1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2012-2023, Yann Collet
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at :
* - xxHash homepage: http://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*/
// xxhash64 is based on commit d2df04efcbef7d7f6886d345861e5dfda4edacc1. Removed
// everything but a simple interface for computing xxh64.
// xxh3_64bits is based on commit d5891596637d21366b9b1dcf2c0007a3edb26a9e (July
// 2023).
// xxh3_128bits is based on commit b0adcc54188c3130b1793e7b19c62eb1e669f7df
// (June 2024).
#include "llvm/Support/xxhash.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include <stdlib.h>
#if !defined(LLVM_XXH_USE_NEON)
#if (defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) && \
!defined(__ARM_BIG_ENDIAN)
#define LLVM_XXH_USE_NEON 1
#else
#define LLVM_XXH_USE_NEON 0
#endif
#endif
#if LLVM_XXH_USE_NEON
#include <arm_neon.h>
#endif
using namespace llvm;
using namespace support;
static uint64_t rotl64(uint64_t X, size_t R) {
return (X << R) | (X >> (64 - R));
}
constexpr uint32_t PRIME32_1 = 0x9E3779B1;
constexpr uint32_t PRIME32_2 = 0x85EBCA77;
constexpr uint32_t PRIME32_3 = 0xC2B2AE3D;
static const uint64_t PRIME64_1 = 11400714785074694791ULL;
static const uint64_t PRIME64_2 = 14029467366897019727ULL;
static const uint64_t PRIME64_3 = 1609587929392839161ULL;
static const uint64_t PRIME64_4 = 9650029242287828579ULL;
static const uint64_t PRIME64_5 = 2870177450012600261ULL;
static uint64_t round(uint64_t Acc, uint64_t Input) {
Acc += Input * PRIME64_2;
Acc = rotl64(Acc, 31);
Acc *= PRIME64_1;
return Acc;
}
static uint64_t mergeRound(uint64_t Acc, uint64_t Val) {
Val = round(0, Val);
Acc ^= Val;
Acc = Acc * PRIME64_1 + PRIME64_4;
return Acc;
}
static uint64_t XXH64_avalanche(uint64_t hash) {
hash ^= hash >> 33;
hash *= PRIME64_2;
hash ^= hash >> 29;
hash *= PRIME64_3;
hash ^= hash >> 32;
return hash;
}
uint64_t llvm::xxHash64(StringRef Data) {
size_t Len = Data.size();
uint64_t Seed = 0;
const unsigned char *P = Data.bytes_begin();
const unsigned char *const BEnd = Data.bytes_end();
uint64_t H64;
if (Len >= 32) {
const unsigned char *const Limit = BEnd - 32;
uint64_t V1 = Seed + PRIME64_1 + PRIME64_2;
uint64_t V2 = Seed + PRIME64_2;
uint64_t V3 = Seed + 0;
uint64_t V4 = Seed - PRIME64_1;
do {
V1 = round(V1, endian::read64le(P));
P += 8;
V2 = round(V2, endian::read64le(P));
P += 8;
V3 = round(V3, endian::read64le(P));
P += 8;
V4 = round(V4, endian::read64le(P));
P += 8;
} while (P <= Limit);
H64 = rotl64(V1, 1) + rotl64(V2, 7) + rotl64(V3, 12) + rotl64(V4, 18);
H64 = mergeRound(H64, V1);
H64 = mergeRound(H64, V2);
H64 = mergeRound(H64, V3);
H64 = mergeRound(H64, V4);
} else {
H64 = Seed + PRIME64_5;
}
H64 += (uint64_t)Len;
while (reinterpret_cast<uintptr_t>(P) + 8 <=
reinterpret_cast<uintptr_t>(BEnd)) {
uint64_t const K1 = round(0, endian::read64le(P));
H64 ^= K1;
H64 = rotl64(H64, 27) * PRIME64_1 + PRIME64_4;
P += 8;
}
if (reinterpret_cast<uintptr_t>(P) + 4 <= reinterpret_cast<uintptr_t>(BEnd)) {
H64 ^= (uint64_t)(endian::read32le(P)) * PRIME64_1;
H64 = rotl64(H64, 23) * PRIME64_2 + PRIME64_3;
P += 4;
}
while (P < BEnd) {
H64 ^= (*P) * PRIME64_5;
H64 = rotl64(H64, 11) * PRIME64_1;
P++;
}
return XXH64_avalanche(H64);
}
uint64_t llvm::xxHash64(ArrayRef<uint8_t> Data) {
return xxHash64({(const char *)Data.data(), Data.size()});
}
constexpr size_t XXH3_SECRETSIZE_MIN = 136;
constexpr size_t XXH_SECRET_DEFAULT_SIZE = 192;
/* Pseudorandom data taken directly from FARSH */
// clang-format off
constexpr uint8_t kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
// clang-format on
constexpr uint64_t PRIME_MX1 = 0x165667919E3779F9;
constexpr uint64_t PRIME_MX2 = 0x9FB21C651E98DF25;
// Calculates a 64-bit to 128-bit multiply, then XOR folds it.
