1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
//===- MemoryModelRelaxationAnnotations.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===- MMRAMetadata -------------------------------------------------------===//
MMRAMetadata::MMRAMetadata(const Instruction &I)
: MMRAMetadata(I.getMetadata(LLVMContext::MD_mmra)) {}
MMRAMetadata::MMRAMetadata(MDNode *MD) {
if (!MD)
return;
// TODO: Split this into a "tryParse" function that can return an err.
// CTor can use the tryParse & just fatal on err.
MDTuple *Tuple = dyn_cast<MDTuple>(MD);
assert(Tuple && "Invalid MMRA structure");
const auto HandleTagMD = [this](MDNode *TagMD) {
Tags.insert({cast<MDString>(TagMD->getOperand(0))->getString(),
cast<MDString>(TagMD->getOperand(1))->getString()});
};
if (isTagMD(Tuple)) {
HandleTagMD(Tuple);
return;
}
for (const MDOperand &Op : Tuple->operands()) {
MDNode *MDOp = cast<MDNode>(Op.get());
assert(isTagMD(MDOp));
HandleTagMD(MDOp);
}
}
bool MMRAMetadata::isTagMD(const Metadata *MD) {
if (auto *Tuple = dyn_cast<MDTuple>(MD)) {
return Tuple->getNumOperands() == 2 &&
isa<MDString>(Tuple->getOperand(0)) &&
isa<MDString>(Tuple->getOperand(1));
}
return false;
}
MDTuple *MMRAMetadata::getTagMD(LLVMContext &Ctx, StringRef Prefix,
StringRef Suffix) {
return MDTuple::get(Ctx,
{MDString::get(Ctx, Prefix), MDString::get(Ctx, Suffix)});
}
MDTuple *MMRAMetadata::getMD(LLVMContext &Ctx,
ArrayRef<MMRAMetadata::TagT> Tags) {
if (Tags.empty())
return nullptr;
if (Tags.size() == 1)
return getTagMD(Ctx, Tags.front());
SmallVector<Metadata *> MMRAs;
for (const auto &Tag : Tags)
MMRAs.push_back(getTagMD(Ctx, Tag));
return MDTuple::get(Ctx, MMRAs);
}
MDNode *MMRAMetadata::combine(LLVMContext &Ctx, const MMRAMetadata &A,
const MMRAMetadata &B) {
// Let A and B be two tags set, and U be the prefix-wise union of A and B.
// For every unique tag prefix P present in A or B:
// * If either A or B has no tags with prefix P, no tags with prefix
// P are added to U.
// * If both A and B have at least one tag with prefix P, all tags with prefix
// P from both sets are added to U.
SmallVector<Metadata *> Result;
for (const auto &[P, S] : A) {
if (B.hasTagWithPrefix(P))
Result.push_back(getTagMD(Ctx, P, S));
}
for (const auto &[P, S] : B) {
if (A.hasTagWithPrefix(P))
Result.push_back(getTagMD(Ctx, P, S));
}
return MDTuple::get(Ctx, Result);
}
bool MMRAMetadata::hasTag(StringRef Prefix, StringRef Suffix) const {
return Tags.count({Prefix, Suffix});
}
bool MMRAMetadata::isCompatibleWith(const MMRAMetadata &Other) const {
// Two sets of tags are compatible iff, for every unique tag prefix P
// present in at least one set:
// - the other set contains no tag with prefix P, or
// - at least one tag with prefix P is common to both sets.
StringMap<bool> PrefixStatuses;
for (const auto &[P, S] : Tags)
PrefixStatuses[P] |= (Other.hasTag(P, S) || !Other.hasTagWithPrefix(P));
for (const auto &[P, S] : Other)
PrefixStatuses[P] |= (hasTag(P, S) || !hasTagWithPrefix(P));
for (auto &[Prefix, Status] : PrefixStatuses) {
if (!Status)
return false;
}
return true;
}
bool MMRAMetadata::hasTagWithPrefix(StringRef Prefix) const {
for (const auto &[P, S] : Tags)
if (P == Prefix)
return true;
return false;
}
MMRAMetadata::const_iterator MMRAMetadata::begin() const {
return Tags.begin();
}
MMRAMetadata::const_iterator MMRAMetadata::end() const { return Tags.end(); }
bool MMRAMetadata::empty() const { return Tags.empty(); }
unsigned MMRAMetadata::size() const { return Tags.size(); }
void MMRAMetadata::print(raw_ostream &OS) const {
bool IsFirst = true;
// TODO: use map_iter + join
for (const auto &[P, S] : Tags) {
if (IsFirst)
IsFirst = false;
else
OS << ", ";
OS << P << ":" << S;
}
}
LLVM_DUMP_METHOD
void MMRAMetadata::dump() const { print(dbgs()); }
//===- Helpers ------------------------------------------------------------===//
static bool isReadWriteMemCall(const Instruction &I) {
if (const auto *C = dyn_cast<CallBase>(&I))
return C->mayReadOrWriteMemory() ||
!C->getMemoryEffects().doesNotAccessMemory();
return false;
}
bool llvm::canInstructionHaveMMRAs(const Instruction &I) {
return isa<LoadInst>(I) || isa<StoreInst>(I) || isa<AtomicCmpXchgInst>(I) ||
isa<AtomicRMWInst>(I) || isa<FenceInst>(I) || isReadWriteMemCall(I);
}
|