1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
|
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Instruction.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/Type.h"
using namespace llvm;
InsertPosition::InsertPosition(Instruction *InsertBefore)
: InsertAt(InsertBefore ? InsertBefore->getIterator()
: InstListType::iterator()) {}
InsertPosition::InsertPosition(BasicBlock *InsertAtEnd)
: InsertAt(InsertAtEnd ? InsertAtEnd->end() : InstListType::iterator()) {}
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
InsertPosition InsertBefore)
: User(ty, Value::InstructionVal + it, Ops, NumOps) {
// When called with an iterator, there must be a block to insert into.
if (InstListType::iterator InsertIt = InsertBefore; InsertIt.isValid()) {
BasicBlock *BB = InsertIt.getNodeParent();
assert(BB && "Instruction to insert before is not in a basic block!");
insertInto(BB, InsertBefore);
}
}
Instruction::~Instruction() {
assert(!getParent() && "Instruction still linked in the program!");
// Replace any extant metadata uses of this instruction with undef to
// preserve debug info accuracy. Some alternatives include:
// - Treat Instruction like any other Value, and point its extant metadata
// uses to an empty ValueAsMetadata node. This makes extant dbg.value uses
// trivially dead (i.e. fair game for deletion in many passes), leading to
// stale dbg.values being in effect for too long.
// - Call salvageDebugInfoOrMarkUndef. Not needed to make instruction removal
// correct. OTOH results in wasted work in some common cases (e.g. when all
// instructions in a BasicBlock are deleted).
if (isUsedByMetadata())
ValueAsMetadata::handleRAUW(this, UndefValue::get(getType()));
// Explicitly remove DIAssignID metadata to clear up ID -> Instruction(s)
// mapping in LLVMContext.
setMetadata(LLVMContext::MD_DIAssignID, nullptr);
}
const Module *Instruction::getModule() const {
return getParent()->getModule();
}
const Function *Instruction::getFunction() const {
return getParent()->getParent();
}
const DataLayout &Instruction::getDataLayout() const {
return getModule()->getDataLayout();
}
void Instruction::removeFromParent() {
// Perform any debug-info maintenence required.
handleMarkerRemoval();
getParent()->getInstList().remove(getIterator());
}
void Instruction::handleMarkerRemoval() {
if (!getParent()->IsNewDbgInfoFormat || !DebugMarker)
return;
DebugMarker->removeMarker();
}
BasicBlock::iterator Instruction::eraseFromParent() {
handleMarkerRemoval();
return getParent()->getInstList().erase(getIterator());
}
void Instruction::insertBefore(Instruction *InsertPos) {
insertBefore(InsertPos->getIterator());
}
/// Insert an unlinked instruction into a basic block immediately before the
/// specified instruction.
void Instruction::insertBefore(BasicBlock::iterator InsertPos) {
insertBefore(*InsertPos->getParent(), InsertPos);
}
/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void Instruction::insertAfter(Instruction *InsertPos) {
BasicBlock *DestParent = InsertPos->getParent();
DestParent->getInstList().insertAfter(InsertPos->getIterator(), this);
}
BasicBlock::iterator Instruction::insertInto(BasicBlock *ParentBB,
BasicBlock::iterator It) {
assert(getParent() == nullptr && "Expected detached instruction");
assert((It == ParentBB->end() || It->getParent() == ParentBB) &&
"It not in ParentBB");
insertBefore(*ParentBB, It);
return getIterator();
}
extern cl::opt<bool> UseNewDbgInfoFormat;
void Instruction::insertBefore(BasicBlock &BB,
InstListType::iterator InsertPos) {
assert(!DebugMarker);
BB.getInstList().insert(InsertPos, this);
if (!BB.IsNewDbgInfoFormat)
return;
// We've inserted "this": if InsertAtHead is set then it comes before any
// DbgVariableRecords attached to InsertPos. But if it's not set, then any
// DbgRecords should now come before "this".
bool InsertAtHead = InsertPos.getHeadBit();
if (!InsertAtHead) {
DbgMarker *SrcMarker = BB.getMarker(InsertPos);
if (SrcMarker && !SrcMarker->empty()) {
// If this assertion fires, the calling code is about to insert a PHI
// after debug-records, which would form a sequence like:
// %0 = PHI
// #dbg_value
// %1 = PHI
// Which is de-normalised and undesired -- hence the assertion. To avoid
// this, you must insert at that position using an iterator, and it must
// be aquired by calling getFirstNonPHIIt / begin or similar methods on
// the block. This will signal to this behind-the-scenes debug-info
// maintenence code that you intend the PHI to be ahead of everything,
// including any debug-info.
assert(!isa<PHINode>(this) && "Inserting PHI after debug-records!");
adoptDbgRecords(&BB, InsertPos, false);
}
}
// If we're inserting a terminator, check if we need to flush out
// TrailingDbgRecords. Inserting instructions at the end of an incomplete
// block is handled by the code block above.