static uint64_t XXH3_mul128_fold64(uint64_t lhs, uint64_t rhs) {
#if defined(__SIZEOF_INT128__) || \
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
return uint64_t(product) ^ uint64_t(product >> 64);
#else
/* First calculate all of the cross products. */
const uint64_t lo_lo = (lhs & 0xFFFFFFFF) * (rhs & 0xFFFFFFFF);
const uint64_t hi_lo = (lhs >> 32) * (rhs & 0xFFFFFFFF);
const uint64_t lo_hi = (lhs & 0xFFFFFFFF) * (rhs >> 32);
const uint64_t hi_hi = (lhs >> 32) * (rhs >> 32);
/* Now add the products together. These will never overflow. */
const uint64_t cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
const uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
const uint64_t lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
return upper ^ lower;
#endif
}
constexpr size_t XXH_STRIPE_LEN = 64;
constexpr size_t XXH_SECRET_CONSUME_RATE = 8;
constexpr size_t XXH_ACC_NB = XXH_STRIPE_LEN / sizeof(uint64_t);
static uint64_t XXH3_avalanche(uint64_t hash) {
hash ^= hash >> 37;
hash *= PRIME_MX1;
hash ^= hash >> 32;
return hash;
}
static uint64_t XXH3_len_1to3_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
const uint8_t c1 = input[0];
const uint8_t c2 = input[len >> 1];
const uint8_t c3 = input[len - 1];
uint32_t combined = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
((uint32_t)c3 << 0) | ((uint32_t)len << 8);
uint64_t bitflip =
(uint64_t)(endian::read32le(secret) ^ endian::read32le(secret + 4)) +
seed;
return XXH64_avalanche(uint64_t(combined) ^ bitflip);
}
static uint64_t XXH3_len_4to8_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
seed ^= (uint64_t)byteswap(uint32_t(seed)) << 32;
const uint32_t input1 = endian::read32le(input);
const uint32_t input2 = endian::read32le(input + len - 4);
uint64_t acc =
(endian::read64le(secret + 8) ^ endian::read64le(secret + 16)) - seed;
const uint64_t input64 = (uint64_t)input2 | ((uint64_t)input1 << 32);
acc ^= input64;
// XXH3_rrmxmx(acc, len)
acc ^= rotl64(acc, 49) ^ rotl64(acc, 24);
acc *= PRIME_MX2;
acc ^= (acc >> 35) + (uint64_t)len;
acc *= PRIME_MX2;
return acc ^ (acc >> 28);
}
static uint64_t XXH3_len_9to16_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t const seed) {
uint64_t input_lo =
(endian::read64le(secret + 24) ^ endian::read64le(secret + 32)) + seed;
uint64_t input_hi =
(endian::read64le(secret + 40) ^ endian::read64le(secret + 48)) - seed;
input_lo ^= endian::read64le(input);
input_hi ^= endian::read64le(input + len - 8);
uint64_t acc = uint64_t(len) + byteswap(input_lo) + input_hi +
XXH3_mul128_fold64(input_lo, input_hi);
return XXH3_avalanche(acc);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_0to16_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t const seed) {
if (LLVM_LIKELY(len > 8))
return XXH3_len_9to16_64b(input, len, secret, seed);
if (LLVM_LIKELY(len >= 4))
return XXH3_len_4to8_64b(input, len, secret, seed);
if (len != 0)
return XXH3_len_1to3_64b(input, len, secret, seed);
return XXH64_avalanche(seed ^ endian::read64le(secret + 56) ^
endian::read64le(secret + 64));
}
static uint64_t XXH3_mix16B(const uint8_t *input, uint8_t const *secret,
uint64_t seed) {
uint64_t lhs = seed;
uint64_t rhs = 0U - seed;
lhs += endian::read64le(secret);
rhs += endian::read64le(secret + 8);
lhs ^= endian::read64le(input);
rhs ^= endian::read64le(input + 8);
return XXH3_mul128_fold64(lhs, rhs);
