1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
|
//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
// A struct to define how the data stream should be patched. For Indexed
// profiling, only uint64_t data type is needed.
struct PatchItem {
uint64_t Pos; // Where to patch.
ArrayRef<uint64_t> D; // An array of source data.
};
namespace llvm {
// A wrapper class to abstract writer stream with support of bytes
// back patching.
class ProfOStream {
public:
ProfOStream(raw_fd_ostream &FD)
: IsFDOStream(true), OS(FD), LE(FD, llvm::endianness::little) {}
ProfOStream(raw_string_ostream &STR)
: IsFDOStream(false), OS(STR), LE(STR, llvm::endianness::little) {}
[[nodiscard]] uint64_t tell() const { return OS.tell(); }
void write(uint64_t V) { LE.write<uint64_t>(V); }
void write32(uint32_t V) { LE.write<uint32_t>(V); }
void writeByte(uint8_t V) { LE.write<uint8_t>(V); }
// \c patch can only be called when all data is written and flushed.
// For raw_string_ostream, the patch is done on the target string
// directly and it won't be reflected in the stream's internal buffer.
void patch(ArrayRef<PatchItem> P) {
using namespace support;
if (IsFDOStream) {
raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
const uint64_t LastPos = FDOStream.tell();
for (const auto &K : P) {
FDOStream.seek(K.Pos);
for (uint64_t Elem : K.D)
write(Elem);
}
// Reset the stream to the last position after patching so that users
// don't accidentally overwrite data. This makes it consistent with
// the string stream below which replaces the data directly.
FDOStream.seek(LastPos);
} else {
raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
std::string &Data = SOStream.str(); // with flush
for (const auto &K : P) {
for (int I = 0, E = K.D.size(); I != E; I++) {
uint64_t Bytes =
endian::byte_swap<uint64_t, llvm::endianness::little>(K.D[I]);
Data.replace(K.Pos + I * sizeof(uint64_t), sizeof(uint64_t),
(const char *)&Bytes, sizeof(uint64_t));
}
}
}
}
// If \c OS is an instance of \c raw_fd_ostream, this field will be
// true. Otherwise, \c OS will be an raw_string_ostream.
bool IsFDOStream;
raw_ostream &OS;
support::endian::Writer LE;
};
class InstrProfRecordWriterTrait {
public:
using key_type = StringRef;
using key_type_ref = StringRef;
using data_type = const InstrProfWriter::ProfilingData *const;
using data_type_ref = const InstrProfWriter::ProfilingData *const;
using hash_value_type = uint64_t;
using offset_type = uint64_t;
llvm::endianness ValueProfDataEndianness = llvm::endianness::little;
InstrProfSummaryBuilder *SummaryBuilder;
InstrProfSummaryBuilder *CSSummaryBuilder;
InstrProfRecordWriterTrait() = default;
static hash_value_type ComputeHash(key_type_ref K) {
return IndexedInstrProf::ComputeHash(K);
}
static std::pair<offset_type, offset_type>
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
using namespace support;
endian::Writer LE(Out, llvm::endianness::little);
offset_type N = K.size();
LE.write<offset_type>(N);
offset_type M = 0;
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
M += sizeof(uint64_t); // The function hash
M += sizeof(uint64_t); // The size of the Counts vector
M += ProfRecord.Counts.size() * sizeof(uint64_t);
M += sizeof(uint64_t); // The size of the Bitmap vector
M += ProfRecord.BitmapBytes.size() * sizeof(uint64_t);
// Value data
M += ValueProfData::getSize(ProfileData.second);
}
LE.write<offset_type>(M);
return std::make_pair(N, M);
}
void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
Out.write(K.data(), N);
}
void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
using namespace support;
endian::Writer LE(Out, llvm::endianness::little);
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
CSSummaryBuilder->addRecord(ProfRecord);
else
SummaryBuilder->addRecord(ProfRecord);
LE.write<uint64_t>(ProfileData.first); // Function hash
LE.write<uint64_t>(ProfRecord.Counts.size());
for (uint64_t I : ProfRecord.Counts)
LE.write<uint64_t>(I);
LE.write<uint64_t>(ProfRecord.BitmapBytes.size());
for (uint64_t I : ProfRecord.BitmapBytes)
LE.write<uint64_t>(I);
// Write value data
std::unique_ptr<ValueProfData> VDataPtr =
ValueProfData::serializeFrom(ProfileData.second);
uint32_t S = VDataPtr->getSize();
VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
Out.write((const char *)VDataPtr.get(), S);
}