if (isTerminator())
getParent()->flushTerminatorDbgRecords();
}
/// Unlink this instruction from its current basic block and insert it into the
/// basic block that MovePos lives in, right before MovePos.
void Instruction::moveBefore(Instruction *MovePos) {
moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), false);
}
void Instruction::moveBeforePreserving(Instruction *MovePos) {
moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), true);
}
void Instruction::moveAfter(Instruction *MovePos) {
auto NextIt = std::next(MovePos->getIterator());
// We want this instruction to be moved to before NextIt in the instruction
// list, but before NextIt's debug value range.
NextIt.setHeadBit(true);
moveBeforeImpl(*MovePos->getParent(), NextIt, false);
}
void Instruction::moveAfterPreserving(Instruction *MovePos) {
auto NextIt = std::next(MovePos->getIterator());
// We want this instruction and its debug range to be moved to before NextIt
// in the instruction list, but before NextIt's debug value range.
NextIt.setHeadBit(true);
moveBeforeImpl(*MovePos->getParent(), NextIt, true);
}
void Instruction::moveBefore(BasicBlock &BB, InstListType::iterator I) {
moveBeforeImpl(BB, I, false);
}
void Instruction::moveBeforePreserving(BasicBlock &BB,
InstListType::iterator I) {
moveBeforeImpl(BB, I, true);
}
void Instruction::moveBeforeImpl(BasicBlock &BB, InstListType::iterator I,
bool Preserve) {
assert(I == BB.end() || I->getParent() == &BB);
bool InsertAtHead = I.getHeadBit();
// If we've been given the "Preserve" flag, then just move the DbgRecords with
// the instruction, no more special handling needed.
if (BB.IsNewDbgInfoFormat && DebugMarker && !Preserve) {
if (I != this->getIterator() || InsertAtHead) {
// "this" is definitely moving in the list, or it's moving ahead of its
// attached DbgVariableRecords. Detach any existing DbgRecords.
handleMarkerRemoval();
}
}
// Move this single instruction. Use the list splice method directly, not
// the block splicer, which will do more debug-info things.
BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
if (BB.IsNewDbgInfoFormat && !Preserve) {
DbgMarker *NextMarker = getParent()->getNextMarker(this);
// If we're inserting at point I, and not in front of the DbgRecords
// attached there, then we should absorb the DbgRecords attached to I.
if (!InsertAtHead && NextMarker && !NextMarker->empty()) {
adoptDbgRecords(&BB, I, false);
}
}
if (isTerminator())
getParent()->flushTerminatorDbgRecords();
}
iterator_range<DbgRecord::self_iterator> Instruction::cloneDebugInfoFrom(
const Instruction *From, std::optional<DbgRecord::self_iterator> FromHere,
bool InsertAtHead) {
if (!From->DebugMarker)
return DbgMarker::getEmptyDbgRecordRange();
assert(getParent()->IsNewDbgInfoFormat);
assert(getParent()->IsNewDbgInfoFormat ==
From->getParent()->IsNewDbgInfoFormat);
if (!DebugMarker)
getParent()->createMarker(this);
return DebugMarker->cloneDebugInfoFrom(From->DebugMarker, FromHere,
InsertAtHead);
}
std::optional<DbgRecord::self_iterator>
Instruction::getDbgReinsertionPosition() {
// Is there a marker on the next instruction?
DbgMarker *NextMarker = getParent()->getNextMarker(this);
if (!NextMarker)
return std::nullopt;
// Are there any DbgRecords in the next marker?
if (NextMarker->StoredDbgRecords.empty())
return std::nullopt;
return NextMarker->StoredDbgRecords.begin();
}
bool Instruction::hasDbgRecords() const { return !getDbgRecordRange().empty(); }
void Instruction::adoptDbgRecords(BasicBlock *BB, BasicBlock::iterator It,
bool InsertAtHead) {
DbgMarker *SrcMarker = BB->getMarker(It);
auto ReleaseTrailingDbgRecords = [BB, It, SrcMarker]() {
if (BB->end() == It) {
SrcMarker->eraseFromParent();
BB->deleteTrailingDbgRecords();
}
};
if (!SrcMarker || SrcMarker->StoredDbgRecords.empty()) {
ReleaseTrailingDbgRecords();
return;
}
// If we have DbgMarkers attached to this instruction, we have to honour the
// ordering of DbgRecords between this and the other marker. Fall back to just
// absorbing from the source.
if (DebugMarker || It == BB->end()) {
// Ensure we _do_ have a marker.
getParent()->createMarker(this);
DebugMarker->absorbDebugValues(*SrcMarker, InsertAtHead);
// Having transferred everything out of SrcMarker, we _could_ clean it up
// and free the marker now. However, that's a lot of heap-accounting for a
// small amount of memory with a good chance of re-use. Leave it for the
// moment. It will be released when the Instruction is freed in the worst
// case.
