1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
//=== AArch64PostLegalizerCombiner.cpp --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Post-legalization combines on generic MachineInstrs.
///
/// The combines here must preserve instruction legality.
///
/// Lowering combines (e.g. pseudo matching) should be handled by
/// AArch64PostLegalizerLowering.
///
/// Combines which don't rely on instruction legality should go in the
/// AArch64PreLegalizerCombiner.
///
//===----------------------------------------------------------------------===//
#include "AArch64TargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/Debug.h"
#define GET_GICOMBINER_DEPS
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef GET_GICOMBINER_DEPS
#define DEBUG_TYPE "aarch64-postlegalizer-combiner"
using namespace llvm;
using namespace MIPatternMatch;
namespace {
#define GET_GICOMBINER_TYPES
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef GET_GICOMBINER_TYPES
/// This combine tries do what performExtractVectorEltCombine does in SDAG.
/// Rewrite for pairwise fadd pattern
/// (s32 (g_extract_vector_elt
/// (g_fadd (vXs32 Other)
/// (g_vector_shuffle (vXs32 Other) undef <1,X,...> )) 0))
/// ->
/// (s32 (g_fadd (g_extract_vector_elt (vXs32 Other) 0)
/// (g_extract_vector_elt (vXs32 Other) 1))
bool matchExtractVecEltPairwiseAdd(
MachineInstr &MI, MachineRegisterInfo &MRI,
std::tuple<unsigned, LLT, Register> &MatchInfo) {
Register Src1 = MI.getOperand(1).getReg();
Register Src2 = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
auto Cst = getIConstantVRegValWithLookThrough(Src2, MRI);
if (!Cst || Cst->Value != 0)
return false;
// SDAG also checks for FullFP16, but this looks to be beneficial anyway.
// Now check for an fadd operation. TODO: expand this for integer add?
auto *FAddMI = getOpcodeDef(TargetOpcode::G_FADD, Src1, MRI);
if (!FAddMI)
return false;
// If we add support for integer add, must restrict these types to just s64.
unsigned DstSize = DstTy.getSizeInBits();
if (DstSize != 16 && DstSize != 32 && DstSize != 64)
return false;
Register Src1Op1 = FAddMI->getOperand(1).getReg();
Register Src1Op2 = FAddMI->getOperand(2).getReg();
MachineInstr *Shuffle =
getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op2, MRI);
MachineInstr *Other = MRI.getVRegDef(Src1Op1);
if (!Shuffle) {
Shuffle = getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op1, MRI);
Other = MRI.getVRegDef(Src1Op2);
}
// We're looking for a shuffle that moves the second element to index 0.
if (Shuffle && Shuffle->getOperand(3).getShuffleMask()[0] == 1 &&
Other == MRI.getVRegDef(Shuffle->getOperand(1).getReg())) {
std::get<0>(MatchInfo) = TargetOpcode::G_FADD;
std::get<1>(MatchInfo) = DstTy;
std::get<2>(MatchInfo) = Other->getOperand(0).getReg();
return true;
}
return false;
}
void applyExtractVecEltPairwiseAdd(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
std::tuple<unsigned, LLT, Register> &MatchInfo) {
unsigned Opc = std::get<0>(MatchInfo);
assert(Opc == TargetOpcode::G_FADD && "Unexpected opcode!");
// We want to generate two extracts of elements 0 and 1, and add them.
LLT Ty = std::get<1>(MatchInfo);
Register Src = std::get<2>(MatchInfo);
LLT s64 = LLT::scalar(64);
B.setInstrAndDebugLoc(MI);
auto Elt0 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 0));
auto Elt1 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 1));
B.buildInstr(Opc, {MI.getOperand(0).getReg()}, {Elt0, Elt1});
MI.eraseFromParent();
}
bool isSignExtended(Register R, MachineRegisterInfo &MRI) {
// TODO: check if extended build vector as well.
unsigned Opc = MRI.getVRegDef(R)->getOpcode();
return Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG;
}
bool isZeroExtended(Register R, MachineRegisterInfo &MRI) {
// TODO: check if extended build vector as well.
return MRI.getVRegDef(R)->getOpcode() == TargetOpcode::G_ZEXT;
}
bool matchAArch64MulConstCombine(
MachineInstr &MI, MachineRegisterInfo &MRI,
std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
assert(MI.getOpcode() == TargetOpcode::G_MUL);
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register Dst = MI.getOperand(0).getReg();
const LLT Ty = MRI.getType(LHS);
// The below optimizations require a constant RHS.
auto Const = getIConstantVRegValWithLookThrough(RHS, MRI);
if (!Const)
return false;
APInt ConstValue = Const->Value.sext(Ty.getSizeInBits());
// The following code is ported from AArch64ISelLowering.
