1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
|
//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/BuildID.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <optional>
#include <stack>
#include <string>
#include <system_error>
#include <utility>
#include <vector>
using namespace llvm;
using namespace coverage;
#define DEBUG_TYPE "coverage-mapping"
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
auto It = ExpressionIndices.find(E);
if (It != ExpressionIndices.end())
return Counter::getExpression(It->second);
unsigned I = Expressions.size();
Expressions.push_back(E);
ExpressionIndices[E] = I;
return Counter::getExpression(I);
}
void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
SmallVectorImpl<Term> &Terms) {
switch (C.getKind()) {
case Counter::Zero:
break;
case Counter::CounterValueReference:
Terms.emplace_back(C.getCounterID(), Factor);
break;
case Counter::Expression:
const auto &E = Expressions[C.getExpressionID()];
extractTerms(E.LHS, Factor, Terms);
extractTerms(
E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
break;
}
}
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
// Gather constant terms.
SmallVector<Term, 32> Terms;
extractTerms(ExpressionTree, +1, Terms);
// If there are no terms, this is just a zero. The algorithm below assumes at
// least one term.
if (Terms.size() == 0)
return Counter::getZero();
// Group the terms by counter ID.
llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
return LHS.CounterID < RHS.CounterID;
});
// Combine terms by counter ID to eliminate counters that sum to zero.
auto Prev = Terms.begin();
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
if (I->CounterID == Prev->CounterID) {
Prev->Factor += I->Factor;
continue;
}
++Prev;
*Prev = *I;
}
Terms.erase(++Prev, Terms.end());
Counter C;
// Create additions. We do this before subtractions to avoid constructs like
// ((0 - X) + Y), as opposed to (Y - X).
for (auto T : Terms) {
if (T.Factor <= 0)
continue;
for (int I = 0; I < T.Factor; ++I)
if (C.isZero())
C = Counter::getCounter(T.CounterID);
else
C = get(CounterExpression(CounterExpression::Add, C,
Counter::getCounter(T.CounterID)));
}
// Create subtractions.
for (auto T : Terms) {
if (T.Factor >= 0)
continue;
for (int I = 0; I < -T.Factor; ++I)
C = get(CounterExpression(CounterExpression::Subtract, C,
Counter::getCounter(T.CounterID)));
}
return C;
}
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) {
auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS));
return Simplify ? simplify(Cnt) : Cnt;
}
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS,
bool Simplify) {
auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS));
return Simplify ? simplify(Cnt) : Cnt;
}
void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
switch (C.getKind()) {
case Counter::Zero:
OS << '0';
return;
case Counter::CounterValueReference:
OS << '#' << C.getCounterID();
break;
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return;
const auto &E = Expressions[C.getExpressionID()];
OS << '(';
dump(E.LHS, OS);
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
dump(E.RHS, OS);
OS << ')';
break;
}
}
if (CounterValues.empty())
return;
Expected<int64_t> Value = evaluate(C);
if (auto E = Value.takeError()) {
consumeError(std::move(E));
return;
}
OS << '[' << *Value << ']';
}
Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
struct StackElem {
Counter ICounter;
int64_t LHS = 0;
enum {
KNeverVisited = 0,
KVisitedOnce = 1,
KVisitedTwice = 2,
} VisitCount = KNeverVisited;
};
std::stack<StackElem> CounterStack;
CounterStack.push({C});
int64_t LastPoppedValue;
while (!CounterStack.empty()) {
StackElem &Current = CounterStack.top();
switch (Current.ICounter.getKind()) {
case Counter::Zero:
LastPoppedValue = 0;
CounterStack.pop();
break;
case Counter::CounterValueReference:
if (Current.ICounter.getCounterID() >= CounterValues.size())
return errorCodeToError(errc::argument_out_of_domain);
LastPoppedValue = CounterValues[Current.ICounter.getCounterID()];
CounterStack.pop();
break;
case Counter::Expression: {
if (Current.ICounter.getExpressionID() >= Expressions.size())
return errorCodeToError(errc::argument_out_of_domain);
const auto &E = Expressions[Current.ICounter.getExpressionID()];
if (Current.VisitCount == StackElem::KNeverVisited) {
CounterStack.push(StackElem{E.LHS});
Current.VisitCount = StackElem::KVisitedOnce;
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
Current.LHS = LastPoppedValue;
CounterStack.push(StackElem{E.RHS});
Current.VisitCount = StackElem::KVisitedTwice;
} else {
int64_t LHS = Current.LHS;
int64_t RHS = LastPoppedValue;
LastPoppedValue =
E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS;
CounterStack.pop();
}
break;
}
}
}
return LastPoppedValue;
}
mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs,
int Offset)
: Indices(NextIDs.size()) {
// Construct Nodes and set up each InCount
auto N = NextIDs.size();
SmallVector<MCDCNode> Nodes(N);
for (unsigned ID = 0; ID < N; ++ID) {
for (unsigned C = 0; C < 2; ++C) {
#ifndef NDEBUG
Indices[ID][C] = INT_MIN;
#endif
auto NextID = NextIDs[ID][C];
Nodes[ID].NextIDs[C] = NextID;
if (NextID >= 0)
++Nodes[NextID].InCount;
}
}
// Sort key ordered by <-Width, Ord>
SmallVector<std::tuple<int, /// -Width
unsigned, /// Ord
int, /// ID
unsigned /// Cond (0 or 1)
>>
Decisions;
// Traverse Nodes to assign Idx
SmallVector<int> Q;
assert(Nodes[0].InCount == 0);
Nodes[0].Width = 1;
Q.push_back(0);
unsigned Ord = 0;
while (!Q.empty()) {
auto IID = Q.begin();
int ID = *IID;
Q.erase(IID);
auto &Node = Nodes[ID];
assert(Node.Width > 0);
for (unsigned I = 0; I < 2; ++I) {
auto NextID = Node.NextIDs[I];
assert(NextID != 0 && "NextID should not point to the top");
if (NextID < 0) {
// Decision
Decisions.emplace_back(-Node.Width, Ord++, ID, I);
assert(Ord == Decisions.size());
continue;
}
// Inter Node
auto &NextNode = Nodes[NextID];
assert(NextNode.InCount > 0);
// Assign Idx
assert(Indices[ID][I] == INT_MIN);
Indices[ID][I] = NextNode.Width;
auto NextWidth = int64_t(NextNode.Width) + Node.Width;
if (NextWidth > HardMaxTVs) {
NumTestVectors = HardMaxTVs; // Overflow
return;
}
NextNode.Width = NextWidth;
// Ready if all incomings are processed.