// However: if we transferred from a trailing marker off the end of the
// block, it's important to not leave the empty marker trailing. It will
// give a misleading impression that some debug records have been left
// trailing.
ReleaseTrailingDbgRecords();
} else {
// Optimisation: we're transferring all the DbgRecords from the source
// marker onto this empty location: just adopt the other instructions
// marker.
DebugMarker = SrcMarker;
DebugMarker->MarkedInstr = this;
It->DebugMarker = nullptr;
}
}
void Instruction::dropDbgRecords() {
if (DebugMarker)
DebugMarker->dropDbgRecords();
}
void Instruction::dropOneDbgRecord(DbgRecord *DVR) {
DebugMarker->dropOneDbgRecord(DVR);
}
bool Instruction::comesBefore(const Instruction *Other) const {
assert(getParent() && Other->getParent() &&
"instructions without BB parents have no order");
assert(getParent() == Other->getParent() &&
"cross-BB instruction order comparison");
if (!getParent()->isInstrOrderValid())
const_cast<BasicBlock *>(getParent())->renumberInstructions();
return Order < Other->Order;
}
std::optional<BasicBlock::iterator> Instruction::getInsertionPointAfterDef() {
assert(!getType()->isVoidTy() && "Instruction must define result");
BasicBlock *InsertBB;
BasicBlock::iterator InsertPt;
if (auto *PN = dyn_cast<PHINode>(this)) {
InsertBB = PN->getParent();
InsertPt = InsertBB->getFirstInsertionPt();
} else if (auto *II = dyn_cast<InvokeInst>(this)) {
InsertBB = II->getNormalDest();
InsertPt = InsertBB->getFirstInsertionPt();
} else if (isa<CallBrInst>(this)) {
// Def is available in multiple successors, there's no single dominating
// insertion point.
return std::nullopt;
} else {
assert(!isTerminator() && "Only invoke/callbr terminators return value");
InsertBB = getParent();
InsertPt = std::next(getIterator());
// Any instruction inserted immediately after "this" will come before any
// debug-info records take effect -- thus, set the head bit indicating that
// to debug-info-transfer code.
InsertPt.setHeadBit(true);
}
// catchswitch blocks don't have any legal insertion point (because they
// are both an exception pad and a terminator).
if (InsertPt == InsertBB->end())
return std::nullopt;
return InsertPt;
}
bool Instruction::isOnlyUserOfAnyOperand() {
return any_of(operands(), [](Value *V) { return V->hasOneUser(); });
}
void Instruction::setHasNoUnsignedWrap(bool b) {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
Inst->setHasNoUnsignedWrap(b);
else
cast<TruncInst>(this)->setHasNoUnsignedWrap(b);
}
void Instruction::setHasNoSignedWrap(bool b) {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
Inst->setHasNoSignedWrap(b);
else
cast<TruncInst>(this)->setHasNoSignedWrap(b);
}
void Instruction::setIsExact(bool b) {
cast<PossiblyExactOperator>(this)->setIsExact(b);
}
void Instruction::setNonNeg(bool b) {
assert(isa<PossiblyNonNegInst>(this) && "Must be zext/uitofp");
SubclassOptionalData = (SubclassOptionalData & ~PossiblyNonNegInst::NonNeg) |
(b * PossiblyNonNegInst::NonNeg);
}
bool Instruction::hasNoUnsignedWrap() const {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
return Inst->hasNoUnsignedWrap();
return cast<TruncInst>(this)->hasNoUnsignedWrap();
}
bool Instruction::hasNoSignedWrap() const {
if (auto *Inst = dyn_cast<OverflowingBinaryOperator>(this))
return Inst->hasNoSignedWrap();
return cast<TruncInst>(this)->hasNoSignedWrap();
}
bool Instruction::hasNonNeg() const {
assert(isa<PossiblyNonNegInst>(this) && "Must be zext/uitofp");
return (SubclassOptionalData & PossiblyNonNegInst::NonNeg) != 0;
}
bool Instruction::hasPoisonGeneratingFlags() const {
return cast<Operator>(this)->hasPoisonGeneratingFlags();
}
void Instruction::dropPoisonGeneratingFlags() {
switch (getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::AShr:
case Instruction::LShr:
cast<PossiblyExactOperator>(this)->setIsExact(false);
break;
case Instruction::Or:
cast<PossiblyDisjointInst>(this)->setIsDisjoint(false);
break;
case Instruction::GetElementPtr:
cast<GetElementPtrInst>(this)->setNoWrapFlags(GEPNoWrapFlags::none());
break;
case Instruction::UIToFP:
case Instruction::ZExt:
setNonNeg(false);
break;
case Instruction::Trunc:
cast<TruncInst>(this)->setHasNoUnsignedWrap(false);
cast<TruncInst>(this)->setHasNoSignedWrap(false);
break;
}
if (isa<FPMathOperator>(this)) {
setHasNoNaNs(false);
setHasNoInfs(false);
}
assert(!hasPoisonGeneratingFlags() && "must be kept in sync");
}
bool Instruction::hasPoisonGeneratingMetadata() const {
return hasMetadata(LLVMContext::MD_range) ||
hasMetadata(LLVMContext::MD_nonnull) ||
hasMetadata(LLVMContext::MD_align);
