::opt<unsigned> WindowSearchRatio(
"window-search-ratio",
cl::desc("The ratio of searches per loop in the window algorithm. 100 "
"means search all positions in the loop, while 0 means not "
"performing any search."),
cl::Hidden, cl::init(40));
cl::opt<unsigned> WindowIICoeff(
"window-ii-coeff",
cl::desc(
"The coefficient used when initializing II in the window algorithm."),
cl::Hidden, cl::init(5));
cl::opt<unsigned> WindowRegionLimit(
"window-region-limit",
cl::desc(
"The lower limit of the scheduling region in the window algorithm."),
cl::Hidden, cl::init(3));
cl::opt<unsigned> WindowDiffLimit(
"window-diff-limit",
cl::desc("The lower limit of the difference between best II and base II in "
"the window algorithm. If the difference is smaller than "
"this lower limit, window scheduling will not be performed."),
cl::Hidden, cl::init(2));
} // namespace
// WindowIILimit serves as an indicator of abnormal scheduling results and could
// potentially be referenced by the derived target window scheduler.
cl::opt<unsigned>
WindowIILimit("window-ii-limit",
cl::desc("The upper limit of II in the window algorithm."),
cl::Hidden, cl::init(1000));
WindowScheduler::WindowScheduler(MachineSchedContext *C, MachineLoop &ML)
: Context(C), MF(C->MF), MBB(ML.getHeader()), Loop(ML),
Subtarget(&MF->getSubtarget()), TII(Subtarget->getInstrInfo()),
TRI(Subtarget->getRegisterInfo()), MRI(&MF->getRegInfo()) {
TripleDAG = std::unique_ptr<ScheduleDAGInstrs>(
createMachineScheduler(/*OnlyBuildGraph=*/true));
}
bool WindowScheduler::run() {
if (!initialize()) {
LLVM_DEBUG(dbgs() << "The WindowScheduler failed to initialize!\n");
return false;
}
// The window algorithm is time-consuming, and its compilation time should be
// taken into consideration.
TimeTraceScope Scope("WindowSearch");
++NumTryWindowSchedule;
// Performing the relevant processing before window scheduling.
preProcess();
// The main window scheduling begins.
std::unique_ptr<ScheduleDAGInstrs> SchedDAG(createMachineScheduler());
auto SearchIndexes = getSearchIndexes(WindowSearchNum, WindowSearchRatio);
for (unsigned Idx : SearchIndexes) {
OriToCycle.clear();
++NumTryWindowSearch;
// The scheduling starts with non-phi instruction, so SchedPhiNum needs to
// be added to Idx.
unsigned Offset = Idx + SchedPhiNum;
auto Range = getScheduleRange(Offset, SchedInstrNum);
SchedDAG->startBlock(MBB);
SchedDAG->enterRegion(MBB, Range.begin(), Range.end(), SchedInstrNum);
SchedDAG->schedule();
LLVM_DEBUG(SchedDAG->dump());
unsigned II = analyseII(*SchedDAG, Offset);
if (II == WindowIILimit) {
restoreTripleMBB();
LLVM_DEBUG(dbgs() << "Can't find a valid II. Keep searching...\n");
++NumFailAnalyseII;
continue;
}
schedulePhi(Offset, II);
updateScheduleResult(Offset, II);
restoreTripleMBB();
LLVM_DEBUG(dbgs() << "Current window Offset is " << Offset << " and II is "
<< II << ".\n");
}
// Performing the relevant processing after window scheduling.
postProcess();
// Check whether the scheduling result is valid.
if (!isScheduleValid()) {
LLVM_DEBUG(dbgs() << "Window scheduling is not needed!\n");
return false;
}
LLVM_DEBUG(dbgs() << "\nBest window offset is " << BestOffset
<< " and Best II is " << BestII << ".\n");
// Expand the scheduling result to prologue, kernel, and epilogue.
expand();
++NumWindowSchedule;
return true;
}
ScheduleDAGInstrs *
WindowScheduler::createMachineScheduler(bool OnlyBuildGraph) {
return OnlyBuildGraph
? new ScheduleDAGMI(
Context, std::make_unique<PostGenericScheduler>(Context),
true)
: Context->PassConfig->createMachineScheduler(Context);
}
bool WindowScheduler::initialize() {
if (!Subtarget->enableWindowScheduler()) {
LLVM_DEBUG(dbgs() << "Target disables the window scheduling!\n");
return false;
}
// Initialized the member variables used by window algorithm.
