1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
//===- DIExpressionOptimizer.cpp - Constant folding of DIExpressions ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions to constant fold DIExpressions. Which were
// declared in DIExpressionOptimizer.h
//
//===----------------------------------------------------------------------===//
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/DebugInfoMetadata.h"
using namespace llvm;
/// Returns true if the Op is a DW_OP_constu.
static std::optional<uint64_t> isConstantVal(DIExpression::ExprOperand Op) {
if (Op.getOp() == dwarf::DW_OP_constu)
return Op.getArg(0);
return std::nullopt;
}
/// Returns true if an operation and operand result in a No Op.
static bool isNeutralElement(uint64_t Op, uint64_t Val) {
switch (Op) {
case dwarf::DW_OP_plus:
case dwarf::DW_OP_minus:
case dwarf::DW_OP_shl:
case dwarf::DW_OP_shr:
return Val == 0;
case dwarf::DW_OP_mul:
case dwarf::DW_OP_div:
return Val == 1;
default:
return false;
}
}
/// Try to fold \p Const1 and \p Const2 by applying \p Operator and returning
/// the result, if there is an overflow, return a std::nullopt.
static std::optional<uint64_t>
foldOperationIfPossible(uint64_t Const1, uint64_t Const2,
dwarf::LocationAtom Operator) {
bool ResultOverflowed;
switch (Operator) {
case dwarf::DW_OP_plus: {
auto Result = SaturatingAdd(Const1, Const2, &ResultOverflowed);
if (ResultOverflowed)
return std::nullopt;
return Result;
}
case dwarf::DW_OP_minus: {
if (Const1 < Const2)
return std::nullopt;
return Const1 - Const2;
}
case dwarf::DW_OP_shl: {
if ((uint64_t)countl_zero(Const1) < Const2)
return std::nullopt;
return Const1 << Const2;
}
case dwarf::DW_OP_shr: {
if ((uint64_t)countr_zero(Const1) < Const2)
return std::nullopt;
return Const1 >> Const2;
}
case dwarf::DW_OP_mul: {
auto Result = SaturatingMultiply(Const1, Const2, &ResultOverflowed);
if (ResultOverflowed)
return std::nullopt;
return Result;
}
case dwarf::DW_OP_div: {
if (Const2)
return Const1 / Const2;
return std::nullopt;
}
default:
return std::nullopt;
}
}
/// Returns true if the two operations \p Operator1 and \p Operator2 are
/// commutative and can be folded.
static bool operationsAreFoldableAndCommutative(dwarf::LocationAtom Operator1,
dwarf::LocationAtom Operator2) {
return Operator1 == Operator2 &&
(Operator1 == dwarf::DW_OP_plus || Operator1 == dwarf::DW_OP_mul);
}
/// Consume one operator and its operand(s).
static void consumeOneOperator(DIExpressionCursor &Cursor, uint64_t &Loc,
const DIExpression::ExprOperand &Op) {
Cursor.consume(1);
Loc = Loc + Op.getSize();
}
/// Reset the Cursor to the beginning of the WorkingOps.
void startFromBeginning(uint64_t &Loc, DIExpressionCursor &Cursor,
ArrayRef<uint64_t> WorkingOps) {
Cursor.assignNewExpr(WorkingOps);
Loc = 0;
}
/// This function will canonicalize:
/// 1. DW_OP_plus_uconst to DW_OP_constu <const-val> DW_OP_plus
/// 2. DW_OP_lit<n> to DW_OP_constu <n>
static SmallVector<uint64_t>
canonicalizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
DIExpressionCursor Cursor(WorkingOps);
uint64_t Loc = 0;
SmallVector<uint64_t> ResultOps;
while (Loc < WorkingOps.size()) {
auto Op = Cursor.peek();
/// Expression has no operations, break.
