1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AArch64Subtarget.h"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64CallLowering.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "GISel/AArch64RegisterBankInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/SipHash.h"
#include "llvm/TargetParser/AArch64TargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "AArch64GenSubtargetInfo.inc"
static cl::opt<bool>
EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
"converter pass"), cl::init(true), cl::Hidden);
// If OS supports TBI, use this flag to enable it.
static cl::opt<bool>
UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
"an address is ignored"), cl::init(false), cl::Hidden);
static cl::opt<bool> MachOUseNonLazyBind(
"aarch64-macho-enable-nonlazybind",
cl::desc("Call nonlazybind functions via direct GOT load for Mach-O"),
cl::Hidden);
static cl::opt<bool> UseAA("aarch64-use-aa", cl::init(true),
cl::desc("Enable the use of AA during codegen."));
static cl::opt<unsigned> OverrideVectorInsertExtractBaseCost(
"aarch64-insert-extract-base-cost",
cl::desc("Base cost of vector insert/extract element"), cl::Hidden);
// Reserve a list of X# registers, so they are unavailable for register
// allocator, but can still be used as ABI requests, such as passing arguments
// to function call.
static cl::list<std::string>
ReservedRegsForRA("reserve-regs-for-regalloc", cl::desc("Reserve physical "
"registers, so they can't be used by register allocator. "
"Should only be used for testing register allocator."),
cl::CommaSeparated, cl::Hidden);
static cl::opt<AArch64PAuth::AuthCheckMethod>
AuthenticatedLRCheckMethod("aarch64-authenticated-lr-check-method",
cl::Hidden,
cl::desc("Override the variant of check applied "
"to authenticated LR during tail call"),
cl::values(AUTH_CHECK_METHOD_CL_VALUES_LR));
static cl::opt<unsigned> AArch64MinimumJumpTableEntries(
"aarch64-min-jump-table-entries", cl::init(13), cl::Hidden,
cl::desc("Set minimum number of entries to use a jump table on AArch64"));
unsigned AArch64Subtarget::getVectorInsertExtractBaseCost() const {
if (OverrideVectorInsertExtractBaseCost.getNumOccurrences() > 0)
return OverrideVectorInsertExtractBaseCost;
return VectorInsertExtractBaseCost;
}
AArch64Subtarget &AArch64Subtarget::initializeSubtargetDependencies(
StringRef FS, StringRef CPUString, StringRef TuneCPUString,
bool HasMinSize) {
// Determine default and user-specified characteristics
if (CPUString.empty())
CPUString = "generic";
if (TuneCPUString.empty())
TuneCPUString = CPUString;
ParseSubtargetFeatures(CPUString, TuneCPUString, FS);
initializeProperties(HasMinSize);
return *this;
}
void AArch64Subtarget::initializeProperties(bool HasMinSize) {
// Initialize CPU specific properties. We should add a tablegen feature for
// this in the future so we can specify it together with the subtarget
// features.