}
void Instruction::dropPoisonGeneratingMetadata() {
eraseMetadata(LLVMContext::MD_range);
eraseMetadata(LLVMContext::MD_nonnull);
eraseMetadata(LLVMContext::MD_align);
}
bool Instruction::hasPoisonGeneratingReturnAttributes() const {
if (const auto *CB = dyn_cast<CallBase>(this)) {
AttributeSet RetAttrs = CB->getAttributes().getRetAttrs();
return RetAttrs.hasAttribute(Attribute::Range) ||
RetAttrs.hasAttribute(Attribute::Alignment) ||
RetAttrs.hasAttribute(Attribute::NonNull);
}
return false;
}
void Instruction::dropPoisonGeneratingReturnAttributes() {
if (auto *CB = dyn_cast<CallBase>(this)) {
AttributeMask AM;
AM.addAttribute(Attribute::Range);
AM.addAttribute(Attribute::Alignment);
AM.addAttribute(Attribute::NonNull);
CB->removeRetAttrs(AM);
}
assert(!hasPoisonGeneratingReturnAttributes() && "must be kept in sync");
}
void Instruction::dropUBImplyingAttrsAndUnknownMetadata(
ArrayRef<unsigned> KnownIDs) {
dropUnknownNonDebugMetadata(KnownIDs);
auto *CB = dyn_cast<CallBase>(this);
if (!CB)
return;
// For call instructions, we also need to drop parameter and return attributes
// that are can cause UB if the call is moved to a location where the
// attribute is not valid.
AttributeList AL = CB->getAttributes();
if (AL.isEmpty())
return;
AttributeMask UBImplyingAttributes =
AttributeFuncs::getUBImplyingAttributes();
for (unsigned ArgNo = 0; ArgNo < CB->arg_size(); ArgNo++)
CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
CB->removeRetAttrs(UBImplyingAttributes);
}
void Instruction::dropUBImplyingAttrsAndMetadata() {
// !annotation metadata does not impact semantics.
// !range, !nonnull and !align produce poison, so they are safe to speculate.
// !noundef and various AA metadata must be dropped, as it generally produces
// immediate undefined behavior.
unsigned KnownIDs[] = {LLVMContext::MD_annotation, LLVMContext::MD_range,
LLVMContext::MD_nonnull, LLVMContext::MD_align};
dropUBImplyingAttrsAndUnknownMetadata(KnownIDs);
}
bool Instruction::isExact() const {
return cast<PossiblyExactOperator>(this)->isExact();
}
void Instruction::setFast(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setFast(B);
}
void Instruction::setHasAllowReassoc(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowReassoc(B);
}
void Instruction::setHasNoNaNs(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoNaNs(B);
}
void Instruction::setHasNoInfs(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoInfs(B);
}
void Instruction::setHasNoSignedZeros(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
}
void Instruction::setHasAllowReciprocal(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
}
void Instruction::setHasAllowContract(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowContract(B);
}
void Instruction::setHasApproxFunc(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasApproxFunc(B);
}
void Instruction::setFastMathFlags(FastMathFlags FMF) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setFastMathFlags(FMF);
}
void Instruction::copyFastMathFlags(FastMathFlags FMF) {
assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
}
bool Instruction::isFast() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->isFast();
}
bool Instruction::hasAllowReassoc() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowReassoc();
}
bool Instruction::hasNoNaNs() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoNaNs();
}
bool Instruction::hasNoInfs() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoInfs();
}
bool Instruction::hasNoSignedZeros() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoSignedZeros();
}
bool Instruction::hasAllowReciprocal() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowReciprocal();
}
bool Instruction::hasAllowContract() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowContract();
}
bool Instruction::hasApproxFunc() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasApproxFunc();
}
FastMathFlags Instruction::getFastMathFlags() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->getFastMathFlags();
}
void Instruction::copyFastMathFlags(const Instruction *I) {
copyFastMathFlags(I->getFastMathFlags());
}
void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
// Copy the wrapping flags.
if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
setHasNoSignedWrap(OB->hasNoSignedWrap());
setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
}
}
if (auto *TI = dyn_cast<TruncInst>(V)) {
if (isa<TruncInst>(this)) {
setHasNoSignedWrap(TI->hasNoSignedWrap());
setHasNoUnsignedWrap(TI->hasNoUnsignedWrap());
}
}
// Copy the exact flag.