if (!Op)
break;
auto OpRaw = Op->getOp();
if (OpRaw >= dwarf::DW_OP_lit0 && OpRaw <= dwarf::DW_OP_lit31) {
ResultOps.push_back(dwarf::DW_OP_constu);
ResultOps.push_back(OpRaw - dwarf::DW_OP_lit0);
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
if (OpRaw == dwarf::DW_OP_plus_uconst) {
ResultOps.push_back(dwarf::DW_OP_constu);
ResultOps.push_back(Op->getArg(0));
ResultOps.push_back(dwarf::DW_OP_plus);
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
uint64_t PrevLoc = Loc;
consumeOneOperator(Cursor, Loc, *Cursor.peek());
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
}
return ResultOps;
}
/// This function will convert:
/// 1. DW_OP_constu <const-val> DW_OP_plus to DW_OP_plus_uconst
/// 2. DW_OP_constu, 0 to DW_OP_lit0
static SmallVector<uint64_t>
optimizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
DIExpressionCursor Cursor(WorkingOps);
uint64_t Loc = 0;
SmallVector<uint64_t> ResultOps;
while (Loc < WorkingOps.size()) {
auto Op1 = Cursor.peek();
/// Expression has no operations, exit.
if (!Op1)
break;
auto Op1Raw = Op1->getOp();
if (Op1Raw == dwarf::DW_OP_constu && Op1->getArg(0) == 0) {
ResultOps.push_back(dwarf::DW_OP_lit0);
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
auto Op2 = Cursor.peekNext();
/// Expression has no more operations, copy into ResultOps and exit.
if (!Op2) {
uint64_t PrevLoc = Loc;
consumeOneOperator(Cursor, Loc, *Cursor.peek());
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
break;
}
auto Op2Raw = Op2->getOp();
if (Op1Raw == dwarf::DW_OP_constu && Op2Raw == dwarf::DW_OP_plus) {
ResultOps.push_back(dwarf::DW_OP_plus_uconst);
ResultOps.push_back(Op1->getArg(0));
consumeOneOperator(Cursor, Loc, *Cursor.peek());
consumeOneOperator(Cursor, Loc, *Cursor.peek());
continue;
}
uint64_t PrevLoc = Loc;
consumeOneOperator(Cursor, Loc, *Cursor.peek());
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
}
return ResultOps;
}
/// {DW_OP_constu, 0, DW_OP_[plus, minus, shl, shr]} -> {}
/// {DW_OP_constu, 1, DW_OP_[mul, div]} -> {}
static bool tryFoldNoOpMath(uint64_t Const1,
ArrayRef<DIExpression::ExprOperand> Ops,
uint64_t &Loc, DIExpressionCursor &Cursor,
SmallVectorImpl<uint64_t> &WorkingOps) {
if (isNeutralElement(Ops[1].getOp(), Const1)) {
WorkingOps.erase(WorkingOps.begin() + Loc, WorkingOps.begin() + Loc + 3);
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
return false;
}
/// {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_[plus,
/// minus, mul, div, shl, shr] -> {DW_OP_constu, Const1 [+, -, *, /, <<, >>]
/// Const2}
static bool tryFoldConstants(uint64_t Const1,
ArrayRef<DIExpression::ExprOperand> Ops,
uint64_t &Loc, DIExpressionCursor &Cursor,
SmallVectorImpl<uint64_t> &WorkingOps) {
auto Const2 = isConstantVal(Ops[1]);
if (!Const2)
return false;
auto Result = foldOperationIfPossible(
Const1, *Const2, static_cast<dwarf::LocationAtom>(Ops[2].getOp()));
if (!Result) {
consumeOneOperator(Cursor, Loc, Ops[0]);
return true;
}
WorkingOps.erase(WorkingOps.begin() + Loc + 2, WorkingOps.begin() + Loc + 5);
WorkingOps[Loc] = dwarf::DW_OP_constu;
WorkingOps[Loc + 1] = *Result;
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
/// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_constu, Const2,
/// DW_OP_[plus, mul]} -> {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus,
/// mul]}
static bool tryFoldCommutativeMath(uint64_t Const1,
ArrayRef<DIExpression::ExprOperand> Ops,
uint64_t &Loc, DIExpressionCursor &Cursor,
SmallVectorImpl<uint64_t> &WorkingOps) {
auto Const2 = isConstantVal(Ops[2]);
auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
if (!Const2 || !operationsAreFoldableAndCommutative(Operand1, Operand2))