// Or NextNode.Width hasn't been confirmed yet.
if (--NextNode.InCount == 0)
Q.push_back(NextID);
}
}
llvm::sort(Decisions);
// Assign TestVector Indices in Decision Nodes
int64_t CurIdx = 0;
for (auto [NegWidth, Ord, ID, C] : Decisions) {
int Width = -NegWidth;
assert(Nodes[ID].Width == Width);
assert(Nodes[ID].NextIDs[C] < 0);
assert(Indices[ID][C] == INT_MIN);
Indices[ID][C] = Offset + CurIdx;
CurIdx += Width;
if (CurIdx > HardMaxTVs) {
NumTestVectors = HardMaxTVs; // Overflow
return;
}
}
assert(CurIdx < HardMaxTVs);
NumTestVectors = CurIdx;
#ifndef NDEBUG
for (const auto &Idxs : Indices)
for (auto Idx : Idxs)
assert(Idx != INT_MIN);
SavedNodes = std::move(Nodes);
#endif
}
namespace {
/// Construct this->NextIDs with Branches for TVIdxBuilder to use it
/// before MCDCRecordProcessor().
class NextIDsBuilder {
protected:
SmallVector<mcdc::ConditionIDs> NextIDs;
public:
NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches)
: NextIDs(Branches.size()) {
#ifndef NDEBUG
DenseSet<mcdc::ConditionID> SeenIDs;
#endif
for (const auto *Branch : Branches) {
const auto &BranchParams = Branch->getBranchParams();
assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID");
NextIDs[BranchParams.ID] = BranchParams.Conds;
}
assert(SeenIDs.size() == Branches.size());
}
};
class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder {
/// A bitmap representing the executed test vectors for a boolean expression.
/// Each index of the bitmap corresponds to a possible test vector. An index
/// with a bit value of '1' indicates that the corresponding Test Vector
/// identified by that index was executed.
const BitVector &Bitmap;
/// Decision Region to which the ExecutedTestVectorBitmap applies.
const CounterMappingRegion &Region;
const mcdc::DecisionParameters &DecisionParams;
/// Array of branch regions corresponding each conditions in the boolean
/// expression.
ArrayRef<const CounterMappingRegion *> Branches;
/// Total number of conditions in the boolean expression.
unsigned NumConditions;
/// Vector used to track whether a condition is constant folded.
MCDCRecord::BoolVector Folded;
/// Mapping of calculated MC/DC Independence Pairs for each condition.
MCDCRecord::TVPairMap IndependencePairs;
/// Storage for ExecVectors
/// ExecVectors is the alias of its 0th element.
std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond;
/// Actual executed Test Vectors for the boolean expression, based on
/// ExecutedTestVectorBitmap.
MCDCRecord::TestVectors &ExecVectors;
/// Number of False items in ExecVectors
unsigned NumExecVectorsF;
#ifndef NDEBUG
DenseSet<unsigned> TVIdxs;
#endif
bool IsVersion11;
public:
MCDCRecordProcessor(const BitVector &Bitmap,
const CounterMappingRegion &Region,
ArrayRef<const CounterMappingRegion *> Branches,
bool IsVersion11)
: NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap),
Region(Region), DecisionParams(Region.getDecisionParams()),
Branches(Branches), NumConditions(DecisionParams.NumConditions),
Folded(NumConditions, false), IndependencePairs(NumConditions),
ExecVectors(ExecVectorsByCond[false]), IsVersion11(IsVersion11) {}
private:
// Walk the binary decision diagram and try assigning both false and true to
// each node. When a terminal node (ID == 0) is reached, fill in the value in
// the truth table.
void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID,
int TVIdx) {
for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) {
static_assert(MCDCRecord::MCDC_False == 0);
static_assert(MCDCRecord::MCDC_True == 1);
TV.set(ID, MCDCCond);
auto NextID = NextIDs[ID][MCDCCond];
auto NextTVIdx = TVIdx + Indices[ID][MCDCCond];
assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]);
if (NextID >= 0) {
buildTestVector(TV, NextID, NextTVIdx);
continue;
}
assert(TVIdx < SavedNodes[ID].Width);
assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx");
if (!Bitmap[IsVersion11
? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex()
: DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx])
continue;
// Copy the completed test vector to the vector of testvectors.
// The final value (T,F) is equal to the last non-dontcare state on the
// path (in a short-circuiting system).
ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond});
}
// Reset back to DontCare.
TV.set(ID, MCDCRecord::MCDC_DontCare);
}
/// Walk the bits in the bitmap. A bit set to '1' indicates that the test
/// vector at the corresponding index was executed during a test run.
void findExecutedTestVectors() {
// Walk the binary decision diagram to enumerate all possible test vectors.
// We start at the root node (ID == 0) with all values being DontCare.
// `TVIdx` starts with 0 and is in the traversal.
// `Index` encodes the bitmask of true values and is initially 0.