}
/* For mid range keys, XXH3 uses a Mum-hash variant. */
LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t XXH3_len_17to128_64b(const uint8_t *input, size_t len,
const uint8_t *secret,
uint64_t const seed) {
uint64_t acc = len * PRIME64_1, acc_end;
acc += XXH3_mix16B(input + 0, secret + 0, seed);
acc_end = XXH3_mix16B(input + len - 16, secret + 16, seed);
if (len > 32) {
acc += XXH3_mix16B(input + 16, secret + 32, seed);
acc_end += XXH3_mix16B(input + len - 32, secret + 48, seed);
if (len > 64) {
acc += XXH3_mix16B(input + 32, secret + 64, seed);
acc_end += XXH3_mix16B(input + len - 48, secret + 80, seed);
if (len > 96) {
acc += XXH3_mix16B(input + 48, secret + 96, seed);
acc_end += XXH3_mix16B(input + len - 64, secret + 112, seed);
}
}
}
return XXH3_avalanche(acc + acc_end);
}
constexpr size_t XXH3_MIDSIZE_MAX = 240;
constexpr size_t XXH3_MIDSIZE_STARTOFFSET = 3;
constexpr size_t XXH3_MIDSIZE_LASTOFFSET = 17;
LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_len_129to240_64b(const uint8_t *input, size_t len,
const uint8_t *secret, uint64_t seed) {
uint64_t acc = (uint64_t)len * PRIME64_1;
const unsigned nbRounds = len / 16;
for (unsigned i = 0; i < 8; ++i)
acc += XXH3_mix16B(input + 16 * i, secret + 16 * i, seed);
acc = XXH3_avalanche(acc);
for (unsigned i = 8; i < nbRounds; ++i) {
acc += XXH3_mix16B(input + 16 * i,
secret + 16 * (i - 8) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
/* last bytes */
acc +=
XXH3_mix16B(input + len - 16,
secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
return XXH3_avalanche(acc);
}
#if LLVM_XXH_USE_NEON
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
// NEON implementation based on commit a57f6cce2698049863af8c25787084ae0489d849
// (July 2024), with the following removed:
// - workaround for suboptimal codegen on older GCC
// - compiler barriers against instruction reordering
// - WebAssembly SIMD support
// - configurable split between NEON and scalar lanes (benchmarking shows no
// penalty when fully doing SIMD on the Apple M1)
#if defined(__GNUC__) || defined(__clang__)
#define XXH_ALIASING __attribute__((__may_alias__))
#else
#define XXH_ALIASING /* nothing */
#endif
typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64x2_t XXH_vld1q_u64(void const *ptr) {
return vreinterpretq_u64_u8(vld1q_u8((uint8_t const *)ptr));
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_512_neon(uint64_t *acc, const uint8_t *input,
const uint8_t *secret) {
xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc;
#ifdef __clang__
#pragma clang loop unroll(full)
#endif
for (size_t i = 0; i < XXH_ACC_NB / 2; i += 2) {
/* data_vec = input[i]; */
uint64x2_t data_vec_1 = XXH_vld1q_u64(input + (i * 16));
uint64x2_t data_vec_2 = XXH_vld1q_u64(input + ((i + 1) * 16));
/* key_vec = secret[i]; */
uint64x2_t key_vec_1 = XXH_vld1q_u64(secret + (i * 16));
uint64x2_t key_vec_2 = XXH_vld1q_u64(secret + ((i + 1) * 16));
/* data_swap = swap(data_vec) */
uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
/* data_key = data_vec ^ key_vec; */
uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
/*
* If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
* de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
* get one vector with the low 32 bits of each lane, and one vector
* with the high 32 bits of each lane.