OriMIs.clear();
TriMIs.clear();
TriToOri.clear();
OriToCycle.clear();
SchedResult.clear();
SchedPhiNum = 0;
SchedInstrNum = 0;
BestII = UINT_MAX;
BestOffset = 0;
BaseII = 0;
// List scheduling used in the window algorithm depends on LiveIntervals.
if (!Context->LIS) {
LLVM_DEBUG(dbgs() << "There is no LiveIntervals information!\n");
return false;
}
// Check each MI in MBB.
SmallSet<Register, 8> PrevDefs;
SmallSet<Register, 8> PrevUses;
auto IsLoopCarried = [&](MachineInstr &Phi) {
// Two cases are checked here: (1)The virtual register defined by the
// preceding phi is used by the succeeding phi;(2)The preceding phi uses the
// virtual register defined by the succeeding phi.
if (PrevUses.count(Phi.getOperand(0).getReg()))
return true;
PrevDefs.insert(Phi.getOperand(0).getReg());
for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
if (PrevDefs.count(Phi.getOperand(I).getReg()))
return true;
PrevUses.insert(Phi.getOperand(I).getReg());
}
return false;
};
auto PLI = TII->analyzeLoopForPipelining(MBB);
for (auto &MI : *MBB) {
if (MI.isMetaInstruction() || MI.isTerminator())
continue;
if (MI.isPHI()) {
if (IsLoopCarried(MI)) {
LLVM_DEBUG(dbgs() << "Loop carried phis are not supported yet!\n");
return false;
}
++SchedPhiNum;
++BestOffset;
} else
++SchedInstrNum;
if (TII->isSchedulingBoundary(MI, MBB, *MF)) {
LLVM_DEBUG(
dbgs() << "Boundary MI is not allowed in window scheduling!\n");
return false;
}
if (PLI->shouldIgnoreForPipelining(&MI)) {
LLVM_DEBUG(dbgs() << "Special MI defined by target is not allowed in "
"window scheduling!\n");
return false;
}
for (auto &Def : MI.all_defs())
if (Def.isReg() && Def.getReg().isPhysical()) {
LLVM_DEBUG(dbgs() << "Physical registers are not supported in "
"window scheduling!\n");
return false;
}
}
if (SchedInstrNum <= WindowRegionLimit) {
LLVM_DEBUG(dbgs() << "There are too few MIs in the window region!\n");
return false;
}
return true;
}
void WindowScheduler::preProcess() {
// Prior to window scheduling, it's necessary to backup the original MBB,
// generate a new TripleMBB, and build a TripleDAG based on the TripleMBB.
backupMBB();
generateTripleMBB();
TripleDAG->startBlock(MBB);
TripleDAG->enterRegion(
MBB, MBB->begin(), MBB->getFirstTerminator(),
std::distance(MBB->begin(), MBB->getFirstTerminator()));
TripleDAG->buildSchedGraph(Context->AA);
}
void WindowScheduler::postProcess() {
// After window scheduling, it's necessary to clear the TripleDAG and restore
// to the original MBB.
TripleDAG->exitRegion();
TripleDAG->finishBlock();
restoreMBB();
}
void WindowScheduler::backupMBB() {
for (auto &MI : MBB->instrs())
OriMIs.push_back(&MI);
// Remove MIs and the corresponding live intervals.
for (auto &MI : make_early_inc_range(*MBB)) {
Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
MBB->remove(&MI);
}
}
void WindowScheduler::restoreMBB() {
// Erase MIs and the corresponding live intervals.
for (auto &MI : make_early_inc_range(*MBB)) {
Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
MI.eraseFromParent();
}
// Restore MBB to the state before window scheduling.
for (auto *MI : OriMIs)
MBB->push_back(MI);
updateLiveIntervals();
}
void WindowScheduler::generateTripleMBB() {
const unsigned DuplicateNum = 3;
TriMIs.clear();
TriToOri.clear();
assert(OriMIs.size() > 0 && "The Original MIs were not backed up!");
// Step 1: Performing the first copy of MBB instructions, excluding
// terminators. At the same time, we back up the anti-register of phis.