MCDCRecord::TestVector TV(NumConditions);
buildTestVector(TV, 0, 0);
assert(TVIdxs.size() == unsigned(NumTestVectors) &&
"TVIdxs wasn't fulfilled");
// Fill ExecVectors order by False items and True items.
// ExecVectors is the alias of ExecVectorsByCond[false], so
// Append ExecVectorsByCond[true] on it.
NumExecVectorsF = ExecVectors.size();
auto &ExecVectorsT = ExecVectorsByCond[true];
ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()),
std::make_move_iterator(ExecVectorsT.end()));
}
// Find an independence pair for each condition:
// - The condition is true in one test and false in the other.
// - The decision outcome is true one test and false in the other.
// - All other conditions' values must be equal or marked as "don't care".
void findIndependencePairs() {
unsigned NumTVs = ExecVectors.size();
for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) {
const auto &[A, ACond] = ExecVectors[I];
assert(ACond == MCDCRecord::MCDC_True);
for (unsigned J = 0; J < NumExecVectorsF; ++J) {
const auto &[B, BCond] = ExecVectors[J];
assert(BCond == MCDCRecord::MCDC_False);
// If the two vectors differ in exactly one condition, ignoring DontCare
// conditions, we have found an independence pair.
auto AB = A.getDifferences(B);
if (AB.count() == 1)
IndependencePairs.insert(
{AB.find_first(), std::make_pair(J + 1, I + 1)});
}
}
}
public:
/// Process the MC/DC Record in order to produce a result for a boolean
/// expression. This process includes tracking the conditions that comprise
/// the decision region, calculating the list of all possible test vectors,
/// marking the executed test vectors, and then finding an Independence Pair
/// out of the executed test vectors for each condition in the boolean
/// expression. A condition is tracked to ensure that its ID can be mapped to
/// its ordinal position in the boolean expression. The condition's source
/// location is also tracked, as well as whether it is constant folded (in
/// which case it is excuded from the metric).
MCDCRecord processMCDCRecord() {
unsigned I = 0;
MCDCRecord::CondIDMap PosToID;
MCDCRecord::LineColPairMap CondLoc;
// Walk the Record's BranchRegions (representing Conditions) in order to:
// - Hash the condition based on its corresponding ID. This will be used to
// calculate the test vectors.
// - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
// actual ID. This will be used to visualize the conditions in the
// correct order.
// - Keep track of the condition source location. This will be used to
// visualize where the condition is.
// - Record whether the condition is constant folded so that we exclude it
// from being measured.
for (const auto *B : Branches) {
const auto &BranchParams = B->getBranchParams();
PosToID[I] = BranchParams.ID;
CondLoc[I] = B->startLoc();
Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero());
}
// Using Profile Bitmap from runtime, mark the executed test vectors.
findExecutedTestVectors();
// Compare executed test vectors against each other to find an independence
// pairs for each condition. This processing takes the most time.
findIndependencePairs();
// Record Test vectors, executed vectors, and independence pairs.
return MCDCRecord(Region, std::move(ExecVectors),
std::move(IndependencePairs), std::move(Folded),
std::move(PosToID), std::move(CondLoc));
}
};
} // namespace
Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion(
const CounterMappingRegion &Region,
ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) {
MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11);
return MCDCProcessor.processMCDCRecord();
}
unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
struct StackElem {
Counter ICounter;
int64_t LHS = 0;
enum {
KNeverVisited = 0,
KVisitedOnce = 1,
KVisitedTwice = 2,
} VisitCount = KNeverVisited;
};
std::stack<StackElem> CounterStack;
CounterStack.push({C});
int64_t LastPoppedValue;
while (!CounterStack.empty()) {
StackElem &Current = CounterStack.top();
switch (Current.ICounter.getKind()) {
case Counter::Zero:
LastPoppedValue = 0;
CounterStack.pop();
break;
case Counter::CounterValueReference:
LastPoppedValue = Current.ICounter.getCounterID();
CounterStack.pop();
break;
case Counter::Expression: {
if (Current.ICounter.getExpressionID() >= Expressions.size()) {
LastPoppedValue = 0;
CounterStack.pop();
} else {
const auto &E = Expressions[Current.ICounter.getExpressionID()];
if (Current.VisitCount == StackElem::KNeverVisited) {
CounterStack.push(StackElem{E.LHS});
Current.VisitCount = StackElem::KVisitedOnce;
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
Current.LHS = LastPoppedValue;
CounterStack.push(StackElem{E.RHS});
Current.VisitCount = StackElem::KVisitedTwice;
} else {
int64_t LHS = Current.LHS;
int64_t RHS = LastPoppedValue;
LastPoppedValue = std::max(LHS, RHS);
CounterStack.pop();
}
}
break;
}
}
}
return LastPoppedValue;
}
void FunctionRecordIterator::skipOtherFiles() {
while (Current != Records.end() && !Filename.empty() &&
Filename != Current->Filenames[0])
++Current;
if (Current == Records.end())
*this = FunctionRecordIterator();
}
ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
StringRef Filename) const {
size_t FilenameHash = hash_value(Filename);
auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
if (RecordIt == FilenameHash2RecordIndices.end())
return {};
return RecordIt->second;
}
static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
const CoverageMappingRecord &Record) {
unsigned MaxCounterID = 0;
for (const auto &Region : Record.MappingRegions) {
MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
}
return MaxCounterID;
}
/// Returns the bit count
static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record,
bool IsVersion11) {
unsigned MaxBitmapIdx = 0;
unsigned NumConditions = 0;
// Scan max(BitmapIdx).
// Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
// and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record.
for (const auto &Region : reverse(Record.MappingRegions)) {
if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion)
continue;
const auto &DecisionParams = Region.getDecisionParams();
if (MaxBitmapIdx <= DecisionParams.BitmapIdx) {
MaxBitmapIdx = DecisionParams.BitmapIdx;
NumConditions = DecisionParams.NumConditions;
}
}
if (IsVersion11)
MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT +
llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT);
return MaxBitmapIdx;
}
namespace {
/// Collect Decisions, Branchs, and Expansions and associate them.
class MCDCDecisionRecorder {
private:
/// This holds the DecisionRegion and MCDCBranches under it.