// Multiplication of a power of two plus/minus one can be done more
// cheaply as shift+add/sub. For now, this is true unilaterally. If
// future CPUs have a cheaper MADD instruction, this may need to be
// gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
// 64-bit is 5 cycles, so this is always a win.
// More aggressively, some multiplications N0 * C can be lowered to
// shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
// e.g. 6=3*2=(2+1)*2.
// TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
// which equals to (1+2)*16-(1+2).
// TrailingZeroes is used to test if the mul can be lowered to
// shift+add+shift.
unsigned TrailingZeroes = ConstValue.countr_zero();
if (TrailingZeroes) {
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into smul or umul.
if (MRI.hasOneNonDBGUse(LHS) &&
(isSignExtended(LHS, MRI) || isZeroExtended(LHS, MRI)))
return false;
// Conservatively do not lower to shift+add+shift if the mul might be
// folded into madd or msub.
if (MRI.hasOneNonDBGUse(Dst)) {
MachineInstr &UseMI = *MRI.use_instr_begin(Dst);
unsigned UseOpc = UseMI.getOpcode();
if (UseOpc == TargetOpcode::G_ADD || UseOpc == TargetOpcode::G_PTR_ADD ||
UseOpc == TargetOpcode::G_SUB)
return false;
}
}
// Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
// and shift+add+shift.
APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
unsigned ShiftAmt, AddSubOpc;
// Is the shifted value the LHS operand of the add/sub?
bool ShiftValUseIsLHS = true;
// Do we need to negate the result?
bool NegateResult = false;
if (ConstValue.isNonNegative()) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
// (mul x, 2^N - 1) => (sub (shl x, N), x)
// (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
APInt SCVMinus1 = ShiftedConstValue - 1;
APInt CVPlus1 = ConstValue + 1;
if (SCVMinus1.isPowerOf2()) {
ShiftAmt = SCVMinus1.logBase2();
AddSubOpc = TargetOpcode::G_ADD;
} else if (CVPlus1.isPowerOf2()) {
ShiftAmt = CVPlus1.logBase2();
AddSubOpc = TargetOpcode::G_SUB;
} else
return false;
} else {
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
APInt CVNegPlus1 = -ConstValue + 1;
APInt CVNegMinus1 = -ConstValue - 1;
if (CVNegPlus1.isPowerOf2()) {
ShiftAmt = CVNegPlus1.logBase2();
AddSubOpc = TargetOpcode::G_SUB;
ShiftValUseIsLHS = false;
} else if (CVNegMinus1.isPowerOf2()) {
ShiftAmt = CVNegMinus1.logBase2();
AddSubOpc = TargetOpcode::G_ADD;
NegateResult = true;
} else
return false;
}
if (NegateResult && TrailingZeroes)
return false;
ApplyFn = [=](MachineIRBuilder &B, Register DstReg) {
auto Shift = B.buildConstant(LLT::scalar(64), ShiftAmt);
auto ShiftedVal = B.buildShl(Ty, LHS, Shift);
Register AddSubLHS = ShiftValUseIsLHS ? ShiftedVal.getReg(0) : LHS;
Register AddSubRHS = ShiftValUseIsLHS ? LHS : ShiftedVal.getReg(0);
auto Res = B.buildInstr(AddSubOpc, {Ty}, {AddSubLHS, AddSubRHS});
assert(!(NegateResult && TrailingZeroes) &&
"NegateResult and TrailingZeroes cannot both be true for now.");
// Negate the result.
if (NegateResult) {
B.buildSub(DstReg, B.buildConstant(Ty, 0), Res);
return;
}
// Shift the result.