}
};
} // end namespace llvm
InstrProfWriter::InstrProfWriter(
bool Sparse, uint64_t TemporalProfTraceReservoirSize,
uint64_t MaxTemporalProfTraceLength, bool WritePrevVersion,
memprof::IndexedVersion MemProfVersionRequested, bool MemProfFullSchema)
: Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength),
TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize),
InfoObj(new InstrProfRecordWriterTrait()),
WritePrevVersion(WritePrevVersion),
MemProfVersionRequested(MemProfVersionRequested),
MemProfFullSchema(MemProfFullSchema) {}
InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(llvm::endianness Endianness) {
InfoObj->ValueProfDataEndianness = Endianness;
}
void InstrProfWriter::setOutputSparse(bool Sparse) {
this->Sparse = Sparse;
}
void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto Name = I.Name;
auto Hash = I.Hash;
addRecord(Name, Hash, std::move(I), Weight, Warn);
}
void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
OverlapStats &Overlap,
OverlapStats &FuncLevelOverlap,
const OverlapFuncFilters &FuncFilter) {
auto Name = Other.Name;
auto Hash = Other.Hash;
Other.accumulateCounts(FuncLevelOverlap.Test);
if (!FunctionData.contains(Name)) {
Overlap.addOneUnique(FuncLevelOverlap.Test);
return;
}
if (FuncLevelOverlap.Test.CountSum < 1.0f) {
Overlap.Overlap.NumEntries += 1;
return;
}
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
if (NewFunc) {
Overlap.addOneMismatch(FuncLevelOverlap.Test);
return;
}
InstrProfRecord &Dest = Where->second;
uint64_t ValueCutoff = FuncFilter.ValueCutoff;
if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
ValueCutoff = 0;
Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
}
void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
InstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
InstrProfRecord &Dest = Where->second;
auto MapWarn = [&](instrprof_error E) {
Warn(make_error<InstrProfError>(E));
};
if (NewFunc) {
// We've never seen a function with this name and hash, add it.
Dest = std::move(I);
if (Weight > 1)
Dest.scale(Weight, 1, MapWarn);
} else {
// We're updating a function we've seen before.
Dest.merge(I, Weight, MapWarn);
}
Dest.sortValueData();
}
void InstrProfWriter::addMemProfRecord(
const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
auto [Iter, Inserted] = MemProfData.Records.insert({Id, Record});
// If we inserted a new record then we are done.
if (Inserted) {
return;
}
memprof::IndexedMemProfRecord &Existing = Iter->second;
Existing.merge(Record);
}
bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
const memprof::Frame &Frame,
function_ref<void(Error)> Warn) {
auto [Iter, Inserted] = MemProfData.Frames.insert({Id, Frame});
// If a mapping already exists for the current frame id and it does not
// match the new mapping provided then reset the existing contents and bail
// out. We don't support the merging of memprof data whose Frame -> Id
// mapping across profiles is inconsistent.
if (!Inserted && Iter->second != Frame) {
Warn(make_error<InstrProfError>(instrprof_error::malformed,
"frame to id mapping mismatch"));
return false;
}
return true;
}
bool InstrProfWriter::addMemProfCallStack(
const memprof::CallStackId CSId,
const llvm::SmallVector<memprof::FrameId> &CallStack,
function_ref<void(Error)> Warn) {
auto [Iter, Inserted] = MemProfData.CallStacks.insert({CSId, CallStack});
// If a mapping already exists for the current call stack id and it does not
// match the new mapping provided then reset the existing contents and bail
// out. We don't support the merging of memprof data whose CallStack -> Id
// mapping across profiles is inconsistent.
if (!Inserted && Iter->second != CallStack) {
Warn(make_error<InstrProfError>(instrprof_error::malformed,
"call stack to id mapping mismatch"));
return false;
}
return true;
}
void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
llvm::append_range(BinaryIds, BIs);
}
void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) {
assert(Trace.FunctionNameRefs.size() <= MaxTemporalProfTraceLength);
assert(!Trace.FunctionNameRefs.empty());
if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) {
// Simply append the trace if we have not yet hit our reservoir size limit.
TemporalProfTraces.push_back(std::move(Trace));
} else {
// Otherwise, replace a random trace in the stream.