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
if (isa<PossiblyExactOperator>(this))
setIsExact(PE->isExact());
if (auto *SrcPD = dyn_cast<PossiblyDisjointInst>(V))
if (auto *DestPD = dyn_cast<PossiblyDisjointInst>(this))
DestPD->setIsDisjoint(SrcPD->isDisjoint());
// Copy the fast-math flags.
if (auto *FP = dyn_cast<FPMathOperator>(V))
if (isa<FPMathOperator>(this))
copyFastMathFlags(FP->getFastMathFlags());
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
DestGEP->setNoWrapFlags(SrcGEP->getNoWrapFlags() |
DestGEP->getNoWrapFlags());
if (auto *NNI = dyn_cast<PossiblyNonNegInst>(V))
if (isa<PossiblyNonNegInst>(this))
setNonNeg(NNI->hasNonNeg());
}
void Instruction::andIRFlags(const Value *V) {
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
if (isa<OverflowingBinaryOperator>(this)) {
setHasNoSignedWrap(hasNoSignedWrap() && OB->hasNoSignedWrap());
setHasNoUnsignedWrap(hasNoUnsignedWrap() && OB->hasNoUnsignedWrap());
}
}
if (auto *TI = dyn_cast<TruncInst>(V)) {
if (isa<TruncInst>(this)) {
setHasNoSignedWrap(hasNoSignedWrap() && TI->hasNoSignedWrap());
setHasNoUnsignedWrap(hasNoUnsignedWrap() && TI->hasNoUnsignedWrap());
}
}
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
if (isa<PossiblyExactOperator>(this))
setIsExact(isExact() && PE->isExact());
if (auto *SrcPD = dyn_cast<PossiblyDisjointInst>(V))
if (auto *DestPD = dyn_cast<PossiblyDisjointInst>(this))
DestPD->setIsDisjoint(DestPD->isDisjoint() && SrcPD->isDisjoint());
if (auto *FP = dyn_cast<FPMathOperator>(V)) {
if (isa<FPMathOperator>(this)) {
FastMathFlags FM = getFastMathFlags();
FM &= FP->getFastMathFlags();
copyFastMathFlags(FM);
}
}
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
DestGEP->setNoWrapFlags(SrcGEP->getNoWrapFlags() &
DestGEP->getNoWrapFlags());
if (auto *NNI = dyn_cast<PossiblyNonNegInst>(V))
if (isa<PossiblyNonNegInst>(this))
setNonNeg(hasNonNeg() && NNI->hasNonNeg());
}
const char *Instruction::getOpcodeName(unsigned OpCode) {
switch (OpCode) {
// Terminators
case Ret: return "ret";
case Br: return "br";
case Switch: return "switch";
case IndirectBr: return "indirectbr";
case Invoke: return "invoke";
case Resume: return "resume";
case Unreachable: return "unreachable";
case CleanupRet: return "cleanupret";
case CatchRet: return "catchret";
case CatchPad: return "catchpad";
case CatchSwitch: return "catchswitch";
case CallBr: return "callbr";
// Standard unary operators...
case FNeg: return "fneg";
// Standard binary operators...
case Add: return "add";
case FAdd: return "fadd";
case Sub: return "sub";
case FSub: return "fsub";
case Mul: return "mul";
case FMul: return "fmul";
case UDiv: return "udiv";
case SDiv: return "sdiv";
case FDiv: return "fdiv";
case URem: return "urem";
case SRem: return "srem";
case FRem: return "frem";
// Logical operators...
case And: return "and";
case Or : return "or";
case Xor: return "xor";
// Memory instructions...
case Alloca: return "alloca";
case Load: return "load";
case Store: return "store";
case AtomicCmpXchg: return "cmpxchg";
case AtomicRMW: return "atomicrmw";
case Fence: return "fence";
case GetElementPtr: return "getelementptr";
// Convert instructions...
case Trunc: return "trunc";
case ZExt: return "zext";
case SExt: return "sext";
case FPTrunc: return "fptrunc";
case FPExt: return "fpext";
case FPToUI: return "fptoui";
case FPToSI: return "fptosi";
case UIToFP: return "uitofp";
case SIToFP: return "sitofp";
case IntToPtr: return "inttoptr";
case PtrToInt: return "ptrtoint";
case BitCast: return "bitcast";
case AddrSpaceCast: return "addrspacecast";
// Other instructions...