*
* The intrinsic returns a double vector because the original ARMv7-a
* instruction modified both arguments in place. AArch64 and SIMD128 emit
* two instructions from this intrinsic.
*
* [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
* [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
*/
uint32x4x2_t unzipped = vuzpq_u32(vreinterpretq_u32_u64(data_key_1),
vreinterpretq_u32_u64(data_key_2));
/* data_key_lo = data_key & 0xFFFFFFFF */
uint32x4_t data_key_lo = unzipped.val[0];
/* data_key_hi = data_key >> 32 */
uint32x4_t data_key_hi = unzipped.val[1];
/*
* Then, we can split the vectors horizontally and multiply which, as for
* most widening intrinsics, have a variant that works on both high half
* vectors for free on AArch64. A similar instruction is available on
* SIMD128.
*
* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
*/
uint64x2_t sum_1 = vmlal_u32(data_swap_1, vget_low_u32(data_key_lo),
vget_low_u32(data_key_hi));
uint64x2_t sum_2 = vmlal_u32(data_swap_2, vget_high_u32(data_key_lo),
vget_high_u32(data_key_hi));
/* xacc[i] = acc_vec + sum; */
xacc[i] = vaddq_u64(xacc[i], sum_1);
xacc[i + 1] = vaddq_u64(xacc[i + 1], sum_2);
}
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_scrambleAcc_neon(uint64_t *acc, const uint8_t *secret) {
xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc;
/* { prime32_1, prime32_1 } */
uint32x2_t const kPrimeLo = vdup_n_u32(PRIME32_1);
/* { 0, prime32_1, 0, prime32_1 } */
uint32x4_t const kPrimeHi =
vreinterpretq_u32_u64(vdupq_n_u64((uint64_t)PRIME32_1 << 32));
for (size_t i = 0; i < XXH_ACC_NB / 2; ++i) {
/* xacc[i] ^= (xacc[i] >> 47); */
uint64x2_t acc_vec = XXH_vld1q_u64(acc + (2 * i));
uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
/* xacc[i] ^= secret[i]; */
uint64x2_t key_vec = XXH_vld1q_u64(secret + (i * 16));
uint64x2_t data_key = veorq_u64(data_vec, key_vec);
/*
* xacc[i] *= XXH_PRIME32_1
*
* Expanded version with portable NEON intrinsics
*
* lo(x) * lo(y) + (hi(x) * lo(y) << 32)
*
* prod_hi = hi(data_key) * lo(prime) << 32
*
* Since we only need 32 bits of this multiply a trick can be used,
* reinterpreting the vector as a uint32x4_t and multiplying by
* { 0, prime, 0, prime } to cancel out the unwanted bits and avoid the
* shift.
*/
uint32x4_t prod_hi = vmulq_u32(vreinterpretq_u32_u64(data_key), kPrimeHi);
/* Extract low bits for vmlal_u32 */
uint32x2_t data_key_lo = vmovn_u64(data_key);
/* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
}
}
#else
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate_512_scalar(uint64_t *acc, const uint8_t *input,
const uint8_t *secret) {
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
uint64_t data_val = endian::read64le(input + 8 * i);
uint64_t data_key = data_val ^ endian::read64le(secret + 8 * i);
acc[i ^ 1] += data_val;
acc[i] += uint32_t(data_key) * (data_key >> 32);
}
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_scrambleAcc_scalar(uint64_t *acc, const uint8_t *secret) {
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
acc[i] ^= acc[i] >> 47;
acc[i] ^= endian::read64le(secret + 8 * i);
acc[i] *= PRIME32_1;
}
}
#endif
LLVM_ATTRIBUTE_ALWAYS_INLINE
static void XXH3_accumulate(uint64_t *acc, const uint8_t *input,
const uint8_t *secret, size_t nbStripes) {
for (size_t n = 0; n < nbStripes; ++n) {
XXH3_accumulate_512(acc, input + n * XXH_STRIPE_LEN,
secret + n * XXH_SECRET_CONSUME_RATE);
}
}
static uint64_t XXH3_mix2Accs(const uint64_t *acc, const uint8_t *secret) {
return XXH3_mul128_fold64(acc[0] ^ endian::read64le(secret),
acc[1] ^ endian::read64le(secret + 8));
}
static uint64_t XXH3_mergeAccs(const uint64_t *acc, const uint8_t *key,
uint64_t start) {
uint64_t result64 = start;
for (size_t i = 0; i < 4; ++i)
result64 += XXH3_mix2Accs(acc + 2 * i, key + 16 * i);