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
TemporalProfTraces[RandomIndex] = std::move(Trace);
}
++TemporalProfTraceStreamSize;
}
void InstrProfWriter::addTemporalProfileTraces(
SmallVectorImpl<TemporalProfTraceTy> &SrcTraces, uint64_t SrcStreamSize) {
for (auto &Trace : SrcTraces)
if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength)
Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength);
llvm::erase_if(SrcTraces, [](auto &T) { return T.FunctionNameRefs.empty(); });
// Assume that the source has the same reservoir size as the destination to
// avoid needing to record it in the indexed profile format.
bool IsDestSampled =
(TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize);
bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize);
if (!IsDestSampled && IsSrcSampled) {
// If one of the traces are sampled, ensure that it belongs to Dest.
std::swap(TemporalProfTraces, SrcTraces);
std::swap(TemporalProfTraceStreamSize, SrcStreamSize);
std::swap(IsDestSampled, IsSrcSampled);
}
if (!IsSrcSampled) {
// If the source stream is not sampled, we add each source trace normally.
for (auto &Trace : SrcTraces)
addTemporalProfileTrace(std::move(Trace));
return;
}
// Otherwise, we find the traces that would have been removed if we added
// the whole source stream.
SmallSetVector<uint64_t, 8> IndicesToReplace;
for (uint64_t I = 0; I < SrcStreamSize; I++) {
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
IndicesToReplace.insert(RandomIndex);
++TemporalProfTraceStreamSize;
}
// Then we insert a random sample of the source traces.
llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG);
for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces))
TemporalProfTraces[Index] = std::move(Trace);
}
void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
function_ref<void(Error)> Warn) {
for (auto &I : IPW.FunctionData)
for (auto &Func : I.getValue())
addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
for (auto &I : IPW.BinaryIds)
addBinaryIds(I);
addTemporalProfileTraces(IPW.TemporalProfTraces,
IPW.TemporalProfTraceStreamSize);
MemProfData.Frames.reserve(IPW.MemProfData.Frames.size());
for (auto &[FrameId, Frame] : IPW.MemProfData.Frames) {
// If we weren't able to add the frame mappings then it doesn't make sense
// to try to merge the records from this profile.
if (!addMemProfFrame(FrameId, Frame, Warn))
return;
}
MemProfData.CallStacks.reserve(IPW.MemProfData.CallStacks.size());
for (auto &[CSId, CallStack] : IPW.MemProfData.CallStacks) {
if (!addMemProfCallStack(CSId, CallStack, Warn))
return;
}
MemProfData.Records.reserve(IPW.MemProfData.Records.size());
for (auto &[GUID, Record] : IPW.MemProfData.Records) {
addMemProfRecord(GUID, Record);
}
}
bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
if (!Sparse)
return true;
for (const auto &Func : PD) {
const InstrProfRecord &IPR = Func.second;
if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
return true;
if (llvm::any_of(IPR.BitmapBytes, [](uint8_t Byte) { return Byte > 0; }))
return true;
}
return false;
}
static void setSummary(IndexedInstrProf::Summary *TheSummary,
ProfileSummary &PS) {
using namespace IndexedInstrProf;
const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
TheSummary->NumSummaryFields = Summary::NumKinds;
TheSummary->NumCutoffEntries = Res.size();
TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
for (unsigned I = 0; I < Res.size(); I++)
TheSummary->setEntry(I, Res[I]);
}
// Serialize Schema.
static void writeMemProfSchema(ProfOStream &OS,
const memprof::MemProfSchema &Schema) {
OS.write(static_cast<uint64_t>(Schema.size()));
for (const auto Id : Schema)
OS.write(static_cast<uint64_t>(Id));
}
// Serialize MemProfRecordData. Return RecordTableOffset.
static uint64_t writeMemProfRecords(
ProfOStream &OS,
llvm::MapVector<GlobalValue::GUID, memprof::IndexedMemProfRecord>
&MemProfRecordData,
memprof::MemProfSchema *Schema, memprof::IndexedVersion Version,
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
*MemProfCallStackIndexes = nullptr) {
memprof::RecordWriterTrait RecordWriter(Schema, Version,
MemProfCallStackIndexes);
OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
RecordTableGenerator;
for (auto &[GUID, Record] : MemProfRecordData) {
// Insert the key (func hash) and value (memprof record).
RecordTableGenerator.insert(GUID, Record, RecordWriter);
}
// Release the memory of this MapVector as it is no longer needed.