// DefPairs hold the old and new define register pairs.
DenseMap<Register, Register> DefPairs;
for (auto *MI : OriMIs) {
if (MI->isMetaInstruction() || MI->isTerminator())
continue;
if (MI->isPHI())
if (Register AntiReg = getAntiRegister(MI))
DefPairs[MI->getOperand(0).getReg()] = AntiReg;
auto *NewMI = MF->CloneMachineInstr(MI);
MBB->push_back(NewMI);
TriMIs.push_back(NewMI);
TriToOri[NewMI] = MI;
}
// Step 2: Performing the remaining two copies of MBB instructions excluding
// phis, and the last one contains terminators. At the same time, registers
// are updated accordingly.
for (size_t Cnt = 1; Cnt < DuplicateNum; ++Cnt) {
for (auto *MI : OriMIs) {
if (MI->isPHI() || MI->isMetaInstruction() ||
(MI->isTerminator() && Cnt < DuplicateNum - 1))
continue;
auto *NewMI = MF->CloneMachineInstr(MI);
DenseMap<Register, Register> NewDefs;
// New defines are updated.
for (auto MO : NewMI->all_defs())
if (MO.isReg() && MO.getReg().isVirtual()) {
Register NewDef =
MRI->createVirtualRegister(MRI->getRegClass(MO.getReg()));
NewMI->substituteRegister(MO.getReg(), NewDef, 0, *TRI);
NewDefs[MO.getReg()] = NewDef;
}
// New uses are updated.
for (auto DefRegPair : DefPairs)
if (NewMI->readsRegister(DefRegPair.first, TRI)) {
Register NewUse = DefRegPair.second;
// Note the update process for '%1 -> %9' in '%10 = sub i32 %9, %3':
//
// BB.3: DefPairs
// ==================================
// %1 = phi i32 [%2, %BB.1], [%7, %BB.3] (%1,%7)
// ...
// ==================================
// ...
// %4 = sub i32 %1, %3
// ...
// %7 = add i32 %5, %6
// ...
// ----------------------------------
// ...
// %8 = sub i32 %7, %3 (%1,%7),(%4,%8)
// ...
// %9 = add i32 %5, %6 (%1,%7),(%4,%8),(%7,%9)
// ...
// ----------------------------------
// ...
// %10 = sub i32 %9, %3 (%1,%7),(%4,%10),(%7,%9)
// ... ^
// %11 = add i32 %5, %6 (%1,%7),(%4,%10),(%7,%11)
// ...
// ==================================
// < Terminators >
// ==================================
if (DefPairs.count(NewUse))
NewUse = DefPairs[NewUse];
NewMI->substituteRegister(DefRegPair.first, NewUse, 0, *TRI);
}
// DefPairs is updated at last.
for (auto &NewDef : NewDefs)
DefPairs[NewDef.first] = NewDef.second;
MBB->push_back(NewMI);
TriMIs.push_back(NewMI);
TriToOri[NewMI] = MI;
}
}
// Step 3: The registers used by phis are updated, and they are generated in
// the third copy of MBB.
// In the privious example, the old phi is:
// %1 = phi i32 [%2, %BB.1], [%7, %BB.3]
// The new phi is:
// %1 = phi i32 [%2, %BB.1], [%11, %BB.3]
for (auto &Phi : MBB->phis()) {
for (auto DefRegPair : DefPairs)
if (Phi.readsRegister(DefRegPair.first, TRI))
Phi.substituteRegister(DefRegPair.first, DefRegPair.second, 0, *TRI);
}
updateLiveIntervals();
}
void WindowScheduler::restoreTripleMBB() {
// After list scheduling, the MBB is restored in one traversal.
for (size_t I = 0; I < TriMIs.size(); ++I) {
auto *MI = TriMIs[I];
auto OldPos = MBB->begin();
std::advance(OldPos, I);
auto CurPos = MI->getIterator();
if (CurPos != OldPos) {
MBB->splice(OldPos, MBB, CurPos);
Context->LIS->handleMove(*MI, /*UpdateFlags=*/false);
}
}
}
SmallVector<unsigned> WindowScheduler::getSearchIndexes(unsigned SearchNum,
unsigned SearchRatio) {
// We use SearchRatio to get the index range, and then evenly get the indexes
// according to the SearchNum. This is a simple huristic. Depending on the
// characteristics of the target, more complex algorithms can be used for both
// performance and compilation time.