return XXH3_avalanche(result64);
}
LLVM_ATTRIBUTE_NOINLINE
static uint64_t XXH3_hashLong_64b(const uint8_t *input, size_t len,
const uint8_t *secret, size_t secretSize) {
const size_t nbStripesPerBlock =
(secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
const size_t nb_blocks = (len - 1) / block_len;
alignas(16) uint64_t acc[XXH_ACC_NB] = {
PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
};
for (size_t n = 0; n < nb_blocks; ++n) {
XXH3_accumulate(acc, input + n * block_len, secret, nbStripesPerBlock);
XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
}
/* last partial block */
const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes);
/* last stripe */
constexpr size_t XXH_SECRET_LASTACC_START = 7;
XXH3_accumulate_512(acc, input + len - XXH_STRIPE_LEN,
secret + secretSize - XXH_STRIPE_LEN -
XXH_SECRET_LASTACC_START);
/* converge into final hash */
constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
(uint64_t)len * PRIME64_1);
}
uint64_t llvm::xxh3_64bits(ArrayRef<uint8_t> data) {
auto *in = data.data();
size_t len = data.size();
if (len <= 16)
return XXH3_len_0to16_64b(in, len, kSecret, 0);
if (len <= 128)
return XXH3_len_17to128_64b(in, len, kSecret, 0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_64b(in, len, kSecret, 0);
return XXH3_hashLong_64b(in, len, kSecret, sizeof(kSecret));
}
/* ==========================================
* XXH3 128 bits (a.k.a XXH128)
* ==========================================
* XXH3's 128-bit variant has better mixing and strength than the 64-bit
* variant, even without counting the significantly larger output size.
*
* For example, extra steps are taken to avoid the seed-dependent collisions
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
*
* This strength naturally comes at the cost of some speed, especially on short
* lengths. Note that longer hashes are about as fast as the 64-bit version
* due to it using only a slight modification of the 64-bit loop.
*
* XXH128 is also more oriented towards 64-bit machines. It is still extremely
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
*/
/*!
* @internal
* @def XXH_rotl32(x,r)
* @brief 32-bit rotate left.
*
* @param x The 32-bit integer to be rotated.
* @param r The number of bits to rotate.
* @pre
* @p r > 0 && @p r < 32
* @note
* @p x and @p r may be evaluated multiple times.
* @return The rotated result.
*/
#if __has_builtin(__builtin_rotateleft32) && \
__has_builtin(__builtin_rotateleft64)
#define XXH_rotl32 __builtin_rotateleft32
#define XXH_rotl64 __builtin_rotateleft64
/* Note: although _rotl exists for minGW (GCC under windows), performance seems
* poor */
#elif defined(_MSC_VER)
#define XXH_rotl32(x, r) _rotl(x, r)
#define XXH_rotl64(x, r) _rotl64(x, r)
#else
#define XXH_rotl32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
#define XXH_rotl64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
#endif
#define XXH_mult32to64(x, y) ((uint64_t)(uint32_t)(x) * (uint64_t)(uint32_t)(y))
/*!
* @brief Calculates a 64->128-bit long multiply.
*
* Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
* version.
*
* @param lhs , rhs The 64-bit integers to be multiplied
* @return The 128-bit result represented in an @ref XXH128_hash_t.
*/
static XXH128_hash_t XXH_mult64to128(uint64_t lhs, uint64_t rhs) {
/*
* GCC/Clang __uint128_t method.
*
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
* This is usually the best way as it usually uses a native long 64-bit
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
*
* Usually.
*
* Despite being a 32-bit platform, Clang (and emscripten) define this type
* despite not having the arithmetic for it. This results in a laggy
* compiler builtin call which calculates a full 128-bit multiply.
* In that case it is best to use the portable one.