/// Also traverses Expansion(s).
/// The Decision has the number of MCDCBranches and will complete
/// when it is filled with unique ConditionID of MCDCBranches.
struct DecisionRecord {
const CounterMappingRegion *DecisionRegion;
/// They are reflected from DecisionRegion for convenience.
mcdc::DecisionParameters DecisionParams;
LineColPair DecisionStartLoc;
LineColPair DecisionEndLoc;
/// This is passed to `MCDCRecordProcessor`, so this should be compatible
/// to`ArrayRef<const CounterMappingRegion *>`.
SmallVector<const CounterMappingRegion *> MCDCBranches;
/// IDs that are stored in MCDCBranches
/// Complete when all IDs (1 to NumConditions) are met.
DenseSet<mcdc::ConditionID> ConditionIDs;
/// Set of IDs of Expansion(s) that are relevant to DecisionRegion
/// and its children (via expansions).
/// FileID pointed by ExpandedFileID is dedicated to the expansion, so
/// the location in the expansion doesn't matter.
DenseSet<unsigned> ExpandedFileIDs;
DecisionRecord(const CounterMappingRegion &Decision)
: DecisionRegion(&Decision),
DecisionParams(Decision.getDecisionParams()),
DecisionStartLoc(Decision.startLoc()),
DecisionEndLoc(Decision.endLoc()) {
assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion);
}
/// Determine whether DecisionRecord dominates `R`.
bool dominates(const CounterMappingRegion &R) const {
// Determine whether `R` is included in `DecisionRegion`.
if (R.FileID == DecisionRegion->FileID &&
R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc)
return true;
// Determine whether `R` is pointed by any of Expansions.
return ExpandedFileIDs.contains(R.FileID);
}
enum Result {
NotProcessed = 0, /// Irrelevant to this Decision
Processed, /// Added to this Decision
Completed, /// Added and filled this Decision
};
/// Add Branch into the Decision
/// \param Branch expects MCDCBranchRegion
/// \returns NotProcessed/Processed/Completed
Result addBranch(const CounterMappingRegion &Branch) {
assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion);
auto ConditionID = Branch.getBranchParams().ID;
if (ConditionIDs.contains(ConditionID) ||
ConditionID >= DecisionParams.NumConditions)
return NotProcessed;
if (!this->dominates(Branch))
return NotProcessed;
assert(MCDCBranches.size() < DecisionParams.NumConditions);
// Put `ID=0` in front of `MCDCBranches` for convenience
// even if `MCDCBranches` is not topological.
if (ConditionID == 0)
MCDCBranches.insert(MCDCBranches.begin(), &Branch);
else
MCDCBranches.push_back(&Branch);
// Mark `ID` as `assigned`.
ConditionIDs.insert(ConditionID);
// `Completed` when `MCDCBranches` is full
return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed
: Processed);
}
/// Record Expansion if it is relevant to this Decision.
/// Each `Expansion` may nest.
/// \returns true if recorded.
bool recordExpansion(const CounterMappingRegion &Expansion) {
if (!this->dominates(Expansion))
return false;
ExpandedFileIDs.insert(Expansion.ExpandedFileID);
return true;
}
};
private:
/// Decisions in progress
/// DecisionRecord is added for each MCDCDecisionRegion.
/// DecisionRecord is removed when Decision is completed.
SmallVector<DecisionRecord> Decisions;
public:
~MCDCDecisionRecorder() {
assert(Decisions.empty() && "All Decisions have not been resolved");
}
/// Register Region and start recording.
void registerDecision(const CounterMappingRegion &Decision) {
Decisions.emplace_back(Decision);
}
void recordExpansion(const CounterMappingRegion &Expansion) {
any_of(Decisions, [&Expansion](auto &Decision) {
return Decision.recordExpansion(Expansion);
});
}
using DecisionAndBranches =
std::pair<const CounterMappingRegion *, /// Decision
SmallVector<const CounterMappingRegion *> /// Branches
>;
/// Add MCDCBranchRegion to DecisionRecord.
/// \param Branch to be processed
/// \returns DecisionsAndBranches if DecisionRecord completed.
/// Or returns nullopt.
std::optional<DecisionAndBranches>
processBranch(const CounterMappingRegion &Branch) {
// Seek each Decision and apply Region to it.
for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end();
DecisionIter != DecisionEnd; ++DecisionIter)
switch (DecisionIter->addBranch(Branch)) {
case DecisionRecord::NotProcessed:
continue;
case DecisionRecord::Processed:
return std::nullopt;
case DecisionRecord::Completed:
DecisionAndBranches Result =
std::make_pair(DecisionIter->DecisionRegion,
std::move(DecisionIter->MCDCBranches));
Decisions.erase(DecisionIter); // No longer used.