if (TrailingZeroes) {
B.buildShl(DstReg, Res, B.buildConstant(LLT::scalar(64), TrailingZeroes));
return;
}
B.buildCopy(DstReg, Res.getReg(0));
};
return true;
}
void applyAArch64MulConstCombine(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
B.setInstrAndDebugLoc(MI);
ApplyFn(B, MI.getOperand(0).getReg());
MI.eraseFromParent();
}
/// Try to fold a G_MERGE_VALUES of 2 s32 sources, where the second source
/// is a zero, into a G_ZEXT of the first.
bool matchFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI) {
auto &Merge = cast<GMerge>(MI);
LLT SrcTy = MRI.getType(Merge.getSourceReg(0));
if (SrcTy != LLT::scalar(32) || Merge.getNumSources() != 2)
return false;
return mi_match(Merge.getSourceReg(1), MRI, m_SpecificICst(0));
}
void applyFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, GISelChangeObserver &Observer) {
// Mutate %d(s64) = G_MERGE_VALUES %a(s32), 0(s32)
// ->
// %d(s64) = G_ZEXT %a(s32)
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
MI.removeOperand(2);
Observer.changedInstr(MI);
}
/// \returns True if a G_ANYEXT instruction \p MI should be mutated to a G_ZEXT
/// instruction.
bool matchMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI) {
// If this is coming from a scalar compare then we can use a G_ZEXT instead of
// a G_ANYEXT:
//
// %cmp:_(s32) = G_[I|F]CMP ... <-- produces 0/1.
// %ext:_(s64) = G_ANYEXT %cmp(s32)
//
// By doing this, we can leverage more KnownBits combines.
assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
return MRI.getType(Dst).isScalar() &&
mi_match(Src, MRI,
m_any_of(m_GICmp(m_Pred(), m_Reg(), m_Reg()),
m_GFCmp(m_Pred(), m_Reg(), m_Reg())));
}
void applyMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B,
GISelChangeObserver &Observer) {
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
Observer.changedInstr(MI);
}
/// Match a 128b store of zero and split it into two 64 bit stores, for
/// size/performance reasons.
bool matchSplitStoreZero128(MachineInstr &MI, MachineRegisterInfo &MRI) {
GStore &Store = cast<GStore>(MI);
if (!Store.isSimple())
return false;
LLT ValTy = MRI.getType(Store.getValueReg());
if (ValTy.isScalableVector())
return false;
if (!ValTy.isVector() || ValTy.getSizeInBits() != 128)
return false;
if (Store.getMemSizeInBits() != ValTy.getSizeInBits())
return false; // Don't split truncating stores.
if (!MRI.hasOneNonDBGUse(Store.getValueReg()))
return false;
auto MaybeCst = isConstantOrConstantSplatVector(
*MRI.getVRegDef(Store.getValueReg()), MRI);
return MaybeCst && MaybeCst->isZero();
}
void applySplitStoreZero128(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B,
GISelChangeObserver &Observer) {
B.setInstrAndDebugLoc(MI);
GStore &Store = cast<GStore>(MI);
assert(MRI.getType(Store.getValueReg()).isVector() &&
"Expected a vector store value");
LLT NewTy = LLT::scalar(64);
Register PtrReg = Store.getPointerReg();
auto Zero = B.buildConstant(NewTy, 0);
auto HighPtr = B.buildPtrAdd(MRI.getType(PtrReg), PtrReg,
B.buildConstant(LLT::scalar(64), 8));
auto &MF = *MI.getMF();
auto *LowMMO = MF.getMachineMemOperand(&Store.getMMO(), 0, NewTy);
auto *HighMMO = MF.getMachineMemOperand(&Store.getMMO(), 8, NewTy);
B.buildStore(Zero, PtrReg, *LowMMO);
B.buildStore(Zero, HighPtr, *HighMMO);