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
*/
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) && \
defined(__SIZEOF_INT128__) || \
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
XXH128_hash_t r128;
r128.low64 = (uint64_t)(product);
r128.high64 = (uint64_t)(product >> 64);
return r128;
/*
* MSVC for x64's _umul128 method.
*
* uint64_t _umul128(uint64_t Multiplier, uint64_t Multiplicand, uint64_t
* *HighProduct);
*
* This compiles to single operand MUL on x64.
*/
#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
#ifndef _MSC_VER
#pragma intrinsic(_umul128)
#endif
uint64_t product_high;
uint64_t const product_low = _umul128(lhs, rhs, &product_high);
XXH128_hash_t r128;
r128.low64 = product_low;
r128.high64 = product_high;
return r128;
/*
* MSVC for ARM64's __umulh method.
*
* This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
*/
#elif defined(_M_ARM64) || defined(_M_ARM64EC)
#ifndef _MSC_VER
#pragma intrinsic(__umulh)
#endif
XXH128_hash_t r128;
r128.low64 = lhs * rhs;
r128.high64 = __umulh(lhs, rhs);
return r128;
#else
/*
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
*
* This is a fast and simple grade school multiply, which is shown below
* with base 10 arithmetic instead of base 0x100000000.
*
* 9 3 // D2 lhs = 93
* x 7 5 // D2 rhs = 75
* ----------
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
* ---------
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
* ---------
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
*
* The reasons for adding the products like this are:
* 1. It avoids manual carry tracking. Just like how
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
* This avoids a lot of complexity.
*
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
* instruction available in ARM's Digital Signal Processing extension
* in 32-bit ARMv6 and later, which is shown below:
*
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
* {
* uint64_t product = (uint64_t)*RdLo * (uint64_t)*RdHi + Rn + Rm;
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
* *RdHi = (xxh_u32)(product >> 32);
* }
*
* This instruction was designed for efficient long multiplication, and
* allows this to be calculated in only 4 instructions at speeds
* comparable to some 64-bit ALUs.
*
* 3. It isn't terrible on other platforms. Usually this will be a couple
* of 32-bit ADD/ADCs.
*/
/* First calculate all of the cross products. */
uint64_t const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
uint64_t const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
uint64_t const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
uint64_t const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
/* Now add the products together. These will never overflow. */
uint64_t const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
uint64_t const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
uint64_t const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
XXH128_hash_t r128;
r128.low64 = lower;
r128.high64 = upper;
return r128;
#endif
}
/*! Seems to produce slightly better code on GCC for some reason. */
LLVM_ATTRIBUTE_ALWAYS_INLINE constexpr uint64_t XXH_xorshift64(uint64_t v64,
int shift) {
return v64 ^ (v64 >> shift);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_1to3_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
/* A doubled version of 1to3_64b with different constants. */
/*
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
*/
uint8_t const c1 = input[0];
uint8_t const c2 = input[len >> 1];
uint8_t const c3 = input[len - 1];
uint32_t const combinedl = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
((uint32_t)c3 << 0) | ((uint32_t)len << 8);
uint32_t const combinedh = XXH_rotl32(byteswap(combinedl), 13);
uint64_t const bitflipl =
(endian::read32le(secret) ^ endian::read32le(secret + 4)) + seed;
uint64_t const bitfliph =
(endian::read32le(secret + 8) ^ endian::read32le(secret + 12)) - seed;
uint64_t const keyed_lo = (uint64_t)combinedl ^ bitflipl;
uint64_t const keyed_hi = (uint64_t)combinedh ^ bitfliph;
XXH128_hash_t h128;
h128.low64 = XXH64_avalanche(keyed_lo);
h128.high64 = XXH64_avalanche(keyed_hi);
return h128;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_4to8_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
seed ^= (uint64_t)byteswap((uint32_t)seed) << 32;
uint32_t const input_lo = endian::read32le(input);
uint32_t const input_hi = endian::read32le(input + len - 4);
uint64_t const input_64 = input_lo + ((uint64_t)input_hi << 32);
uint64_t const bitflip =
(endian::read64le(secret + 16) ^ endian::read64le(secret + 24)) + seed;
uint64_t const keyed = input_64 ^ bitflip;
/* Shift len to the left to ensure it is even, this avoids even multiplies.