MemProfRecordData.clear();
// The call to Emit invokes RecordWriterTrait::EmitData which destructs
// the memprof record copies owned by the RecordTableGenerator. This works
// because the RecordTableGenerator is not used after this point.
return RecordTableGenerator.Emit(OS.OS, RecordWriter);
}
// Serialize MemProfFrameData. Return FrameTableOffset.
static uint64_t writeMemProfFrames(
ProfOStream &OS,
llvm::MapVector<memprof::FrameId, memprof::Frame> &MemProfFrameData) {
OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
FrameTableGenerator;
for (auto &[FrameId, Frame] : MemProfFrameData) {
// Insert the key (frame id) and value (frame contents).
FrameTableGenerator.insert(FrameId, Frame);
}
// Release the memory of this MapVector as it is no longer needed.
MemProfFrameData.clear();
return FrameTableGenerator.Emit(OS.OS);
}
// Serialize MemProfFrameData. Return the mapping from FrameIds to their
// indexes within the frame array.
static llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId>
writeMemProfFrameArray(
ProfOStream &OS,
llvm::MapVector<memprof::FrameId, memprof::Frame> &MemProfFrameData,
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> &FrameHistogram) {
// Mappings from FrameIds to array indexes.
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId> MemProfFrameIndexes;
// Compute the order in which we serialize Frames. The order does not matter
// in terms of correctness, but we still compute it for deserialization
// performance. Specifically, if we serialize frequently used Frames one
// after another, we have better cache utilization. For two Frames that
// appear equally frequently, we break a tie by serializing the one that tends
// to appear earlier in call stacks. We implement the tie-breaking mechanism
// by computing the sum of indexes within call stacks for each Frame. If we
// still have a tie, then we just resort to compare two FrameIds, which is
// just for stability of output.
std::vector<std::pair<memprof::FrameId, const memprof::Frame *>> FrameIdOrder;
FrameIdOrder.reserve(MemProfFrameData.size());
for (const auto &[Id, Frame] : MemProfFrameData)
FrameIdOrder.emplace_back(Id, &Frame);
assert(MemProfFrameData.size() == FrameIdOrder.size());
llvm::sort(FrameIdOrder,
[&](const std::pair<memprof::FrameId, const memprof::Frame *> &L,
const std::pair<memprof::FrameId, const memprof::Frame *> &R) {
const auto &SL = FrameHistogram[L.first];
const auto &SR = FrameHistogram[R.first];
// Popular FrameIds should come first.
if (SL.Count != SR.Count)
return SL.Count > SR.Count;
// If they are equally popular, then the one that tends to appear
// earlier in call stacks should come first.
if (SL.PositionSum != SR.PositionSum)
return SL.PositionSum < SR.PositionSum;
// Compare their FrameIds for sort stability.
return L.first < R.first;
});
// Serialize all frames while creating mappings from linear IDs to FrameIds.
uint64_t Index = 0;
MemProfFrameIndexes.reserve(FrameIdOrder.size());
for (const auto &[Id, F] : FrameIdOrder) {
F->serialize(OS.OS);
MemProfFrameIndexes.insert({Id, Index});
++Index;
}
assert(MemProfFrameData.size() == Index);
assert(MemProfFrameData.size() == MemProfFrameIndexes.size());
// Release the memory of this MapVector as it is no longer needed.
MemProfFrameData.clear();
return MemProfFrameIndexes;
}
static uint64_t writeMemProfCallStacks(
ProfOStream &OS,
llvm::MapVector<memprof::CallStackId, llvm::SmallVector<memprof::FrameId>>
&MemProfCallStackData) {
OnDiskChainedHashTableGenerator<memprof::CallStackWriterTrait>
CallStackTableGenerator;
for (auto &[CSId, CallStack] : MemProfCallStackData)
CallStackTableGenerator.insert(CSId, CallStack);
// Release the memory of this vector as it is no longer needed.
MemProfCallStackData.clear();
return CallStackTableGenerator.Emit(OS.OS);
}
static llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
writeMemProfCallStackArray(
ProfOStream &OS,
llvm::MapVector<memprof::CallStackId, llvm::SmallVector<memprof::FrameId>>
&MemProfCallStackData,
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId>
&MemProfFrameIndexes,
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> &FrameHistogram) {
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
MemProfCallStackIndexes;
memprof::CallStackRadixTreeBuilder Builder;
Builder.build(std::move(MemProfCallStackData), MemProfFrameIndexes,
FrameHistogram);
for (auto I : Builder.getRadixArray())
OS.write32(I);
MemProfCallStackIndexes = Builder.takeCallStackPos();
// Release the memory of this vector as it is no longer needed.