return Result;
}
llvm_unreachable("Branch not found in Decisions");
}
};
} // namespace
Error CoverageMapping::loadFunctionRecord(
const CoverageMappingRecord &Record,
IndexedInstrProfReader &ProfileReader) {
StringRef OrigFuncName = Record.FunctionName;
if (OrigFuncName.empty())
return make_error<CoverageMapError>(coveragemap_error::malformed,
"record function name is empty");
if (Record.Filenames.empty())
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
else
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
CounterMappingContext Ctx(Record.Expressions);
std::vector<uint64_t> Counts;
if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
Record.FunctionHash, Counts)) {
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
if (IPE == instrprof_error::hash_mismatch) {
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
Record.FunctionHash);
return Error::success();
}
if (IPE != instrprof_error::unknown_function)
return make_error<InstrProfError>(IPE);
Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
}
Ctx.setCounts(Counts);
bool IsVersion11 =
ProfileReader.getVersion() < IndexedInstrProf::ProfVersion::Version12;
BitVector Bitmap;
if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName,
Record.FunctionHash, Bitmap)) {
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
if (IPE == instrprof_error::hash_mismatch) {
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
Record.FunctionHash);
return Error::success();
}
if (IPE != instrprof_error::unknown_function)
return make_error<InstrProfError>(IPE);
Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11));
}
Ctx.setBitmap(std::move(Bitmap));
assert(!Record.MappingRegions.empty() && "Function has no regions");
// This coverage record is a zero region for a function that's unused in
// some TU, but used in a different TU. Ignore it. The coverage maps from the
// the other TU will either be loaded (providing full region counts) or they
// won't (in which case we don't unintuitively report functions as uncovered
// when they have non-zero counts in the profile).
if (Record.MappingRegions.size() == 1 &&
Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
return Error::success();
MCDCDecisionRecorder MCDCDecisions;
FunctionRecord Function(OrigFuncName, Record.Filenames);
for (const auto &Region : Record.MappingRegions) {
// MCDCDecisionRegion should be handled first since it overlaps with
// others inside.
if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) {
MCDCDecisions.registerDecision(Region);
continue;
}
Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
if (auto E = ExecutionCount.takeError()) {
consumeError(std::move(E));
return Error::success();
}
Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
if (auto E = AltExecutionCount.takeError()) {
consumeError(std::move(E));
return Error::success();
}
Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount,
ProfileReader.hasSingleByteCoverage());
// Record ExpansionRegion.
if (Region.Kind == CounterMappingRegion::ExpansionRegion) {
MCDCDecisions.recordExpansion(Region);
continue;
}
// Do nothing unless MCDCBranchRegion.
if (Region.Kind != CounterMappingRegion::MCDCBranchRegion)
continue;
auto Result = MCDCDecisions.processBranch(Region);
if (!Result) // Any Decision doesn't complete.
continue;
auto MCDCDecision = Result->first;
auto &MCDCBranches = Result->second;
// Since the bitmap identifies the executed test vectors for an MC/DC
// DecisionRegion, all of the information is now available to process.
// This is where the bulk of the MC/DC progressing takes place.
Expected<MCDCRecord> Record =
Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches, IsVersion11);
if (auto E = Record.takeError()) {
consumeError(std::move(E));
return Error::success();
}
// Save the MC/DC Record so that it can be visualized later.
Function.pushMCDCRecord(std::move(*Record));
}
// Don't create records for (filenames, function) pairs we've already seen.
auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
Record.Filenames.end());
if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
return Error::success();
Functions.push_back(std::move(Function));
// Performance optimization: keep track of the indices of the function records
// which correspond to each filename. This can be used to substantially speed
// up queries for coverage info in a file.
unsigned RecordIndex = Functions.size() - 1;
for (StringRef Filename : Record.Filenames) {
auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
// Note that there may be duplicates in the filename set for a function
// record, because of e.g. macro expansions in the function in which both
// the macro and the function are defined in the same file.
if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
RecordIndices.push_back(RecordIndex);
}
return Error::success();
}
// This function is for memory optimization by shortening the lifetimes
// of CoverageMappingReader instances.
Error CoverageMapping::loadFromReaders(
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
for (const auto &CoverageReader : CoverageReaders) {
for (auto RecordOrErr : *CoverageReader) {
if (Error E = RecordOrErr.takeError())
return E;
const auto &Record = *RecordOrErr;
if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
return E;
}
}
return Error::success();
}
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader) {
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
return std::move(E);
return std::move(Coverage);
}
// If E is a no_data_found error, returns success. Otherwise returns E.
static Error handleMaybeNoDataFoundError(Error E) {
return handleErrors(
std::move(E), [](const CoverageMapError &CME) {
if (CME.get() == coveragemap_error::no_data_found)
return static_cast<Error>(Error::success());
return make_error<CoverageMapError>(CME.get(), CME.getMessage());
});
}
Error CoverageMapping::loadFromFile(
StringRef Filename, StringRef Arch, StringRef CompilationDir,
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage,
bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) {
auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false);
if (std::error_code EC = CovMappingBufOrErr.getError())
return createFileError(Filename, errorCodeToError(EC));
MemoryBufferRef CovMappingBufRef =
CovMappingBufOrErr.get()->getMemBufferRef();
SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
SmallVector<object::BuildIDRef> BinaryIDs;
auto CoverageReadersOrErr = BinaryCoverageReader::create(
CovMappingBufRef, Arch, Buffers, CompilationDir,
FoundBinaryIDs ? &BinaryIDs : nullptr);
if (Error E = CoverageReadersOrErr.takeError()) {
E = handleMaybeNoDataFoundError(std::move(E));
if (E)
return createFileError(Filename, std::move(E));
return E;
}
SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
for (auto &Reader : CoverageReadersOrErr.get())
Readers.push_back(std::move(Reader));
if (FoundBinaryIDs && !Readers.empty()) {
llvm::append_range(*FoundBinaryIDs,
llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) {
return object::BuildID(BID);
}));
}
DataFound |= !Readers.empty();
if (Error E = loadFromReaders(Readers, ProfileReader, Coverage))
return createFileError(Filename, std::move(E));
return Error::success();
}
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir,
const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) {
auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS);
if (Error E = ProfileReaderOrErr.takeError())
return createFileError(ProfileFilename, std::move(E));