switch (ARMProcFamily) {
case Others:
break;
case Carmel:
CacheLineSize = 64;
break;
case CortexA35:
case CortexA53:
case CortexA55:
case CortexR82:
case CortexR82AE:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA57:
MaxInterleaveFactor = 4;
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA65:
PrefFunctionAlignment = Align(8);
break;
case CortexA72:
case CortexA73:
case CortexA75:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA76:
case CortexA77:
case CortexA78:
case CortexA78AE:
case CortexA78C:
case CortexX1:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
break;
case CortexA510:
case CortexA520:
PrefFunctionAlignment = Align(16);
VScaleForTuning = 1;
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA710:
case CortexA715:
case CortexA720:
case CortexA725:
case CortexX2:
case CortexX3:
case CortexX4:
case CortexX925:
PrefFunctionAlignment = Align(16);
VScaleForTuning = 1;
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
break;
case A64FX:
CacheLineSize = 256;
PrefFunctionAlignment = Align(8);
PrefLoopAlignment = Align(4);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
VScaleForTuning = 4;
break;
case AppleA7:
case AppleA10:
case AppleA11:
case AppleA12:
case AppleA13:
case AppleA14:
case AppleA15:
case AppleA16:
case AppleA17:
case AppleM4:
CacheLineSize = 64;
PrefetchDistance = 280;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 3;
switch (ARMProcFamily) {
case AppleA14:
case AppleA15:
case AppleA16:
case AppleA17:
case AppleM4:
MaxInterleaveFactor = 4;
break;
default:
break;
}
break;
case ExynosM3:
MaxInterleaveFactor = 4;
MaxJumpTableSize = 20;
PrefFunctionAlignment = Align(32);
PrefLoopAlignment = Align(16);
break;
case Falkor:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
CacheLineSize = 128;
PrefetchDistance = 820;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 8;
break;
case Kryo:
MaxInterleaveFactor = 4;
VectorInsertExtractBaseCost = 2;
CacheLineSize = 128;
PrefetchDistance = 740;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 11;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case NeoverseE1:
PrefFunctionAlignment = Align(8);
break;
case NeoverseN1:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
break;
case NeoverseN2:
case NeoverseN3:
case NeoverseV2:
case NeoverseV3:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
VScaleForTuning = 1;
break;
case NeoverseV1:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
VScaleForTuning = 2;
DefaultSVETFOpts = TailFoldingOpts::Simple;
break;
case Neoverse512TVB:
PrefFunctionAlignment = Align(16);
VScaleForTuning = 1;
MaxInterleaveFactor = 4;
break;
case Saphira:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX2T99:
CacheLineSize = 64;
PrefFunctionAlignment = Align(8);
PrefLoopAlignment = Align(4);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX:
case ThunderXT88:
case ThunderXT81:
case ThunderXT83:
CacheLineSize = 128;
PrefFunctionAlignment = Align(8);
PrefLoopAlignment = Align(4);
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case TSV110:
CacheLineSize = 64;
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(4);
break;
case ThunderX3T110:
CacheLineSize = 64;
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(4);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case Ampere1:
case Ampere1A:
case Ampere1B:
CacheLineSize = 64;
PrefFunctionAlignment = Align(64);
PrefLoopAlignment = Align(64);
MaxInterleaveFactor = 4;
break;
case Oryon:
CacheLineSize = 64;
PrefFunctionAlignment = Align(16);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
break;
}
if (AArch64MinimumJumpTableEntries.getNumOccurrences() > 0 || !HasMinSize)
MinimumJumpTableEntries = AArch64MinimumJumpTableEntries;
}
AArch64Subtarget::AArch64Subtarget(const Triple &TT, StringRef CPU,
StringRef TuneCPU, StringRef FS,
const TargetMachine &TM, bool LittleEndian,
unsigned MinSVEVectorSizeInBitsOverride,
unsigned MaxSVEVectorSizeInBitsOverride,
bool IsStreaming, bool IsStreamingCompatible,
bool HasMinSize)
: AArch64GenSubtargetInfo(TT, CPU, TuneCPU, FS),
ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
ReserveXRegisterForRA(AArch64::GPR64commonRegClass.getNumRegs()),
CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
IsLittle(LittleEndian), IsStreaming(IsStreaming),
IsStreamingCompatible(IsStreamingCompatible),
MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride),
MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT),
InstrInfo(initializeSubtargetDependencies(FS, CPU, TuneCPU, HasMinSize)),
TLInfo(TM, *this) {
if (AArch64::isX18ReservedByDefault(TT))
ReserveXRegister.set(18);
CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
Legalizer.reset(new AArch64LegalizerInfo(*this));
auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());
// FIXME: At this point, we can't rely on Subtarget having RBI.
// It's awkward to mix passing RBI and the Subtarget; should we pass
// TII/TRI as well?
