1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
//===- ProfDataUtils.cpp - Utility functions for MD_prof Metadata ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for working with Profiling Metadata.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
namespace {
// MD_prof nodes have the following layout
//
// In general:
// { String name, Array of i32 }
//
// In terms of Types:
// { MDString, [i32, i32, ...]}
//
// Concretely for Branch Weights
// { "branch_weights", [i32 1, i32 10000]}
//
// We maintain some constants here to ensure that we access the branch weights
// correctly, and can change the behavior in the future if the layout changes
// the minimum number of operands for MD_prof nodes with branch weights
constexpr unsigned MinBWOps = 3;
// the minimum number of operands for MD_prof nodes with value profiles
constexpr unsigned MinVPOps = 5;
// We may want to add support for other MD_prof types, so provide an abstraction
// for checking the metadata type.
bool isTargetMD(const MDNode *ProfData, const char *Name, unsigned MinOps) {
// TODO: This routine may be simplified if MD_prof used an enum instead of a
// string to differentiate the types of MD_prof nodes.
if (!ProfData || !Name || MinOps < 2)
return false;
unsigned NOps = ProfData->getNumOperands();
if (NOps < MinOps)
return false;
auto *ProfDataName = dyn_cast<MDString>(ProfData->getOperand(0));
if (!ProfDataName)
return false;
return ProfDataName->getString() == Name;
}
template <typename T,
typename = typename std::enable_if<std::is_arithmetic_v<T>>>
static void extractFromBranchWeightMD(const MDNode *ProfileData,
SmallVectorImpl<T> &Weights) {
assert(isBranchWeightMD(ProfileData) && "wrong metadata");
unsigned NOps = ProfileData->getNumOperands();
unsigned WeightsIdx = getBranchWeightOffset(ProfileData);
assert(WeightsIdx < NOps && "Weights Index must be less than NOps.");
Weights.resize(NOps - WeightsIdx);
for (unsigned Idx = WeightsIdx, E = NOps; Idx != E; ++Idx) {
ConstantInt *Weight =
mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(Idx));
assert(Weight && "Malformed branch_weight in MD_prof node");
assert(Weight->getValue().getActiveBits() <= (sizeof(T) * 8) &&
"Too many bits for MD_prof branch_weight");
Weights[Idx - WeightsIdx] = Weight->getZExtValue();
}
}
} // namespace
namespace llvm {
bool hasProfMD(const Instruction &I) {
return I.hasMetadata(LLVMContext::MD_prof);
}
bool isBranchWeightMD(const MDNode *ProfileData) {
return isTargetMD(ProfileData, "branch_weights", MinBWOps);
}
bool isValueProfileMD(const MDNode *ProfileData) {
return isTargetMD(ProfileData, "VP", MinVPOps);
}
bool hasBranchWeightMD(const Instruction &I) {
auto *ProfileData = I.getMetadata(LLVMContext::MD_prof);
return isBranchWeightMD(ProfileData);
}
bool hasCountTypeMD(const Instruction &I) {
auto *ProfileData = I.getMetadata(LLVMContext::MD_prof);
// Value profiles record count-type information.
if (isValueProfileMD(ProfileData))
return true;
// Conservatively assume non CallBase instruction only get taken/not-taken
// branch probability, so not interpret them as count.
return isa<CallBase>(I) && !isBranchWeightMD(ProfileData);
}
bool hasValidBranchWeightMD(const Instruction &I) {
return getValidBranchWeightMDNode(I);
}
bool hasBranchWeightOrigin(const Instruction &I) {
auto *ProfileData = I.getMetadata(LLVMContext::MD_prof);
return hasBranchWeightOrigin(ProfileData);
}
bool hasBranchWeightOrigin(const MDNode *ProfileData) {
if (!isBranchWeightMD(ProfileData))
return false;
auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(1));
// NOTE: if we ever have more types of branch weight provenance,
// we need to check the string value is "expected". For now, we
// supply a more generic API, and avoid the spurious comparisons.