auto ProfileReader = std::move(ProfileReaderOrErr.get());
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
bool DataFound = false;
auto GetArch = [&](size_t Idx) {
if (Arches.empty())
return StringRef();
if (Arches.size() == 1)
return Arches.front();
return Arches[Idx];
};
SmallVector<object::BuildID> FoundBinaryIDs;
for (const auto &File : llvm::enumerate(ObjectFilenames)) {
if (Error E =
loadFromFile(File.value(), GetArch(File.index()), CompilationDir,
*ProfileReader, *Coverage, DataFound, &FoundBinaryIDs))
return std::move(E);
}
if (BIDFetcher) {
std::vector<object::BuildID> ProfileBinaryIDs;
if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs))
return createFileError(ProfileFilename, std::move(E));
SmallVector<object::BuildIDRef> BinaryIDsToFetch;
if (!ProfileBinaryIDs.empty()) {
const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) {
return std::lexicographical_compare(A.begin(), A.end(), B.begin(),
B.end());
};
llvm::sort(FoundBinaryIDs, Compare);
std::set_difference(
ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(),
FoundBinaryIDs.begin(), FoundBinaryIDs.end(),
std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare);
}
for (object::BuildIDRef BinaryID : BinaryIDsToFetch) {
std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID);
if (PathOpt) {
std::string Path = std::move(*PathOpt);
StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef();
if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader,
*Coverage, DataFound))
return std::move(E);
} else if (CheckBinaryIDs) {
return createFileError(
ProfileFilename,
createStringError(errc::no_such_file_or_directory,
"Missing binary ID: " +
llvm::toHex(BinaryID, /*LowerCase=*/true)));
}
}
}
if (!DataFound)
return createFileError(
join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "),
make_error<CoverageMapError>(coveragemap_error::no_data_found));
return std::move(Coverage);
}
namespace {
/// Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
MapT InstantiatedFunctions;
public:
void insert(const FunctionRecord &Function, unsigned FileID) {
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
while (I != E && I->FileID != FileID)
++I;
assert(I != E && "function does not cover the given file");
auto &Functions = InstantiatedFunctions[I->startLoc()];
Functions.push_back(&Function);
}
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
MapT::iterator end() { return InstantiatedFunctions.end(); }
};
class SegmentBuilder {
std::vector<CoverageSegment> &Segments;
SmallVector<const CountedRegion *, 8> ActiveRegions;
SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
/// Emit a segment with the count from \p Region starting at \p StartLoc.
//
/// \p IsRegionEntry: The segment is at the start of a new non-gap region.
/// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
void startSegment(const CountedRegion &Region, LineColPair StartLoc,
bool IsRegionEntry, bool EmitSkippedRegion = false) {
bool HasCount = !EmitSkippedRegion &&
(Region.Kind != CounterMappingRegion::SkippedRegion);
// If the new segment wouldn't affect coverage rendering, skip it.
if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
const auto &Last = Segments.back();
if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
!Last.IsRegionEntry)
return;
}
if (HasCount)
Segments.emplace_back(StartLoc.first, StartLoc.second,
Region.ExecutionCount, IsRegionEntry,
Region.Kind == CounterMappingRegion::GapRegion);
else
Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
LLVM_DEBUG({
const auto &Last = Segments.back();
dbgs() << "Segment at " << Last.Line << ":" << Last.Col
<< " (count = " << Last.Count << ")"
<< (Last.IsRegionEntry ? ", RegionEntry" : "")
<< (!Last.HasCount ? ", Skipped" : "")
<< (Last.IsGapRegion ? ", Gap" : "") << "\n";
});
}
/// Emit segments for active regions which end before \p Loc.
///
/// \p Loc: The start location of the next region. If std::nullopt, all active
/// regions are completed.
/// \p FirstCompletedRegion: Index of the first completed region.
void completeRegionsUntil(std::optional<LineColPair> Loc,
unsigned FirstCompletedRegion) {
// Sort the completed regions by end location. This makes it simple to
// emit closing segments in sorted order.
auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
[](const CountedRegion *L, const CountedRegion *R) {
return L->endLoc() < R->endLoc();
});
// Emit segments for all completed regions.
for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
++I) {
const auto *CompletedRegion = ActiveRegions[I];
assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
"Completed region ends after start of new region");
const auto *PrevCompletedRegion = ActiveRegions[I - 1];
auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
// Don't emit any more segments if they start where the new region begins.
if (Loc && CompletedSegmentLoc == *Loc)
break;
// Don't emit a segment if the next completed region ends at the same
// location as this one.
if (CompletedSegmentLoc == CompletedRegion->endLoc())
continue;
// Use the count from the last completed region which ends at this loc.
for (unsigned J = I + 1; J < E; ++J)
if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
CompletedRegion = ActiveRegions[J];
startSegment(*CompletedRegion, CompletedSegmentLoc, false);
}
auto Last = ActiveRegions.back();
if (FirstCompletedRegion && Last->endLoc() != *Loc) {
// If there's a gap after the end of the last completed region and the
// start of the new region, use the last active region to fill the gap.
startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
false);
} else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
// Emit a skipped segment if there are no more active regions. This
// ensures that gaps between functions are marked correctly.
startSegment(*Last, Last->endLoc(), false, true);
}
// Pop the completed regions.
ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
}
void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
for (const auto &CR : enumerate(Regions)) {
auto CurStartLoc = CR.value().startLoc();
// Active regions which end before the current region need to be popped.
auto CompletedRegions =
std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
[&](const CountedRegion *Region) {
return !(Region->endLoc() <= CurStartLoc);
});
if (CompletedRegions != ActiveRegions.end()) {
unsigned FirstCompletedRegion =
std::distance(ActiveRegions.begin(), CompletedRegions);
completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
}
bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
// Try to emit a segment for the current region.
if (CurStartLoc == CR.value().endLoc()) {
// Avoid making zero-length regions active. If it's the last region,
// emit a skipped segment. Otherwise use its predecessor's count.
const bool Skipped =
(CR.index() + 1) == Regions.size() ||
CR.value().Kind == CounterMappingRegion::SkippedRegion;
startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
CurStartLoc, !GapRegion, Skipped);
// If it is skipped segment, create a segment with last pushed
// regions's count at CurStartLoc.
if (Skipped && !ActiveRegions.empty())
startSegment(*ActiveRegions.back(), CurStartLoc, false);
continue;
}
if (CR.index() + 1 == Regions.size() ||
CurStartLoc != Regions[CR.index() + 1].startLoc()) {
// Emit a segment if the next region doesn't start at the same location
// as this one.
startSegment(CR.value(), CurStartLoc, !GapRegion);
}
// This region is active (i.e not completed).