assert(SearchRatio <= 100 && "SearchRatio should be equal or less than 100!");
unsigned MaxIdx = SchedInstrNum * SearchRatio / 100;
unsigned Step = SearchNum > 0 && SearchNum <= MaxIdx ? MaxIdx / SearchNum : 1;
SmallVector<unsigned> SearchIndexes;
for (unsigned Idx = 0; Idx < MaxIdx; Idx += Step)
SearchIndexes.push_back(Idx);
return SearchIndexes;
}
int WindowScheduler::getEstimatedII(ScheduleDAGInstrs &DAG) {
// Sometimes MaxDepth is 0, so it should be limited to the minimum of 1.
unsigned MaxDepth = 1;
for (auto &SU : DAG.SUnits)
MaxDepth = std::max(SU.getDepth() + SU.Latency, MaxDepth);
return MaxDepth * WindowIICoeff;
}
int WindowScheduler::calculateMaxCycle(ScheduleDAGInstrs &DAG,
unsigned Offset) {
int InitII = getEstimatedII(DAG);
ResourceManager RM(Subtarget, &DAG);
RM.init(InitII);
// ResourceManager and DAG are used to calculate the maximum cycle for the
// scheduled MIs. Since MIs in the Region have already been scheduled, the
// emit cycles can be estimated in order here.
int CurCycle = 0;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &MI : Range) {
auto *SU = DAG.getSUnit(&MI);
int ExpectCycle = CurCycle;
// The predecessors of current MI determine its earliest issue cycle.
for (auto &Pred : SU->Preds) {
if (Pred.isWeak())
continue;
auto *PredMI = Pred.getSUnit()->getInstr();
int PredCycle = getOriCycle(PredMI);
ExpectCycle = std::max(ExpectCycle, PredCycle + (int)Pred.getLatency());
}
// Zero cost instructions do not need to check resource.
if (!TII->isZeroCost(MI.getOpcode())) {
// ResourceManager can be used to detect resource conflicts between the
// current MI and the previously inserted MIs.
while (!RM.canReserveResources(*SU, CurCycle) || CurCycle < ExpectCycle) {
++CurCycle;
if (CurCycle == (int)WindowIILimit)
return CurCycle;
}
RM.reserveResources(*SU, CurCycle);
}
OriToCycle[getOriMI(&MI)] = CurCycle;
LLVM_DEBUG(dbgs() << "\tCycle " << CurCycle << " [S."
<< getOriStage(getOriMI(&MI), Offset) << "]: " << MI);
}
LLVM_DEBUG(dbgs() << "MaxCycle is " << CurCycle << ".\n");
return CurCycle;
}
// By utilizing TripleDAG, we can easily establish dependencies between A and B.
// Based on the MaxCycle and the issue cycle of A and B, we can determine
// whether it is necessary to add a stall cycle. This is because, without
// inserting the stall cycle, the latency constraint between A and B cannot be
// satisfied. The details are as follows:
//
// New MBB:
// ========================================
// < Phis >
// ======================================== (sliding direction)
// MBB copy 1 |
// V
//
// ~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~ ----schedule window-----
// | |
// ===================V==================== |
// MBB copy 2 < MI B > |
// |
// < MI A > V
// ~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~ ------------------------
// :
// ===================V====================
// MBB copy 3 < MI B'>
//
//
//
//
// ========================================
// < Terminators >
// ========================================
int WindowScheduler::calculateStallCycle(unsigned Offset, int MaxCycle) {
int MaxStallCycle = 0;
int CurrentII = MaxCycle + 1;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &MI : Range) {
auto *SU = TripleDAG->getSUnit(&MI);
int DefCycle = getOriCycle(&MI);
for (auto &Succ : SU->Succs) {
if (Succ.isWeak() || Succ.getSUnit() == &TripleDAG->ExitSU)
continue;
// If the expected cycle does not exceed CurrentII, no check is needed.
if (DefCycle + (int)Succ.getLatency() <= CurrentII)
continue;
// If the cycle of the scheduled MI A is less than that of the scheduled
// MI B, the scheduling will fail because the lifetime of the
// corresponding register exceeds II.