*/
XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2));
m128.high64 += (m128.low64 << 1);
m128.low64 ^= (m128.high64 >> 3);
m128.low64 = XXH_xorshift64(m128.low64, 35);
m128.low64 *= PRIME_MX2;
m128.low64 = XXH_xorshift64(m128.low64, 28);
m128.high64 = XXH3_avalanche(m128.high64);
return m128;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_9to16_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
uint64_t const bitflipl =
(endian::read64le(secret + 32) ^ endian::read64le(secret + 40)) - seed;
uint64_t const bitfliph =
(endian::read64le(secret + 48) ^ endian::read64le(secret + 56)) + seed;
uint64_t const input_lo = endian::read64le(input);
uint64_t input_hi = endian::read64le(input + len - 8);
XXH128_hash_t m128 =
XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1);
/*
* Put len in the middle of m128 to ensure that the length gets mixed to
* both the low and high bits in the 128x64 multiply below.
*/
m128.low64 += (uint64_t)(len - 1) << 54;
input_hi ^= bitfliph;
/*
* Add the high 32 bits of input_hi to the high 32 bits of m128, then
* add the long product of the low 32 bits of input_hi and PRIME32_2 to
* the high 64 bits of m128.
*
* The best approach to this operation is different on 32-bit and 64-bit.
*/
if (sizeof(void *) < sizeof(uint64_t)) { /* 32-bit */
/*
* 32-bit optimized version, which is more readable.
*
* On 32-bit, it removes an ADC and delays a dependency between the two
* halves of m128.high64, but it generates an extra mask on 64-bit.
*/
m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) +
XXH_mult32to64((uint32_t)input_hi, PRIME32_2);
} else {
/*
* 64-bit optimized (albeit more confusing) version.
*
* Uses some properties of addition and multiplication to remove the mask:
*
* Let:
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
* c = PRIME32_2
*
* a + (b * c)
* Inverse Property: x + y - x == y
* a + (b * (1 + c - 1))
* Distributive Property: x * (y + z) == (x * y) + (x * z)
* a + (b * 1) + (b * (c - 1))
* Identity Property: x * 1 == x
* a + b + (b * (c - 1))
*
* Substitute a, b, and c:
* input_hi.hi + input_hi.lo + ((uint64_t)input_hi.lo * (PRIME32_2
* - 1))
*
* Since input_hi.hi + input_hi.lo == input_hi, we get this:
* input_hi + ((uint64_t)input_hi.lo * (PRIME32_2 - 1))
*/
m128.high64 += input_hi + XXH_mult32to64((uint32_t)input_hi, PRIME32_2 - 1);
}
/* m128 ^= XXH_swap64(m128 >> 64); */
m128.low64 ^= byteswap(m128.high64);
/* 128x64 multiply: h128 = m128 * PRIME64_2; */
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
h128.high64 += m128.high64 * PRIME64_2;
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = XXH3_avalanche(h128.high64);
return h128;
}
/*
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
*/
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_0to16_128b(const uint8_t *input, size_t len, const uint8_t *secret,
uint64_t seed) {
if (len > 8)
return XXH3_len_9to16_128b(input, len, secret, seed);
if (len >= 4)
return XXH3_len_4to8_128b(input, len, secret, seed);
if (len)
return XXH3_len_1to3_128b(input, len, secret, seed);
XXH128_hash_t h128;
uint64_t const bitflipl =
endian::read64le(secret + 64) ^ endian::read64le(secret + 72);
uint64_t const bitfliph =
endian::read64le(secret + 80) ^ endian::read64le(secret + 88);
h128.low64 = XXH64_avalanche(seed ^ bitflipl);
h128.high64 = XXH64_avalanche(seed ^ bitfliph);
return h128;
}
/*
* A bit slower than XXH3_mix16B, but handles multiply by zero better.