ActiveRegions.push_back(&CR.value());
}
// Complete any remaining active regions.
if (!ActiveRegions.empty())
completeRegionsUntil(std::nullopt, 0);
}
/// Sort a nested sequence of regions from a single file.
static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
if (LHS.startLoc() != RHS.startLoc())
return LHS.startLoc() < RHS.startLoc();
if (LHS.endLoc() != RHS.endLoc())
// When LHS completely contains RHS, we sort LHS first.
return RHS.endLoc() < LHS.endLoc();
// If LHS and RHS cover the same area, we need to sort them according
// to their kinds so that the most suitable region will become "active"
// in combineRegions(). Because we accumulate counter values only from
// regions of the same kind as the first region of the area, prefer
// CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
static_assert(CounterMappingRegion::CodeRegion <
CounterMappingRegion::ExpansionRegion &&
CounterMappingRegion::ExpansionRegion <
CounterMappingRegion::SkippedRegion,
"Unexpected order of region kind values");
return LHS.Kind < RHS.Kind;
});
}
/// Combine counts of regions which cover the same area.
static ArrayRef<CountedRegion>
combineRegions(MutableArrayRef<CountedRegion> Regions) {
if (Regions.empty())
return Regions;
auto Active = Regions.begin();
auto End = Regions.end();
for (auto I = Regions.begin() + 1; I != End; ++I) {
if (Active->startLoc() != I->startLoc() ||
Active->endLoc() != I->endLoc()) {
// Shift to the next region.
++Active;
if (Active != I)
*Active = *I;
continue;
}
// Merge duplicate region.
// If CodeRegions and ExpansionRegions cover the same area, it's probably
// a macro which is fully expanded to another macro. In that case, we need
// to accumulate counts only from CodeRegions, or else the area will be
// counted twice.
// On the other hand, a macro may have a nested macro in its body. If the
// outer macro is used several times, the ExpansionRegion for the nested
// macro will also be added several times. These ExpansionRegions cover
// the same source locations and have to be combined to reach the correct
// value for that area.
// We add counts of the regions of the same kind as the active region
// to handle the both situations.
if (I->Kind == Active->Kind) {
assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage &&
"Regions are generated in different coverage modes");
if (I->HasSingleByteCoverage)
Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount;
else
Active->ExecutionCount += I->ExecutionCount;
}
}
return Regions.drop_back(std::distance(++Active, End));
}
public:
/// Build a sorted list of CoverageSegments from a list of Regions.
static std::vector<CoverageSegment>
buildSegments(MutableArrayRef<CountedRegion> Regions) {
std::vector<CoverageSegment> Segments;
SegmentBuilder Builder(Segments);
sortNestedRegions(Regions);
ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
LLVM_DEBUG({
dbgs() << "Combined regions:\n";
for (const auto &CR : CombinedRegions)
dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
<< CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n";
});
Builder.buildSegmentsImpl(CombinedRegions);
#ifndef NDEBUG
for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
const auto &L = Segments[I - 1];
const auto &R = Segments[I];
if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
continue;
LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
<< " followed by " << R.Line << ":" << R.Col << "\n");
assert(false && "Coverage segments not unique or sorted");
}
}
#endif
return Segments;
}
};
} // end anonymous namespace
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
std::vector<StringRef> Filenames;
for (const auto &Function : getCoveredFunctions())
llvm::append_range(Filenames, Function.Filenames);
llvm::sort(Filenames);
auto Last = llvm::unique(Filenames);
Filenames.erase(Last, Filenames.end());
return Filenames;
}
static SmallBitVector gatherFileIDs(StringRef SourceFile,
const FunctionRecord &Function) {
SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
FilenameEquivalence[I] = true;
return FilenameEquivalence;
}
/// Return the ID of the file where the definition of the function is located.
static std::optional<unsigned>
findMainViewFileID(const FunctionRecord &Function) {
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
IsNotExpandedFile[CR.ExpandedFileID] = false;
int I = IsNotExpandedFile.find_first();
if (I == -1)
return std::nullopt;
return I;
}
/// Check if SourceFile is the file that contains the definition of
/// the Function. Return the ID of the file in that case or std::nullopt
/// otherwise.
static std::optional<unsigned>
findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) {
std::optional<unsigned> I = findMainViewFileID(Function);
if (I && SourceFile == Function.Filenames[*I])
return I;
return std::nullopt;
}
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
CoverageData FileCoverage(Filename);
std::vector<CountedRegion> Regions;
// Look up the function records in the given file. Due to hash collisions on
// the filename, we may get back some records that are not in the file.
ArrayRef<unsigned> RecordIndices =
getImpreciseRecordIndicesForFilename(Filename);
for (unsigned RecordIndex : RecordIndices) {
const FunctionRecord &Function = Functions[RecordIndex];
auto MainFileID = findMainViewFileID(Filename, Function);
auto FileIDs = gatherFileIDs(Filename, Function);
for (const auto &CR : Function.CountedRegions)
if (FileIDs.test(CR.FileID)) {
Regions.push_back(CR);
if (MainFileID && isExpansion(CR, *MainFileID))
FileCoverage.Expansions.emplace_back(CR, Function);
}
// Capture branch regions specific to the function (excluding expansions).
for (const auto &CR : Function.CountedBranchRegions)
if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
FileCoverage.BranchRegions.push_back(CR);
// Capture MCDC records specific to the function.
for (const auto &MR : Function.MCDCRecords)
if (FileIDs.test(MR.getDecisionRegion().FileID))
FileCoverage.MCDCRecords.push_back(MR);
}
LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FileCoverage;
}
std::vector<InstantiationGroup>
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
FunctionInstantiationSetCollector InstantiationSetCollector;
// Look up the function records in the given file. Due to hash collisions on
// the filename, we may get back some records that are not in the file.