auto *SuccMI = Succ.getSUnit()->getInstr();
int UseCycle = getOriCycle(SuccMI);
if (DefCycle < UseCycle)
return WindowIILimit;
// Get the stall cycle introduced by the register between two trips.
int StallCycle = DefCycle + (int)Succ.getLatency() - CurrentII - UseCycle;
MaxStallCycle = std::max(MaxStallCycle, StallCycle);
}
}
LLVM_DEBUG(dbgs() << "MaxStallCycle is " << MaxStallCycle << ".\n");
return MaxStallCycle;
}
unsigned WindowScheduler::analyseII(ScheduleDAGInstrs &DAG, unsigned Offset) {
LLVM_DEBUG(dbgs() << "Start analyzing II:\n");
int MaxCycle = calculateMaxCycle(DAG, Offset);
if (MaxCycle == (int)WindowIILimit)
return MaxCycle;
int StallCycle = calculateStallCycle(Offset, MaxCycle);
if (StallCycle == (int)WindowIILimit)
return StallCycle;
// The value of II is equal to the maximum execution cycle plus 1.
return MaxCycle + StallCycle + 1;
}
void WindowScheduler::schedulePhi(int Offset, unsigned &II) {
LLVM_DEBUG(dbgs() << "Start scheduling Phis:\n");
for (auto &Phi : MBB->phis()) {
int LateCycle = INT_MAX;
auto *SU = TripleDAG->getSUnit(&Phi);
for (auto &Succ : SU->Succs) {
// Phi doesn't have any Anti successors.
if (Succ.getKind() != SDep::Data)
continue;
// Phi is scheduled before the successor of stage 0. The issue cycle of
// phi is the latest cycle in this interval.
auto *SuccMI = Succ.getSUnit()->getInstr();
int Cycle = getOriCycle(SuccMI);
if (getOriStage(getOriMI(SuccMI), Offset) == 0)
LateCycle = std::min(LateCycle, Cycle);
}
// The anti-dependency of phi need to be handled separately in the same way.
if (Register AntiReg = getAntiRegister(&Phi)) {
auto *AntiMI = MRI->getVRegDef(AntiReg);
// AntiReg may be defined outside the kernel MBB.
if (AntiMI->getParent() == MBB) {
auto AntiCycle = getOriCycle(AntiMI);
if (getOriStage(getOriMI(AntiMI), Offset) == 0)
LateCycle = std::min(LateCycle, AntiCycle);
}
}
// If there is no limit to the late cycle, a default value is given.
if (LateCycle == INT_MAX)
LateCycle = (int)(II - 1);
LLVM_DEBUG(dbgs() << "\tCycle range [0, " << LateCycle << "] " << Phi);
// The issue cycle of phi is set to the latest cycle in the interval.
auto *OriPhi = getOriMI(&Phi);
OriToCycle[OriPhi] = LateCycle;
}
}
DenseMap<MachineInstr *, int> WindowScheduler::getIssueOrder(unsigned Offset,
unsigned II) {
// At each issue cycle, phi is placed before MIs in stage 0. So the simplest
// way is to put phi at the beginning of the current cycle.
DenseMap<int, SmallVector<MachineInstr *>> CycleToMIs;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &Phi : MBB->phis())
CycleToMIs[getOriCycle(&Phi)].push_back(getOriMI(&Phi));
for (auto &MI : Range)
CycleToMIs[getOriCycle(&MI)].push_back(getOriMI(&MI));
// Each MI is assigned a separate ordered Id, which is used as a sort marker
// in the following expand process.
DenseMap<MachineInstr *, int> IssueOrder;
int Id = 0;
for (int Cycle = 0; Cycle < (int)II; ++Cycle) {
if (!CycleToMIs.count(Cycle))
continue;
for (auto *MI : CycleToMIs[Cycle])
IssueOrder[MI] = Id++;
}
return IssueOrder;
}
void WindowScheduler::updateScheduleResult(unsigned Offset, unsigned II) {
// At the first update, Offset is equal to SchedPhiNum. At this time, only
// BestII, BestOffset, and BaseII need to be updated.
if (Offset == SchedPhiNum) {
BestII = II;
BestOffset = SchedPhiNum;
BaseII = II;
return;
}
// The update will only continue if the II is smaller than BestII and the II
// is sufficiently small.
if ((II >= BestII) || (II + WindowDiffLimit > BaseII))
return;
BestII = II;
BestOffset = Offset;
// Record the result of the current list scheduling, noting that each MI is
// stored unordered in SchedResult.