case ICmp: return "icmp";
case FCmp: return "fcmp";
case PHI: return "phi";
case Select: return "select";
case Call: return "call";
case Shl: return "shl";
case LShr: return "lshr";
case AShr: return "ashr";
case VAArg: return "va_arg";
case ExtractElement: return "extractelement";
case InsertElement: return "insertelement";
case ShuffleVector: return "shufflevector";
case ExtractValue: return "extractvalue";
case InsertValue: return "insertvalue";
case LandingPad: return "landingpad";
case CleanupPad: return "cleanuppad";
case Freeze: return "freeze";
default: return "<Invalid operator> ";
}
}
/// This must be kept in sync with FunctionComparator::cmpOperations in
/// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::hasSameSpecialState(const Instruction *I2,
bool IgnoreAlignment) const {
auto I1 = this;
assert(I1->getOpcode() == I2->getOpcode() &&
"Can not compare special state of different instructions");
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
(AI->getAlign() == cast<AllocaInst>(I2)->getAlign() ||
IgnoreAlignment);
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
(LI->getAlign() == cast<LoadInst>(I2)->getAlign() ||
IgnoreAlignment) &&
LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
(SI->getAlign() == cast<StoreInst>(I2)->getAlign() ||
IgnoreAlignment) &&
SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
if (const CallInst *CI = dyn_cast<CallInst>(I1))
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
if (const CallBrInst *CI = dyn_cast<CallBrInst>(I1))
return CI->getCallingConv() == cast<CallBrInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<CallBrInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<CallBrInst>(I2));
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
CXI->getSuccessOrdering() ==
cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
CXI->getFailureOrdering() ==
cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
CXI->getSyncScopeID() ==
cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();
if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I1))
return SVI->getShuffleMask() ==
cast<ShuffleVectorInst>(I2)->getShuffleMask();
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I1))
return GEP->getSourceElementType() ==
cast<GetElementPtrInst>(I2)->getSourceElementType();
return true;
}
bool Instruction::isIdenticalTo(const Instruction *I) const {
return isIdenticalToWhenDefined(I) &&
SubclassOptionalData == I->SubclassOptionalData;
}
bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
getType() != I->getType())
return false;
// If both instructions have no operands, they are identical.
if (getNumOperands() == 0 && I->getNumOperands() == 0)
return this->hasSameSpecialState(I);
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same.
if (!std::equal(op_begin(), op_end(), I->op_begin()))
return false;
// WARNING: this logic must be kept in sync with EliminateDuplicatePHINodes()!
if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
const PHINode *otherPHI = cast<PHINode>(I);
return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
otherPHI->block_begin());
}
return this->hasSameSpecialState(I);
}
// Keep this in sync with FunctionComparator::cmpOperations in
// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::isSameOperationAs(const Instruction *I,
unsigned flags) const {
bool IgnoreAlignment = flags & CompareIgnoringAlignment;
bool UseScalarTypes = flags & CompareUsingScalarTypes;
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
(UseScalarTypes ?
getType()->getScalarType() != I->getType()->getScalarType() :
getType() != I->getType()))
return false;
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same type
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (UseScalarTypes ?
getOperand(i)->getType()->getScalarType() !=
I->getOperand(i)->getType()->getScalarType() :
getOperand(i)->getType() != I->getOperand(i)->getType())
return false;
return this->hasSameSpecialState(I, IgnoreAlignment);
}
bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
for (const Use &U : uses()) {
// PHI nodes uses values in the corresponding predecessor block. For other
// instructions, just check to see whether the parent of the use matches up.
const Instruction *I = cast<Instruction>(U.getUser());
const PHINode *PN = dyn_cast<PHINode>(I);
if (!PN) {
if (I->getParent() != BB)
return true;
continue;
}
if (PN->getIncomingBlock(U) != BB)
return true;
}
return false;
}
bool Instruction::mayReadFromMemory() const {
switch (getOpcode()) {
default: return false;
case Instruction::VAArg:
case Instruction::Load:
case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::CatchPad:
case Instruction::CatchRet:
return true;
case Instruction::Call:
case Instruction::Invoke:
case Instruction::CallBr:
return !cast<CallBase>(this)->onlyWritesMemory();
case Instruction::Store:
return !cast<StoreInst>(this)->isUnordered();
}
}
bool Instruction::mayWriteToMemory() const {
switch (getOpcode()) {
default: return false;
case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
case Instruction::Store:
case Instruction::VAArg:
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::CatchPad:
case Instruction::CatchRet:
return true;
case Instruction::Call:
case Instruction::Invoke:
case Instruction::CallBr:
return !cast<CallBase>(this)->onlyReadsMemory();
case Instruction::Load:
return !cast<LoadInst>(this)->isUnordered();
}
}
bool Instruction::isAtomic() const {
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Fence:
return true;
case Instruction::Load:
return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
case Instruction::Store:
return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
}
}
bool Instruction::hasAtomicLoad() const {
assert(isAtomic());
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Load:
return true;
}
}
bool Instruction::hasAtomicStore() const {
assert(isAtomic());
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Store:
return true;
}
}
bool Instruction::isVolatile() const {
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicRMW:
return cast<AtomicRMWInst>(this)->isVolatile();
case Instruction::Store:
return cast<StoreInst>(this)->isVolatile();
case Instruction::Load:
return cast<LoadInst>(this)->isVolatile();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(this)->isVolatile();
case Instruction::Call:
case Instruction::Invoke:
// There are a very limited number of intrinsics with volatile flags.