MemProfCallStackData.clear();
return MemProfCallStackIndexes;
}
// Write out MemProf Version0 as follows:
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t FramePayloadOffset = Offset for the frame payload
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// OnDiskChainedHashTable MemProfRecordData
// OnDiskChainedHashTable MemProfFrameData
static Error writeMemProfV0(ProfOStream &OS,
memprof::IndexedMemProfData &MemProfData) {
uint64_t HeaderUpdatePos = OS.tell();
OS.write(0ULL); // Reserve space for the memprof record table offset.
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
OS.write(0ULL); // Reserve space for the memprof frame table offset.
auto Schema = memprof::getFullSchema();
writeMemProfSchema(OS, Schema);
uint64_t RecordTableOffset =
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version0);
uint64_t FramePayloadOffset = OS.tell();
uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames);
uint64_t Header[] = {RecordTableOffset, FramePayloadOffset, FrameTableOffset};
OS.patch({{HeaderUpdatePos, Header}});
return Error::success();
}
// Write out MemProf Version1 as follows:
// uint64_t Version (NEW in V1)
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t FramePayloadOffset = Offset for the frame payload
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// OnDiskChainedHashTable MemProfRecordData
// OnDiskChainedHashTable MemProfFrameData
static Error writeMemProfV1(ProfOStream &OS,
memprof::IndexedMemProfData &MemProfData) {
OS.write(memprof::Version1);
uint64_t HeaderUpdatePos = OS.tell();
OS.write(0ULL); // Reserve space for the memprof record table offset.
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
OS.write(0ULL); // Reserve space for the memprof frame table offset.
auto Schema = memprof::getFullSchema();
writeMemProfSchema(OS, Schema);
uint64_t RecordTableOffset =
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version1);
uint64_t FramePayloadOffset = OS.tell();
uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames);
uint64_t Header[] = {RecordTableOffset, FramePayloadOffset, FrameTableOffset};
OS.patch({{HeaderUpdatePos, Header}});
return Error::success();
}
// Write out MemProf Version2 as follows:
// uint64_t Version
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t FramePayloadOffset = Offset for the frame payload
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
// uint64_t CallStackPayloadOffset = Offset for the call stack payload (NEW V2)
// uint64_t CallStackTableOffset = CallStackTableGenerator.Emit (NEW in V2)
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// OnDiskChainedHashTable MemProfRecordData
// OnDiskChainedHashTable MemProfFrameData
// OnDiskChainedHashTable MemProfCallStackData (NEW in V2)
static Error writeMemProfV2(ProfOStream &OS,
memprof::IndexedMemProfData &MemProfData,
bool MemProfFullSchema) {
OS.write(memprof::Version2);
uint64_t HeaderUpdatePos = OS.tell();
OS.write(0ULL); // Reserve space for the memprof record table offset.
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
OS.write(0ULL); // Reserve space for the memprof frame table offset.
OS.write(0ULL); // Reserve space for the memprof call stack payload offset.
OS.write(0ULL); // Reserve space for the memprof call stack table offset.
auto Schema = memprof::getHotColdSchema();
if (MemProfFullSchema)
Schema = memprof::getFullSchema();
writeMemProfSchema(OS, Schema);
uint64_t RecordTableOffset =
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version2);
uint64_t FramePayloadOffset = OS.tell();
uint64_t FrameTableOffset = writeMemProfFrames(OS, MemProfData.Frames);
uint64_t CallStackPayloadOffset = OS.tell();
uint64_t CallStackTableOffset =
writeMemProfCallStacks(OS, MemProfData.CallStacks);
uint64_t Header[] = {
RecordTableOffset, FramePayloadOffset, FrameTableOffset,
CallStackPayloadOffset, CallStackTableOffset,
};
OS.patch({{HeaderUpdatePos, Header}});
return Error::success();
}
// Write out MemProf Version3 as follows:
// uint64_t Version
// uint64_t CallStackPayloadOffset = Offset for the call stack payload
// uint64_t RecordPayloadOffset = Offset for the record payload
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// Frames serialized one after another
// Call stacks encoded as a radix tree
// OnDiskChainedHashTable MemProfRecordData
static Error writeMemProfV3(ProfOStream &OS,
memprof::IndexedMemProfData &MemProfData,
bool MemProfFullSchema) {
OS.write(memprof::Version3);
uint64_t HeaderUpdatePos = OS.tell();
OS.write(0ULL); // Reserve space for the memprof call stack payload offset.
OS.write(0ULL); // Reserve space for the memprof record payload offset.