assert(ProfDataName == nullptr || ProfDataName->getString() == "expected");
return ProfDataName != nullptr;
}
unsigned getBranchWeightOffset(const MDNode *ProfileData) {
return hasBranchWeightOrigin(ProfileData) ? 2 : 1;
}
unsigned getNumBranchWeights(const MDNode &ProfileData) {
return ProfileData.getNumOperands() - getBranchWeightOffset(&ProfileData);
}
MDNode *getBranchWeightMDNode(const Instruction &I) {
auto *ProfileData = I.getMetadata(LLVMContext::MD_prof);
if (!isBranchWeightMD(ProfileData))
return nullptr;
return ProfileData;
}
MDNode *getValidBranchWeightMDNode(const Instruction &I) {
auto *ProfileData = getBranchWeightMDNode(I);
if (ProfileData && getNumBranchWeights(*ProfileData) == I.getNumSuccessors())
return ProfileData;
return nullptr;
}
void extractFromBranchWeightMD32(const MDNode *ProfileData,
SmallVectorImpl<uint32_t> &Weights) {
extractFromBranchWeightMD(ProfileData, Weights);
}
void extractFromBranchWeightMD64(const MDNode *ProfileData,
SmallVectorImpl<uint64_t> &Weights) {
extractFromBranchWeightMD(ProfileData, Weights);
}
bool extractBranchWeights(const MDNode *ProfileData,
SmallVectorImpl<uint32_t> &Weights) {
if (!isBranchWeightMD(ProfileData))
return false;
extractFromBranchWeightMD(ProfileData, Weights);
return true;
}
bool extractBranchWeights(const Instruction &I,
SmallVectorImpl<uint32_t> &Weights) {
auto *ProfileData = I.getMetadata(LLVMContext::MD_prof);
return extractBranchWeights(ProfileData, Weights);
}
bool extractBranchWeights(const Instruction &I, uint64_t &TrueVal,
uint64_t &FalseVal) {
assert((I.getOpcode() == Instruction::Br ||
I.getOpcode() == Instruction::Select) &&
"Looking for branch weights on something besides branch, select, or "
"switch");
SmallVector<uint32_t, 2> Weights;
auto *ProfileData = I.getMetadata(LLVMContext::MD_prof);
if (!extractBranchWeights(ProfileData, Weights))
return false;
if (Weights.size() > 2)
return false;
TrueVal = Weights[0];
FalseVal = Weights[1];
return true;
}
bool extractProfTotalWeight(const MDNode *ProfileData, uint64_t &TotalVal) {
TotalVal = 0;
if (!ProfileData)
return false;
auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
if (!ProfDataName)
return false;
if (ProfDataName->getString() == "branch_weights") {
unsigned Offset = getBranchWeightOffset(ProfileData);
for (unsigned Idx = Offset; Idx < ProfileData->getNumOperands(); ++Idx) {
auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(Idx));
assert(V && "Malformed branch_weight in MD_prof node");
TotalVal += V->getValue().getZExtValue();
}
return true;
}
if (ProfDataName->getString() == "VP" && ProfileData->getNumOperands() > 3) {
TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2))
->getValue()
.getZExtValue();
return true;
}
return false;
}
bool extractProfTotalWeight(const Instruction &I, uint64_t &TotalVal) {
return extractProfTotalWeight(I.getMetadata(LLVMContext::MD_prof), TotalVal);
}
void setBranchWeights(Instruction &I, ArrayRef<uint32_t> Weights,
bool IsExpected) {
MDBuilder MDB(I.getContext());
MDNode *BranchWeights = MDB.createBranchWeights(Weights, IsExpected);
I.setMetadata(LLVMContext::MD_prof, BranchWeights);
}
void scaleProfData(Instruction &I, uint64_t S, uint64_t T) {
assert(T != 0 && "Caller should guarantee");
auto *ProfileData = I.getMetadata(LLVMContext::MD_prof);
if (ProfileData == nullptr)
return;
auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
if (!ProfDataName || (ProfDataName->getString() != "branch_weights" &&
ProfDataName->getString() != "VP"))
return;
if (!hasCountTypeMD(I))
return;
LLVMContext &C = I.getContext();
MDBuilder MDB(C);
SmallVector<Metadata *, 3> Vals;
Vals.push_back(ProfileData->getOperand(0));
APInt APS(128, S), APT(128, T);
if (ProfDataName->getString() == "branch_weights" &&
ProfileData->getNumOperands() > 0) {
// Using APInt::div may be expensive, but most cases should fit 64 bits.
APInt Val(128,
mdconst::dyn_extract<ConstantInt>(
ProfileData->getOperand(getBranchWeightOffset(ProfileData)))
->getValue()
.getZExtValue());
Val *= APS;
Vals.push_back(MDB.createConstant(ConstantInt::get(
Type::getInt32Ty(C), Val.udiv(APT).getLimitedValue(UINT32_MAX))));
} else if (ProfDataName->getString() == "VP")
for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
// The first value is the key of the value profile, which will not change.
Vals.push_back(ProfileData->getOperand(i));
uint64_t Count =
mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
->getValue()
.getZExtValue();
// Don't scale the magic number.
if (Count == NOMORE_ICP_MAGICNUM) {
Vals.push_back(ProfileData->getOperand(i + 1));
continue;
}
// Using APInt::div may be expensive, but most cases should fit 64 bits.
APInt Val(128, Count);
Val *= APS;
Vals.push_back(MDB.createConstant(ConstantInt::get(
Type::getInt64Ty(C), Val.udiv(APT).getLimitedValue())));
}
I.setMetadata(LLVMContext::MD_prof, MDNode::get(C, Vals));
}
} // namespace llvm
|