Store.eraseFromParent();
}
bool matchOrToBSP(MachineInstr &MI, MachineRegisterInfo &MRI,
std::tuple<Register, Register, Register> &MatchInfo) {
const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
if (!DstTy.isVector())
return false;
Register AO1, AO2, BVO1, BVO2;
if (!mi_match(MI, MRI,
m_GOr(m_GAnd(m_Reg(AO1), m_Reg(BVO1)),
m_GAnd(m_Reg(AO2), m_Reg(BVO2)))))
return false;
auto *BV1 = getOpcodeDef<GBuildVector>(BVO1, MRI);
auto *BV2 = getOpcodeDef<GBuildVector>(BVO2, MRI);
if (!BV1 || !BV2)
return false;
for (int I = 0, E = DstTy.getNumElements(); I < E; I++) {
auto ValAndVReg1 =
getIConstantVRegValWithLookThrough(BV1->getSourceReg(I), MRI);
auto ValAndVReg2 =
getIConstantVRegValWithLookThrough(BV2->getSourceReg(I), MRI);
if (!ValAndVReg1 || !ValAndVReg2 ||
ValAndVReg1->Value != ~ValAndVReg2->Value)
return false;
}
MatchInfo = {AO1, AO2, BVO1};
return true;
}
void applyOrToBSP(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B,
std::tuple<Register, Register, Register> &MatchInfo) {
B.setInstrAndDebugLoc(MI);
B.buildInstr(
AArch64::G_BSP, {MI.getOperand(0).getReg()},
{std::get<2>(MatchInfo), std::get<0>(MatchInfo), std::get<1>(MatchInfo)});
MI.eraseFromParent();
}
// Combines Mul(And(Srl(X, 15), 0x10001), 0xffff) into CMLTz
bool matchCombineMulCMLT(MachineInstr &MI, MachineRegisterInfo &MRI,
Register &SrcReg) {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
if (DstTy != LLT::fixed_vector(2, 64) && DstTy != LLT::fixed_vector(2, 32) &&
DstTy != LLT::fixed_vector(4, 32) && DstTy != LLT::fixed_vector(4, 16) &&
DstTy != LLT::fixed_vector(8, 16))
return false;
auto AndMI = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
if (AndMI->getOpcode() != TargetOpcode::G_AND)
return false;
auto LShrMI = getDefIgnoringCopies(AndMI->getOperand(1).getReg(), MRI);
if (LShrMI->getOpcode() != TargetOpcode::G_LSHR)
return false;
// Check the constant splat values
auto V1 = isConstantOrConstantSplatVector(
*MRI.getVRegDef(MI.getOperand(2).getReg()), MRI);
auto V2 = isConstantOrConstantSplatVector(
*MRI.getVRegDef(AndMI->getOperand(2).getReg()), MRI);
auto V3 = isConstantOrConstantSplatVector(
*MRI.getVRegDef(LShrMI->getOperand(2).getReg()), MRI);
if (!V1.has_value() || !V2.has_value() || !V3.has_value())
return false;
unsigned HalfSize = DstTy.getScalarSizeInBits() / 2;
if (!V1.value().isMask(HalfSize) || V2.value() != (1ULL | 1ULL << HalfSize) ||
V3 != (HalfSize - 1))
return false;
SrcReg = LShrMI->getOperand(1).getReg();
return true;
}
void applyCombineMulCMLT(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, Register &SrcReg) {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT HalfTy =
DstTy.changeElementCount(DstTy.getElementCount().multiplyCoefficientBy(2))
.changeElementSize(DstTy.getScalarSizeInBits() / 2);
Register ZeroVec = B.buildConstant(HalfTy, 0).getReg(0);
Register CastReg =
B.buildInstr(TargetOpcode::G_BITCAST, {HalfTy}, {SrcReg}).getReg(0);
Register CMLTReg =
B.buildICmp(CmpInst::Predicate::ICMP_SLT, HalfTy, CastReg, ZeroVec)
.getReg(0);
B.buildInstr(TargetOpcode::G_BITCAST, {DstReg}, {CMLTReg}).getReg(0);
MI.eraseFromParent();
}
class AArch64PostLegalizerCombinerImpl : public Combiner {
protected:
// TODO: Make CombinerHelper methods const.