ArrayRef<unsigned> RecordIndices =
getImpreciseRecordIndicesForFilename(Filename);
for (unsigned RecordIndex : RecordIndices) {
const FunctionRecord &Function = Functions[RecordIndex];
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
InstantiationSetCollector.insert(Function, *MainFileID);
}
std::vector<InstantiationGroup> Result;
for (auto &InstantiationSet : InstantiationSetCollector) {
InstantiationGroup IG{InstantiationSet.first.first,
InstantiationSet.first.second,
std::move(InstantiationSet.second)};
Result.emplace_back(std::move(IG));
}
return Result;
}
CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
auto MainFileID = findMainViewFileID(Function);
if (!MainFileID)
return CoverageData();
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Function.CountedRegions)
if (CR.FileID == *MainFileID) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FunctionCoverage.Expansions.emplace_back(CR, Function);
}
// Capture branch regions specific to the function (excluding expansions).
for (const auto &CR : Function.CountedBranchRegions)
if (CR.FileID == *MainFileID)
FunctionCoverage.BranchRegions.push_back(CR);
// Capture MCDC records specific to the function.
for (const auto &MR : Function.MCDCRecords)
if (MR.getDecisionRegion().FileID == *MainFileID)
FunctionCoverage.MCDCRecords.push_back(MR);
LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
<< "\n");
FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FunctionCoverage;
}
CoverageData CoverageMapping::getCoverageForExpansion(
const ExpansionRecord &Expansion) const {
CoverageData ExpansionCoverage(
Expansion.Function.Filenames[Expansion.FileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Expansion.Function.CountedRegions)
if (CR.FileID == Expansion.FileID) {
Regions.push_back(CR);
if (isExpansion(CR, Expansion.FileID))
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
}
for (const auto &CR : Expansion.Function.CountedBranchRegions)
// Capture branch regions that only pertain to the corresponding expansion.
if (CR.FileID == Expansion.FileID)
ExpansionCoverage.BranchRegions.push_back(CR);
LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
<< Expansion.FileID << "\n");
ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return ExpansionCoverage;
}
LineCoverageStats::LineCoverageStats(
ArrayRef<const CoverageSegment *> LineSegments,
const CoverageSegment *WrappedSegment, unsigned Line)
: ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
// Find the minimum number of regions which start in this line.
unsigned MinRegionCount = 0;
auto isStartOfRegion = [](const CoverageSegment *S) {
return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
};
for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
if (isStartOfRegion(LineSegments[I]))
++MinRegionCount;
bool StartOfSkippedRegion = !LineSegments.empty() &&
!LineSegments.front()->HasCount &&
LineSegments.front()->IsRegionEntry;
HasMultipleRegions = MinRegionCount > 1;
Mapped =
!StartOfSkippedRegion &&
((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
// if there is any starting segment at this line with a counter, it must be
// mapped
Mapped |= std::any_of(
LineSegments.begin(), LineSegments.end(),
[](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; });
if (!Mapped) {
return;
}
// Pick the max count from the non-gap, region entry segments and the
// wrapped count.
if (WrappedSegment)
ExecutionCount = WrappedSegment->Count;
if (!MinRegionCount)
return;
for (const auto *LS : LineSegments)
if (isStartOfRegion(LS))
ExecutionCount = std::max(ExecutionCount, LS->Count);
}
LineCoverageIterator &LineCoverageIterator::operator++() {
if (Next == CD.end()) {
Stats = LineCoverageStats();
Ended = true;
return *this;
}
if (Segments.size())
WrappedSegment = Segments.back();
Segments.clear();
while (Next != CD.end() && Next->Line == Line)
Segments.push_back(&*Next++);
Stats = LineCoverageStats(Segments, WrappedSegment, Line);
++Line;
return *this;
}
static std::string getCoverageMapErrString(coveragemap_error Err,
const std::string &ErrMsg = "") {
std::string Msg;
raw_string_ostream OS(Msg);
switch (Err) {
case coveragemap_error::success:
OS << "success";
break;
case coveragemap_error::eof:
OS << "end of File";
break;
case coveragemap_error::no_data_found:
OS << "no coverage data found";
break;
case coveragemap_error::unsupported_version:
OS << "unsupported coverage format version";
break;
case coveragemap_error::truncated:
OS << "truncated coverage data";
break;
case coveragemap_error::malformed:
OS << "malformed coverage data";
break;
case coveragemap_error::decompression_failed:
OS << "failed to decompress coverage data (zlib)";
break;
case coveragemap_error::invalid_or_missing_arch_specifier:
OS << "`-arch` specifier is invalid or missing for universal binary";
break;
}
// If optional error message is not empty, append it to the message.
if (!ErrMsg.empty())
OS << ": " << ErrMsg;
return Msg;
}
namespace {
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class CoverageMappingErrorCategoryType : public std::error_category {
const char *name() const noexcept override { return "llvm.coveragemap"; }
std::string message(int IE) const override {
return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
}
};
} // end anonymous namespace
std::string CoverageMapError::message() const {
return getCoverageMapErrString(Err, Msg);
}
const std::error_category &llvm::coverage::coveragemap_category() {
static CoverageMappingErrorCategoryType ErrorCategory;
return ErrorCategory;
}
char CoverageMapError::ID = 0;
|