if (auto *II = dyn_cast<IntrinsicInst>(this)) {
if (auto *MI = dyn_cast<MemIntrinsic>(II))
return MI->isVolatile();
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::matrix_column_major_load:
return cast<ConstantInt>(II->getArgOperand(2))->isOne();
case Intrinsic::matrix_column_major_store:
return cast<ConstantInt>(II->getArgOperand(3))->isOne();
}
}
return false;
}
}
Type *Instruction::getAccessType() const {
switch (getOpcode()) {
case Instruction::Store:
return cast<StoreInst>(this)->getValueOperand()->getType();
case Instruction::Load:
case Instruction::AtomicRMW:
return getType();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(this)->getNewValOperand()->getType();
case Instruction::Call:
case Instruction::Invoke:
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(this)) {
switch (II->getIntrinsicID()) {
case Intrinsic::masked_load:
case Intrinsic::masked_gather:
case Intrinsic::masked_expandload:
case Intrinsic::vp_load:
case Intrinsic::vp_gather:
case Intrinsic::experimental_vp_strided_load:
return II->getType();
case Intrinsic::masked_store:
case Intrinsic::masked_scatter:
case Intrinsic::masked_compressstore:
case Intrinsic::vp_store:
case Intrinsic::vp_scatter:
case Intrinsic::experimental_vp_strided_store:
return II->getOperand(0)->getType();
default:
break;
}
}
}
return nullptr;
}
static bool canUnwindPastLandingPad(const LandingPadInst *LP,
bool IncludePhaseOneUnwind) {
// Because phase one unwinding skips cleanup landingpads, we effectively
// unwind past this frame, and callers need to have valid unwind info.
if (LP->isCleanup())
return IncludePhaseOneUnwind;
for (unsigned I = 0; I < LP->getNumClauses(); ++I) {
Constant *Clause = LP->getClause(I);
// catch ptr null catches all exceptions.
if (LP->isCatch(I) && isa<ConstantPointerNull>(Clause))
return false;
// filter [0 x ptr] catches all exceptions.
if (LP->isFilter(I) && Clause->getType()->getArrayNumElements() == 0)
return false;
}
// May catch only some subset of exceptions, in which case other exceptions
// will continue unwinding.
return true;
}
bool Instruction::mayThrow(bool IncludePhaseOneUnwind) const {
switch (getOpcode()) {
case Instruction::Call:
return !cast<CallInst>(this)->doesNotThrow();
case Instruction::CleanupRet:
return cast<CleanupReturnInst>(this)->unwindsToCaller();
case Instruction::CatchSwitch:
return cast<CatchSwitchInst>(this)->unwindsToCaller();
case Instruction::Resume:
return true;
case Instruction::Invoke: {
// Landingpads themselves don't unwind -- however, an invoke of a skipped
// landingpad may continue unwinding.
BasicBlock *UnwindDest = cast<InvokeInst>(this)->getUnwindDest();
Instruction *Pad = UnwindDest->getFirstNonPHI();
if (auto *LP = dyn_cast<LandingPadInst>(Pad))
return canUnwindPastLandingPad(LP, IncludePhaseOneUnwind);
return false;
}
case Instruction::CleanupPad:
// Treat the same as cleanup landingpad.
return IncludePhaseOneUnwind;
default:
return false;
}
}
bool Instruction::mayHaveSideEffects() const {
return mayWriteToMemory() || mayThrow() || !willReturn();
}
bool Instruction::isSafeToRemove() const {
return (!isa<CallInst>(this) || !this->mayHaveSideEffects()) &&
!this->isTerminator() && !this->isEHPad();
}
bool Instruction::willReturn() const {
// Volatile store isn't guaranteed to return; see LangRef.