OS.write(0ULL); // Reserve space for the memprof record table offset.
auto Schema = memprof::getHotColdSchema();
if (MemProfFullSchema)
Schema = memprof::getFullSchema();
writeMemProfSchema(OS, Schema);
llvm::DenseMap<memprof::FrameId, memprof::FrameStat> FrameHistogram =
memprof::computeFrameHistogram(MemProfData.CallStacks);
assert(MemProfData.Frames.size() == FrameHistogram.size());
llvm::DenseMap<memprof::FrameId, memprof::LinearFrameId> MemProfFrameIndexes =
writeMemProfFrameArray(OS, MemProfData.Frames, FrameHistogram);
uint64_t CallStackPayloadOffset = OS.tell();
llvm::DenseMap<memprof::CallStackId, memprof::LinearCallStackId>
MemProfCallStackIndexes = writeMemProfCallStackArray(
OS, MemProfData.CallStacks, MemProfFrameIndexes, FrameHistogram);
uint64_t RecordPayloadOffset = OS.tell();
uint64_t RecordTableOffset =
writeMemProfRecords(OS, MemProfData.Records, &Schema, memprof::Version3,
&MemProfCallStackIndexes);
uint64_t Header[] = {
CallStackPayloadOffset,
RecordPayloadOffset,
RecordTableOffset,
};
OS.patch({{HeaderUpdatePos, Header}});
return Error::success();
}
// Write out the MemProf data in a requested version.
static Error writeMemProf(ProfOStream &OS,
memprof::IndexedMemProfData &MemProfData,
memprof::IndexedVersion MemProfVersionRequested,
bool MemProfFullSchema) {
switch (MemProfVersionRequested) {
case memprof::Version0:
return writeMemProfV0(OS, MemProfData);
case memprof::Version1:
return writeMemProfV1(OS, MemProfData);
case memprof::Version2:
return writeMemProfV2(OS, MemProfData, MemProfFullSchema);
case memprof::Version3:
return writeMemProfV3(OS, MemProfData, MemProfFullSchema);
}
return make_error<InstrProfError>(
instrprof_error::unsupported_version,
formatv("MemProf version {} not supported; "
"requires version between {} and {}, inclusive",
MemProfVersionRequested, memprof::MinimumSupportedVersion,
memprof::MaximumSupportedVersion));
}
uint64_t InstrProfWriter::writeHeader(const IndexedInstrProf::Header &Header,
const bool WritePrevVersion,
ProfOStream &OS) {
// Only write out the first four fields.
for (int I = 0; I < 4; I++)
OS.write(reinterpret_cast<const uint64_t *>(&Header)[I]);
// Remember the offset of the remaining fields to allow back patching later.
auto BackPatchStartOffset = OS.tell();
// Reserve the space for back patching later.
OS.write(0); // HashOffset
OS.write(0); // MemProfOffset
OS.write(0); // BinaryIdOffset
OS.write(0); // TemporalProfTracesOffset
if (!WritePrevVersion)
OS.write(0); // VTableNamesOffset
return BackPatchStartOffset;
}
Error InstrProfWriter::writeVTableNames(ProfOStream &OS) {
std::vector<std::string> VTableNameStrs;
for (StringRef VTableName : VTableNames.keys())
VTableNameStrs.push_back(VTableName.str());
std::string CompressedVTableNames;
if (!VTableNameStrs.empty())
if (Error E = collectGlobalObjectNameStrings(
VTableNameStrs, compression::zlib::isAvailable(),
CompressedVTableNames))
return E;
const uint64_t CompressedStringLen = CompressedVTableNames.length();
// Record the length of compressed string.
OS.write(CompressedStringLen);
// Write the chars in compressed strings.
for (auto &c : CompressedVTableNames)
OS.writeByte(static_cast<uint8_t>(c));
// Pad up to a multiple of 8.
// InstrProfReader could read bytes according to 'CompressedStringLen'.
const uint64_t PaddedLength = alignTo(CompressedStringLen, 8);
for (uint64_t K = CompressedStringLen; K < PaddedLength; K++)
OS.writeByte(0);
return Error::success();
}
Error InstrProfWriter::writeImpl(ProfOStream &OS) {
using namespace IndexedInstrProf;
using namespace support;
OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->SummaryBuilder = &ISB;
InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->CSSummaryBuilder = &CSISB;
// Populate the hash table generator.
SmallVector<std::pair<StringRef, const ProfilingData *>> OrderedData;
for (const auto &I : FunctionData)
if (shouldEncodeData(I.getValue()))
OrderedData.emplace_back((I.getKey()), &I.getValue());
llvm::sort(OrderedData, less_first());
for (const auto &I : OrderedData)
Generator.insert(I.first, I.second);
// Write the header.