SchedResult.clear();
auto IssueOrder = getIssueOrder(Offset, II);
for (auto &Pair : OriToCycle) {
assert(IssueOrder.count(Pair.first) && "Cannot find original MI!");
SchedResult.push_back(std::make_tuple(Pair.first, Pair.second,
getOriStage(Pair.first, Offset),
IssueOrder[Pair.first]));
}
}
void WindowScheduler::expand() {
// The MIs in the SchedResult are sorted by the issue order ID.
llvm::stable_sort(SchedResult,
[](const std::tuple<MachineInstr *, int, int, int> &A,
const std::tuple<MachineInstr *, int, int, int> &B) {
return std::get<3>(A) < std::get<3>(B);
});
// Use the scheduling infrastructure for expansion, noting that InstrChanges
// is not supported here.
DenseMap<MachineInstr *, int> Cycles, Stages;
std::vector<MachineInstr *> OrderedInsts;
for (auto &Info : SchedResult) {
auto *MI = std::get<0>(Info);
OrderedInsts.push_back(MI);
Cycles[MI] = std::get<1>(Info);
Stages[MI] = std::get<2>(Info);
LLVM_DEBUG(dbgs() << "\tCycle " << Cycles[MI] << " [S." << Stages[MI]
<< "]: " << *MI);
}
ModuloSchedule MS(*MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
std::move(Stages));
ModuloScheduleExpander MSE(*MF, MS, *Context->LIS,
ModuloScheduleExpander::InstrChangesTy());
MSE.expand();
MSE.cleanup();
}
void WindowScheduler::updateLiveIntervals() {
SmallVector<Register, 128> UsedRegs;
for (MachineInstr &MI : *MBB)
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || MO.getReg() == 0)
continue;
Register Reg = MO.getReg();
if (!is_contained(UsedRegs, Reg))
UsedRegs.push_back(Reg);
}
Context->LIS->repairIntervalsInRange(MBB, MBB->begin(), MBB->end(), UsedRegs);
}
iterator_range<MachineBasicBlock::iterator>
WindowScheduler::getScheduleRange(unsigned Offset, unsigned Num) {
auto RegionBegin = MBB->begin();
std::advance(RegionBegin, Offset);
auto RegionEnd = RegionBegin;
std::advance(RegionEnd, Num);
return make_range(RegionBegin, RegionEnd);
}
int WindowScheduler::getOriCycle(MachineInstr *NewMI) {
assert(TriToOri.count(NewMI) && "Cannot find original MI!");
auto *OriMI = TriToOri[NewMI];
assert(OriToCycle.count(OriMI) && "Cannot find schedule cycle!");
return OriToCycle[OriMI];
}
MachineInstr *WindowScheduler::getOriMI(MachineInstr *NewMI) {
assert(TriToOri.count(NewMI) && "Cannot find original MI!");
return TriToOri[NewMI];
}
unsigned WindowScheduler::getOriStage(MachineInstr *OriMI, unsigned Offset) {
assert(llvm::find(OriMIs, OriMI) != OriMIs.end() &&
"Cannot find OriMI in OriMIs!");
// If there is no instruction fold, all MI stages are 0.
if (Offset == SchedPhiNum)
return 0;
// For those MIs with an ID less than the Offset, their stages are set to 0,
// while the rest are set to 1.
unsigned Id = 0;
for (auto *MI : OriMIs) {
if (MI->isMetaInstruction())
continue;
if (MI == OriMI)
break;
++Id;
}
return Id >= (size_t)Offset ? 1 : 0;
}
Register WindowScheduler::getAntiRegister(MachineInstr *Phi) {
assert(Phi->isPHI() && "Expecting PHI!");
Register AntiReg;
for (auto MO : Phi->uses()) {
if (MO.isReg())
AntiReg = MO.getReg();
else if (MO.isMBB() && MO.getMBB() == MBB)
return AntiReg;
}
return 0;
}
|