if (auto *SI = dyn_cast<StoreInst>(this))
return !SI->isVolatile();
if (const auto *CB = dyn_cast<CallBase>(this))
return CB->hasFnAttr(Attribute::WillReturn);
return true;
}
bool Instruction::isLifetimeStartOrEnd() const {
auto *II = dyn_cast<IntrinsicInst>(this);
if (!II)
return false;
Intrinsic::ID ID = II->getIntrinsicID();
return ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end;
}
bool Instruction::isLaunderOrStripInvariantGroup() const {
auto *II = dyn_cast<IntrinsicInst>(this);
if (!II)
return false;
Intrinsic::ID ID = II->getIntrinsicID();
return ID == Intrinsic::launder_invariant_group ||
ID == Intrinsic::strip_invariant_group;
}
bool Instruction::isDebugOrPseudoInst() const {
return isa<DbgInfoIntrinsic>(this) || isa<PseudoProbeInst>(this);
}
const Instruction *
Instruction::getNextNonDebugInstruction(bool SkipPseudoOp) const {
for (const Instruction *I = getNextNode(); I; I = I->getNextNode())
if (!isa<DbgInfoIntrinsic>(I) && !(SkipPseudoOp && isa<PseudoProbeInst>(I)))
return I;
return nullptr;
}
const Instruction *
Instruction::getPrevNonDebugInstruction(bool SkipPseudoOp) const {
for (const Instruction *I = getPrevNode(); I; I = I->getPrevNode())
if (!isa<DbgInfoIntrinsic>(I) && !(SkipPseudoOp && isa<PseudoProbeInst>(I)))
return I;
return nullptr;
}
const DebugLoc &Instruction::getStableDebugLoc() const {
if (isa<DbgInfoIntrinsic>(this))
if (const Instruction *Next = getNextNonDebugInstruction())
return Next->getDebugLoc();
return getDebugLoc();
}
bool Instruction::isAssociative() const {
if (auto *II = dyn_cast<IntrinsicInst>(this))
return II->isAssociative();
unsigned Opcode = getOpcode();
if (isAssociative(Opcode))
return true;
switch (Opcode) {
case FMul:
case FAdd:
return cast<FPMathOperator>(this)->hasAllowReassoc() &&
cast<FPMathOperator>(this)->hasNoSignedZeros();
default:
return false;
}
}
bool Instruction::isCommutative() const {
if (auto *II = dyn_cast<IntrinsicInst>(this))
return II->isCommutative();
// TODO: Should allow icmp/fcmp?
return isCommutative(getOpcode());
}
unsigned Instruction::getNumSuccessors() const {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<const CLASS *>(this)->getNumSuccessors();
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
BasicBlock *Instruction::getSuccessor(unsigned idx) const {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<const CLASS *>(this)->getSuccessor(idx);
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
void Instruction::setSuccessor(unsigned idx, BasicBlock *B) {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<CLASS *>(this)->setSuccessor(idx, B);
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
void Instruction::replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB) {
for (unsigned Idx = 0, NumSuccessors = Instruction::getNumSuccessors();
Idx != NumSuccessors; ++Idx)
if (getSuccessor(Idx) == OldBB)
setSuccessor(Idx, NewBB);
}
Instruction *Instruction::cloneImpl() const {
llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
}
void Instruction::swapProfMetadata() {
MDNode *ProfileData = getBranchWeightMDNode(*this);
if (!ProfileData)
return;
unsigned FirstIdx = getBranchWeightOffset(ProfileData);
if (ProfileData->getNumOperands() != 2 + FirstIdx)
return;
unsigned SecondIdx = FirstIdx + 1;
SmallVector<Metadata *, 4> Ops;
// If there are more weights past the second, we can't swap them
if (ProfileData->getNumOperands() > SecondIdx + 1)
return;
for (unsigned Idx = 0; Idx < FirstIdx; ++Idx) {
Ops.push_back(ProfileData->getOperand(Idx));
}
// Switch the order of the weights
Ops.push_back(ProfileData->getOperand(SecondIdx));
Ops.push_back(ProfileData->getOperand(FirstIdx));
setMetadata(LLVMContext::MD_prof,
MDNode::get(ProfileData->getContext(), Ops));
}
void Instruction::copyMetadata(const Instruction &SrcInst,
ArrayRef<unsigned> WL) {
if (!SrcInst.hasMetadata())
return;
SmallDenseSet<unsigned, 4> WLS(WL.begin(), WL.end());
// Otherwise, enumerate and copy over metadata from the old instruction to the
// new one.
SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
for (const auto &MD : TheMDs) {
if (WL.empty() || WLS.count(MD.first))
setMetadata(MD.first, MD.second);
}
if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
setDebugLoc(SrcInst.getDebugLoc());
}
Instruction *Instruction::clone() const {
Instruction *New = nullptr;
switch (getOpcode()) {
default:
llvm_unreachable("Unhandled Opcode.");
#define HANDLE_INST(num, opc, clas) \
case Instruction::opc: \
New = cast<clas>(this)->cloneImpl(); \
break;
#include "llvm/IR/Instruction.def"
#undef HANDLE_INST
}
New->SubclassOptionalData = SubclassOptionalData;
New->copyMetadata(*this);
return New;
}
|