IndexedInstrProf::Header Header;
Header.Version = WritePrevVersion
? IndexedInstrProf::ProfVersion::Version11
: IndexedInstrProf::ProfVersion::CurrentVersion;
// The WritePrevVersion handling will either need to be removed or updated
// if the version is advanced beyond 12.
static_assert(IndexedInstrProf::ProfVersion::CurrentVersion ==
IndexedInstrProf::ProfVersion::Version12);
if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
Header.Version |= VARIANT_MASK_IR_PROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
Header.Version |= VARIANT_MASK_CSIR_PROF;
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
Header.Version |= VARIANT_MASK_INSTR_ENTRY;
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
Header.Version |= VARIANT_MASK_MEMPROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
Header.Version |= VARIANT_MASK_TEMPORAL_PROF;
const uint64_t BackPatchStartOffset =
writeHeader(Header, WritePrevVersion, OS);
// Reserve space to write profile summary data.
uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
// Remember the summary offset.
uint64_t SummaryOffset = OS.tell();
for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
OS.write(0);
uint64_t CSSummaryOffset = 0;
uint64_t CSSummarySize = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
CSSummaryOffset = OS.tell();
CSSummarySize = SummarySize / sizeof(uint64_t);
for (unsigned I = 0; I < CSSummarySize; I++)
OS.write(0);
}
// Write the hash table.
uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
// Write the MemProf profile data if we have it.
uint64_t MemProfSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
MemProfSectionStart = OS.tell();
if (auto E = writeMemProf(OS, MemProfData, MemProfVersionRequested,
MemProfFullSchema))
return E;
}
// BinaryIdSection has two parts:
// 1. uint64_t BinaryIdsSectionSize
// 2. list of binary ids that consist of:
// a. uint64_t BinaryIdLength
// b. uint8_t BinaryIdData
// c. uint8_t Padding (if necessary)
uint64_t BinaryIdSectionStart = OS.tell();
// Calculate size of binary section.
uint64_t BinaryIdsSectionSize = 0;
// Remove duplicate binary ids.
llvm::sort(BinaryIds);
BinaryIds.erase(llvm::unique(BinaryIds), BinaryIds.end());
for (const auto &BI : BinaryIds) {
// Increment by binary id length data type size.
BinaryIdsSectionSize += sizeof(uint64_t);
// Increment by binary id data length, aligned to 8 bytes.
BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
}
// Write binary ids section size.
OS.write(BinaryIdsSectionSize);
for (const auto &BI : BinaryIds) {
uint64_t BILen = BI.size();
// Write binary id length.
OS.write(BILen);
// Write binary id data.
for (unsigned K = 0; K < BILen; K++)
OS.writeByte(BI[K]);
// Write padding if necessary.
uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
for (unsigned K = 0; K < PaddingSize; K++)
OS.writeByte(0);
}
uint64_t VTableNamesSectionStart = OS.tell();
if (!WritePrevVersion)
if (Error E = writeVTableNames(OS))
return E;
uint64_t TemporalProfTracesSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile)) {
TemporalProfTracesSectionStart = OS.tell();
OS.write(TemporalProfTraces.size());
OS.write(TemporalProfTraceStreamSize);
for (auto &Trace : TemporalProfTraces) {
OS.write(Trace.Weight);
OS.write(Trace.FunctionNameRefs.size());
for (auto &NameRef : Trace.FunctionNameRefs)
OS.write(NameRef);
}
}
// Allocate space for data to be serialized out.
std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
IndexedInstrProf::allocSummary(SummarySize);
// Compute the Summary and copy the data to the data
// structure to be serialized out (to disk or buffer).
std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
setSummary(TheSummary.get(), *PS);
InfoObj->SummaryBuilder = nullptr;
// For Context Sensitive summary.
std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
setSummary(TheCSSummary.get(), *CSPS);
}
InfoObj->CSSummaryBuilder = nullptr;
SmallVector<uint64_t, 8> HeaderOffsets = {HashTableStart, MemProfSectionStart,
BinaryIdSectionStart,
TemporalProfTracesSectionStart};
if (!WritePrevVersion)
HeaderOffsets.push_back(VTableNamesSectionStart);
PatchItem PatchItems[] = {
// Patch the Header fields
{BackPatchStartOffset, HeaderOffsets},
// Patch the summary data.