mutable CombinerHelper Helper;
const AArch64PostLegalizerCombinerImplRuleConfig &RuleConfig;
const AArch64Subtarget &STI;
public:
AArch64PostLegalizerCombinerImpl(
MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
const AArch64PostLegalizerCombinerImplRuleConfig &RuleConfig,
const AArch64Subtarget &STI, MachineDominatorTree *MDT,
const LegalizerInfo *LI);
static const char *getName() { return "AArch64PostLegalizerCombiner"; }
bool tryCombineAll(MachineInstr &I) const override;
private:
#define GET_GICOMBINER_CLASS_MEMBERS
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef GET_GICOMBINER_CLASS_MEMBERS
};
#define GET_GICOMBINER_IMPL
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef GET_GICOMBINER_IMPL
AArch64PostLegalizerCombinerImpl::AArch64PostLegalizerCombinerImpl(
MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
const AArch64PostLegalizerCombinerImplRuleConfig &RuleConfig,
const AArch64Subtarget &STI, MachineDominatorTree *MDT,
const LegalizerInfo *LI)
: Combiner(MF, CInfo, TPC, &KB, CSEInfo),
Helper(Observer, B, /*IsPreLegalize*/ false, &KB, MDT, LI),
RuleConfig(RuleConfig), STI(STI),
#define GET_GICOMBINER_CONSTRUCTOR_INITS
#include "AArch64GenPostLegalizeGICombiner.inc"
#undef GET_GICOMBINER_CONSTRUCTOR_INITS
{
}
class AArch64PostLegalizerCombiner : public MachineFunctionPass {
public:
static char ID;
AArch64PostLegalizerCombiner(bool IsOptNone = false);
StringRef getPassName() const override {
return "AArch64PostLegalizerCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool IsOptNone;
AArch64PostLegalizerCombinerImplRuleConfig RuleConfig;
struct StoreInfo {
GStore *St = nullptr;
// The G_PTR_ADD that's used by the store. We keep this to cache the
// MachineInstr def.
GPtrAdd *Ptr = nullptr;
// The signed offset to the Ptr instruction.
int64_t Offset = 0;
LLT StoredType;
};
bool tryOptimizeConsecStores(SmallVectorImpl<StoreInfo> &Stores,
CSEMIRBuilder &MIB);
bool optimizeConsecutiveMemOpAddressing(MachineFunction &MF,
CSEMIRBuilder &MIB);
};
} // end anonymous namespace
void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
if (!IsOptNone) {
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.addPreserved<MachineDominatorTreeWrapperPass>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
AU.addPreserved<GISelCSEAnalysisWrapperPass>();
}
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone)
: MachineFunctionPass(ID), IsOptNone(IsOptNone) {
initializeAArch64PostLegalizerCombinerPass(*PassRegistry::getPassRegistry());
if (!RuleConfig.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized) &&
"Expected a legalized function?");
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOptLevel::None && !skipFunction(F);
const AArch64Subtarget &ST = MF.getSubtarget<AArch64Subtarget>();
const auto *LI = ST.getLegalizerInfo();
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT =
IsOptNone ? nullptr
: &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
auto *CSEInfo = &Wrapper.get(TPC->getCSEConfig());
CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, EnableOpt, F.hasOptSize(),
F.hasMinSize());
AArch64PostLegalizerCombinerImpl Impl(MF, CInfo, TPC, *KB, CSEInfo,
RuleConfig, ST, MDT, LI);
bool Changed = Impl.combineMachineInstrs();
auto MIB = CSEMIRBuilder(MF);
MIB.setCSEInfo(CSEInfo);
Changed |= optimizeConsecutiveMemOpAddressing(MF, MIB);
return Changed;
}
bool AArch64PostLegalizerCombiner::tryOptimizeConsecStores(
SmallVectorImpl<StoreInfo> &Stores, CSEMIRBuilder &MIB) {
if (Stores.size() <= 2)
return false;
// Profitabity checks:
int64_t BaseOffset = Stores[0].Offset;
unsigned NumPairsExpected = Stores.size() / 2;
unsigned TotalInstsExpected = NumPairsExpected + (Stores.size() % 2);
// Size savings will depend on whether we can fold the offset, as an
// immediate of an ADD.
auto &TLI = *MIB.getMF().getSubtarget().getTargetLowering();
if (!TLI.isLegalAddImmediate(BaseOffset))
TotalInstsExpected++;
int SavingsExpected = Stores.size() - TotalInstsExpected;
if (SavingsExpected <= 0)
return false;
auto &MRI = MIB.getMF().getRegInfo();
// We have a series of consecutive stores. Factor out the common base
// pointer and rewrite the offsets.