*/
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc, const uint8_t *input_1, const uint8_t *input_2,
const uint8_t *secret, uint64_t seed) {
acc.low64 += XXH3_mix16B(input_1, secret + 0, seed);
acc.low64 ^= endian::read64le(input_2) + endian::read64le(input_2 + 8);
acc.high64 += XXH3_mix16B(input_2, secret + 16, seed);
acc.high64 ^= endian::read64le(input_1) + endian::read64le(input_1 + 8);
return acc;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
XXH3_len_17to128_128b(const uint8_t *input, size_t len, const uint8_t *secret,
size_t secretSize, uint64_t seed) {
(void)secretSize;
XXH128_hash_t acc;
acc.low64 = len * PRIME64_1;
acc.high64 = 0;
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc =
XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96, seed);
}
acc = XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed);
}
acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed);
}
acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed);
XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) +
((len - seed) * PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (uint64_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
LLVM_ATTRIBUTE_NOINLINE static XXH128_hash_t
XXH3_len_129to240_128b(const uint8_t *input, size_t len, const uint8_t *secret,
size_t secretSize, uint64_t seed) {
(void)secretSize;
XXH128_hash_t acc;
unsigned i;
acc.low64 = len * PRIME64_1;
acc.high64 = 0;
/*
* We set as `i` as offset + 32. We do this so that unchanged
* `len` can be used as upper bound. This reaches a sweet spot
* where both x86 and aarch64 get simple agen and good codegen
* for the loop.
*/
for (i = 32; i < 160; i += 32) {
acc = XXH128_mix32B(acc, input + i - 32, input + i - 16, secret + i - 32,
seed);
}
acc.low64 = XXH3_avalanche(acc.low64);
acc.high64 = XXH3_avalanche(acc.high64);
/*
* NB: `i <= len` will duplicate the last 32-bytes if
* len % 32 was zero. This is an unfortunate necessity to keep
* the hash result stable.
*/
for (i = 160; i <= len; i += 32) {
acc = XXH128_mix32B(acc, input + i - 32, input + i - 16,
secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, seed);
}
/* last bytes */
acc =
XXH128_mix32B(acc, input + len - 16, input + len - 32,
secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
(uint64_t)0 - seed);
XXH128_hash_t h128;
h128.low64 = acc.low64 + acc.high64;
h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) +
((len - seed) * PRIME64_2);
h128.low64 = XXH3_avalanche(h128.low64);
h128.high64 = (uint64_t)0 - XXH3_avalanche(h128.high64);
return h128;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE XXH128_hash_t
XXH3_hashLong_128b(const uint8_t *input, size_t len, const uint8_t *secret,
size_t secretSize) {
const size_t nbStripesPerBlock =
(secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
const size_t nb_blocks = (len - 1) / block_len;
alignas(16) uint64_t acc[XXH_ACC_NB] = {
PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
};
for (size_t n = 0; n < nb_blocks; ++n) {
XXH3_accumulate(acc, input + n * block_len, secret, nbStripesPerBlock);
XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
}
/* last partial block */
const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes);
/* last stripe */
constexpr size_t XXH_SECRET_LASTACC_START = 7;
XXH3_accumulate_512(acc, input + len - XXH_STRIPE_LEN,
secret + secretSize - XXH_STRIPE_LEN -
XXH_SECRET_LASTACC_START);
/* converge into final hash */
static_assert(sizeof(acc) == 64);
XXH128_hash_t h128;
constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
(uint64_t)len * PRIME64_1);
h128.high64 = XXH3_mergeAccs(
acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
~((uint64_t)len * PRIME64_2));
return h128;
}
llvm::XXH128_hash_t llvm::xxh3_128bits(ArrayRef<uint8_t> data) {
size_t len = data.size();
const uint8_t *input = data.data();
/*
* If an action is to be taken if `secret` conditions are not respected,
* it should be done here.
* For now, it's a contract pre-condition.
* Adding a check and a branch here would cost performance at every hash.
*/
if (len <= 16)
return XXH3_len_0to16_128b(input, len, kSecret, /*seed64=*/0);
if (len <= 128)
return XXH3_len_17to128_128b(input, len, kSecret, sizeof(kSecret),
/*seed64=*/0);
if (len <= XXH3_MIDSIZE_MAX)
return XXH3_len_129to240_128b(input, len, kSecret, sizeof(kSecret),
/*seed64=*/0);
return XXH3_hashLong_128b(input, len, kSecret, sizeof(kSecret));
}
|