return false;
auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
if (!Result) {
consumeOneOperator(Cursor, Loc, Ops[0]);
return true;
}
WorkingOps.erase(WorkingOps.begin() + Loc + 3, WorkingOps.begin() + Loc + 6);
WorkingOps[Loc] = dwarf::DW_OP_constu;
WorkingOps[Loc + 1] = *Result;
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
/// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_LLVM_arg, Arg1,
/// DW_OP_[plus, mul], DW_OP_constu, Const2, DW_OP_[plus, mul]} ->
/// {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus, mul], DW_OP_LLVM_arg,
/// Arg1, DW_OP_[plus, mul]}
static bool tryFoldCommutativeMathWithArgInBetween(
uint64_t Const1, ArrayRef<DIExpression::ExprOperand> Ops, uint64_t &Loc,
DIExpressionCursor &Cursor, SmallVectorImpl<uint64_t> &WorkingOps) {
auto Const2 = isConstantVal(Ops[4]);
auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
auto Operand3 = static_cast<dwarf::LocationAtom>(Ops[5].getOp());
if (!Const2 || Ops[2].getOp() != dwarf::DW_OP_LLVM_arg ||
!operationsAreFoldableAndCommutative(Operand1, Operand2) ||
!operationsAreFoldableAndCommutative(Operand2, Operand3))
return false;
auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
if (!Result) {
consumeOneOperator(Cursor, Loc, Ops[0]);
return true;
}
WorkingOps.erase(WorkingOps.begin() + Loc + 6, WorkingOps.begin() + Loc + 9);
WorkingOps[Loc] = dwarf::DW_OP_constu;
WorkingOps[Loc + 1] = *Result;
startFromBeginning(Loc, Cursor, WorkingOps);
return true;
}
DIExpression *DIExpression::foldConstantMath() {
SmallVector<uint64_t, 8> WorkingOps(Elements.begin(), Elements.end());
uint64_t Loc = 0;
SmallVector<uint64_t> ResultOps = canonicalizeDwarfOperations(WorkingOps);
DIExpressionCursor Cursor(ResultOps);
SmallVector<DIExpression::ExprOperand, 8> Ops;
// Iterate over all Operations in a DIExpression to match the smallest pattern
// that can be folded.
while (Loc < ResultOps.size()) {
Ops.clear();
auto Op = Cursor.peek();
// Expression has no operations, exit.
if (!Op)
break;
auto Const1 = isConstantVal(*Op);
if (!Const1) {
// Early exit, all of the following patterns start with a constant value.
consumeOneOperator(Cursor, Loc, *Op);
continue;
}
Ops.push_back(*Op);
Op = Cursor.peekNext();
// All following patterns require at least 2 Operations, exit.
if (!Op)
break;
Ops.push_back(*Op);
// Try to fold a constant no-op, such as {+ 0}
if (tryFoldNoOpMath(*Const1, Ops, Loc, Cursor, ResultOps))
continue;
Op = Cursor.peekNextN(2);
// Op[1] could still match a pattern, skip iteration.
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
// Try to fold a pattern of two constants such as {C1 + C2}.
if (tryFoldConstants(*Const1, Ops, Loc, Cursor, ResultOps))
continue;
Op = Cursor.peekNextN(3);
// Op[1] and Op[2] could still match a pattern, skip iteration.
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
// Try to fold commutative constant math, such as {C1 + C2 +}.
if (tryFoldCommutativeMath(*Const1, Ops, Loc, Cursor, ResultOps))
continue;
Op = Cursor.peekNextN(4);
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
Op = Cursor.peekNextN(5);
if (!Op) {
consumeOneOperator(Cursor, Loc, Ops[0]);
continue;
}
Ops.push_back(*Op);
// Try to fold commutative constant math with an LLVM_Arg in between, such
// as {C1 + Arg + C2 +}.
if (tryFoldCommutativeMathWithArgInBetween(*Const1, Ops, Loc, Cursor,
ResultOps))
continue;
consumeOneOperator(Cursor, Loc, Ops[0]);
}
ResultOps = optimizeDwarfOperations(ResultOps);
auto *Result = DIExpression::get(getContext(), ResultOps);
assert(Result->isValid() && "concatenated expression is not valid");
return Result;
}
|