{SummaryOffset,
ArrayRef<uint64_t>(reinterpret_cast<uint64_t *>(TheSummary.get()),
SummarySize / sizeof(uint64_t))},
{CSSummaryOffset,
ArrayRef<uint64_t>(reinterpret_cast<uint64_t *>(TheCSSummary.get()),
CSSummarySize)}};
OS.patch(PatchItems);
for (const auto &I : FunctionData)
for (const auto &F : I.getValue())
if (Error E = validateRecord(F.second))
return E;
return Error::success();
}
Error InstrProfWriter::write(raw_fd_ostream &OS) {
// Write the hash table.
ProfOStream POS(OS);
return writeImpl(POS);
}
Error InstrProfWriter::write(raw_string_ostream &OS) {
ProfOStream POS(OS);
return writeImpl(POS);
}
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
std::string Data;
raw_string_ostream OS(Data);
// Write the hash table.
if (Error E = write(OS))
return nullptr;
// Return this in an aligned memory buffer.
return MemoryBuffer::getMemBufferCopy(Data);
}
static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};
Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget)
continue;
uint32_t NS = Func.getNumValueSites(VK);
for (uint32_t S = 0; S < NS; S++) {
DenseSet<uint64_t> SeenValues;
for (const auto &V : Func.getValueArrayForSite(VK, S))
if (!SeenValues.insert(V.Value).second)
return make_error<InstrProfError>(instrprof_error::invalid_prof);
}
}
return Error::success();
}
void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
const InstrProfRecord &Func,
InstrProfSymtab &Symtab,
raw_fd_ostream &OS) {
OS << Name << "\n";
OS << "# Func Hash:\n" << Hash << "\n";
OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
OS << "# Counter Values:\n";
for (uint64_t Count : Func.Counts)
OS << Count << "\n";
if (Func.BitmapBytes.size() > 0) {
OS << "# Num Bitmap Bytes:\n$" << Func.BitmapBytes.size() << "\n";
OS << "# Bitmap Byte Values:\n";
for (uint8_t Byte : Func.BitmapBytes) {
OS << "0x";
OS.write_hex(Byte);
OS << "\n";
}
OS << "\n";
}
uint32_t NumValueKinds = Func.getNumValueKinds();
if (!NumValueKinds) {
OS << "\n";
return;
}
OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
OS << "# NumValueSites:\n" << NS << "\n";
for (uint32_t S = 0; S < NS; S++) {
auto VD = Func.getValueArrayForSite(VK, S);
OS << VD.size() << "\n";
for (const auto &V : VD) {
if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget)
OS << Symtab.getFuncOrVarNameIfDefined(V.Value) << ":" << V.Count
<< "\n";
else
OS << V.Value << ":" << V.Count << "\n";
}
}
}
OS << "\n";
}
Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
// Check CS first since it implies an IR level profile.
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
OS << "# CSIR level Instrumentation Flag\n:csir\n";
else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
OS << "# IR level Instrumentation Flag\n:ir\n";
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
OS << "# Always instrument the function entry block\n:entry_first\n";
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
OS << "# Instrument block coverage\n:single_byte_coverage\n";
InstrProfSymtab Symtab;
using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
using RecordType = std::pair<StringRef, FuncPair>;
SmallVector<RecordType, 4> OrderedFuncData;
for (const auto &I : FunctionData) {
if (shouldEncodeData(I.getValue())) {
if (Error E = Symtab.addFuncName(I.getKey()))
return E;
for (const auto &Func : I.getValue())
OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
}
}
for (const auto &VTableName : VTableNames)
if (Error E = Symtab.addVTableName(VTableName.getKey()))
return E;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
writeTextTemporalProfTraceData(OS, Symtab);
llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
return std::tie(A.first, A.second.first) <
std::tie(B.first, B.second.first);
});
for (const auto &record : OrderedFuncData) {
const StringRef &Name = record.first;
const FuncPair &Func = record.second;
writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
}
for (const auto &record : OrderedFuncData) {
const FuncPair &Func = record.second;
if (Error E = validateRecord(Func.second))
return E;
}
return Error::success();
}
void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS,
InstrProfSymtab &Symtab) {
OS << ":temporal_prof_traces\n";
OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n";
OS << "# Temporal Profile Trace Stream Size:\n"
<< TemporalProfTraceStreamSize << "\n";
for (auto &Trace : TemporalProfTraces) {
OS << "# Weight:\n" << Trace.Weight << "\n";
for (auto &NameRef : Trace.FunctionNameRefs)
OS << Symtab.getFuncOrVarName(NameRef) << ",";
OS << "\n";
}
OS << "\n";
}
|