InstSelector.reset(createAArch64InstructionSelector(
*static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));
RegBankInfo.reset(RBI);
auto TRI = getRegisterInfo();
StringSet<> ReservedRegNames;
ReservedRegNames.insert(ReservedRegsForRA.begin(), ReservedRegsForRA.end());
for (unsigned i = 0; i < 29; ++i) {
if (ReservedRegNames.count(TRI->getName(AArch64::X0 + i)))
ReserveXRegisterForRA.set(i);
}
// X30 is named LR, so we can't use TRI->getName to check X30.
if (ReservedRegNames.count("X30") || ReservedRegNames.count("LR"))
ReserveXRegisterForRA.set(30);
// X29 is named FP, so we can't use TRI->getName to check X29.
if (ReservedRegNames.count("X29") || ReservedRegNames.count("FP"))
ReserveXRegisterForRA.set(29);
AddressCheckPSV.reset(new AddressCheckPseudoSourceValue(TM));
}
const CallLowering *AArch64Subtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
return InlineAsmLoweringInfo.get();
}
InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
return InstSelector.get();
}
const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
/// Find the target operand flags that describe how a global value should be
/// referenced for the current subtarget.
unsigned
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM) const {
// MachO large model always goes via a GOT, simply to get a single 8-byte
// absolute relocation on all global addresses.
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
return AArch64II::MO_GOT;
// All globals dynamically protected by MTE must have their address tags
// synthesized. This is done by having the loader stash the tag in the GOT
// entry. Force all tagged globals (even ones with internal linkage) through
// the GOT.
if (GV->isTagged())
return AArch64II::MO_GOT;
if (!TM.shouldAssumeDSOLocal(GV)) {
if (GV->hasDLLImportStorageClass()) {
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
}
if (getTargetTriple().isOSWindows())
return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
return AArch64II::MO_GOT;
}
// The small code model's direct accesses use ADRP, which cannot
// necessarily produce the value 0 (if the code is above 4GB).
// Same for the tiny code model, where we have a pc relative LDR.
if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
GV->hasExternalWeakLinkage())
return AArch64II::MO_GOT;
// References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
// that their nominal addresses are tagged and outside of the code model. In
// AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
// tag if necessary based on MO_TAGGED.
if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
return AArch64II::MO_NC | AArch64II::MO_TAGGED;
return AArch64II::MO_NO_FLAG;
}
unsigned AArch64Subtarget::classifyGlobalFunctionReference(
const GlobalValue *GV, const TargetMachine &TM) const {
// MachO large model always goes via a GOT, because we don't have the
// relocations available to do anything else..
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
!GV->hasInternalLinkage())
return AArch64II::MO_GOT;
// NonLazyBind goes via GOT unless we know it's available locally.
auto *F = dyn_cast<Function>(GV);
if ((!isTargetMachO() || MachOUseNonLazyBind) && F &&
F->hasFnAttribute(Attribute::NonLazyBind) && !TM.shouldAssumeDSOLocal(GV))
return AArch64II::MO_GOT;
if (getTargetTriple().isOSWindows()) {
if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy()) {
if (GV->hasDLLImportStorageClass()) {
// On Arm64EC, if we're calling a symbol from the import table
// directly, use MO_ARM64EC_CALLMANGLE.
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT |
AArch64II::MO_ARM64EC_CALLMANGLE;
}
if (GV->hasExternalLinkage()) {
// If we're calling a symbol directly, use the mangled form in the
// call instruction.
return AArch64II::MO_ARM64EC_CALLMANGLE;
}
}
// Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
return ClassifyGlobalReference(GV, TM);
}
return AArch64II::MO_NO_FLAG;
}
void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// LNT run (at least on Cyclone) showed reasonably significant gains for
// bi-directional scheduling. 253.perlbmk.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling or Disabling the latency heuristic is a close call: It seems to
// help nearly no benchmark on out-of-order architectures, on the other hand
// it regresses register pressure on a few benchmarking.
Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
}
void AArch64Subtarget::adjustSchedDependency(
SUnit *Def, int DefOpIdx, SUnit *Use, int UseOpIdx, SDep &Dep,
const TargetSchedModel *SchedModel) const {
if (!SchedModel || Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
!Def->isInstr() || !Use->isInstr() ||
(Def->getInstr()->getOpcode() != TargetOpcode::BUNDLE &&
Use->getInstr()->getOpcode() != TargetOpcode::BUNDLE))
return;
// If the Def is a BUNDLE, find the last instruction in the bundle that defs
// the register.
const MachineInstr *DefMI = Def->getInstr();
if (DefMI->getOpcode() == TargetOpcode::BUNDLE) {
Register Reg = DefMI->getOperand(DefOpIdx).getReg();
for (const auto &Op : const_mi_bundle_ops(*DefMI)) {
if (Op.isReg() && Op.isDef() && Op.getReg() == Reg) {
DefMI = Op.getParent();
DefOpIdx = Op.getOperandNo();
}
}
}
// If the Use is a BUNDLE, find the first instruction that uses the Reg.
const MachineInstr *UseMI = Use->getInstr();
if (UseMI->getOpcode() == TargetOpcode::BUNDLE) {
Register Reg = UseMI->getOperand(UseOpIdx).getReg();
for (const auto &Op : const_mi_bundle_ops(*UseMI)) {
if (Op.isReg() && Op.isUse() && Op.getReg() == Reg) {
UseMI = Op.getParent();
UseOpIdx = Op.getOperandNo();
break;
}
}
}
Dep.setLatency(
SchedModel->computeOperandLatency(DefMI, DefOpIdx, UseMI, UseOpIdx));
}
bool AArch64Subtarget::enableEarlyIfConversion() const {
return EnableEarlyIfConvert;
}
bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
if (!UseAddressTopByteIgnored)
return false;
if (TargetTriple.isDriverKit())
return true;
if (TargetTriple.isiOS()) {
return TargetTriple.getiOSVersion() >= VersionTuple(8);
}
return false;
}
std::unique_ptr<PBQPRAConstraint>
AArch64Subtarget::getCustomPBQPConstraints() const {
return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
}
void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
// We usually compute max call frame size after ISel. Do the computation now
// if the .mir file didn't specify it. Note that this will probably give you
// bogus values after PEI has eliminated the callframe setup/destroy pseudo
// instructions, specify explicitly if you need it to be correct.
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.isMaxCallFrameSizeComputed())
MFI.computeMaxCallFrameSize(MF);
}
bool AArch64Subtarget::useAA() const { return UseAA; }
// If return address signing is enabled, tail calls are emitted as follows:
//
// ```
// <authenticate LR>
// <check LR>
// TCRETURN ; the callee may sign and spill the LR in its prologue
// ```
//
// LR may require explicit checking because if FEAT_FPAC is not implemented
// and LR was tampered with, then `<authenticate LR>` will not generate an
// exception on its own. Later, if the callee spills the signed LR value and
// neither FEAT_PAuth2 nor FEAT_EPAC are implemented, the valid PAC replaces
// the higher bits of LR thus hiding the authentication failure.
AArch64PAuth::AuthCheckMethod AArch64Subtarget::getAuthenticatedLRCheckMethod(
const MachineFunction &MF) const {
// TODO: Check subtarget for the scheme. Present variant is a default for
// pauthtest ABI.
if (MF.getFunction().hasFnAttribute("ptrauth-returns") &&
MF.getFunction().hasFnAttribute("ptrauth-auth-traps"))
return AArch64PAuth::AuthCheckMethod::HighBitsNoTBI;
if (AuthenticatedLRCheckMethod.getNumOccurrences())
return AuthenticatedLRCheckMethod;
// At now, use None by default because checks may introduce an unexpected
// performance regression or incompatibility with execute-only mappings.
return AArch64PAuth::AuthCheckMethod::None;
}
std::optional<uint16_t>
AArch64Subtarget::getPtrAuthBlockAddressDiscriminatorIfEnabled(
const Function &ParentFn) const {
if (!ParentFn.hasFnAttribute("ptrauth-indirect-gotos"))
return std::nullopt;
// We currently have one simple mechanism for all targets.
// This isn't ABI, so we can always do better in the future.
return getPointerAuthStableSipHash(
(Twine(ParentFn.getName()) + " blockaddress").str());
}
bool AArch64Subtarget::enableMachinePipeliner() const {
return getSchedModel().hasInstrSchedModel();
}
|