Register NewBase = Stores[0].Ptr->getReg(0);
for (auto &SInfo : Stores) {
// Compute a new pointer with the new base ptr and adjusted offset.
MIB.setInstrAndDebugLoc(*SInfo.St);
auto NewOff = MIB.buildConstant(LLT::scalar(64), SInfo.Offset - BaseOffset);
auto NewPtr = MIB.buildPtrAdd(MRI.getType(SInfo.St->getPointerReg()),
NewBase, NewOff);
if (MIB.getObserver())
MIB.getObserver()->changingInstr(*SInfo.St);
SInfo.St->getOperand(1).setReg(NewPtr.getReg(0));
if (MIB.getObserver())
MIB.getObserver()->changedInstr(*SInfo.St);
}
LLVM_DEBUG(dbgs() << "Split a series of " << Stores.size()
<< " stores into a base pointer and offsets.\n");
return true;
}
static cl::opt<bool>
EnableConsecutiveMemOpOpt("aarch64-postlegalizer-consecutive-memops",
cl::init(true), cl::Hidden,
cl::desc("Enable consecutive memop optimization "
"in AArch64PostLegalizerCombiner"));
bool AArch64PostLegalizerCombiner::optimizeConsecutiveMemOpAddressing(
MachineFunction &MF, CSEMIRBuilder &MIB) {
// This combine needs to run after all reassociations/folds on pointer
// addressing have been done, specifically those that combine two G_PTR_ADDs
// with constant offsets into a single G_PTR_ADD with a combined offset.
// The goal of this optimization is to undo that combine in the case where
// doing so has prevented the formation of pair stores due to illegal
// addressing modes of STP. The reason that we do it here is because
// it's much easier to undo the transformation of a series consecutive
// mem ops, than it is to detect when doing it would be a bad idea looking
// at a single G_PTR_ADD in the reassociation/ptradd_immed_chain combine.
//
// An example:
// G_STORE %11:_(<2 x s64>), %base:_(p0) :: (store (<2 x s64>), align 1)
// %off1:_(s64) = G_CONSTANT i64 4128
// %p1:_(p0) = G_PTR_ADD %0:_, %off1:_(s64)
// G_STORE %11:_(<2 x s64>), %p1:_(p0) :: (store (<2 x s64>), align 1)
// %off2:_(s64) = G_CONSTANT i64 4144
// %p2:_(p0) = G_PTR_ADD %0:_, %off2:_(s64)
// G_STORE %11:_(<2 x s64>), %p2:_(p0) :: (store (<2 x s64>), align 1)
// %off3:_(s64) = G_CONSTANT i64 4160
// %p3:_(p0) = G_PTR_ADD %0:_, %off3:_(s64)
// G_STORE %11:_(<2 x s64>), %17:_(p0) :: (store (<2 x s64>), align 1)
bool Changed = false;
auto &MRI = MF.getRegInfo();
if (!EnableConsecutiveMemOpOpt)
return Changed;
SmallVector<StoreInfo, 8> Stores;
// If we see a load, then we keep track of any values defined by it.
// In the following example, STP formation will fail anyway because
// the latter store is using a load result that appears after the
// the prior store. In this situation if we factor out the offset then
// we increase code size for no benefit.
// G_STORE %v1:_(s64), %base:_(p0) :: (store (s64))
// %v2:_(s64) = G_LOAD %ldptr:_(p0) :: (load (s64))
// G_STORE %v2:_(s64), %base:_(p0) :: (store (s64))
SmallVector<Register> LoadValsSinceLastStore;
auto storeIsValid = [&](StoreInfo &Last, StoreInfo New) {
// Check if this store is consecutive to the last one.
if (Last.Ptr->getBaseReg() != New.Ptr->getBaseReg() ||
(Last.Offset + static_cast<int64_t>(Last.StoredType.getSizeInBytes()) !=
New.Offset) ||
Last.StoredType != New.StoredType)
return false;
// Check if this store is using a load result that appears after the
// last store. If so, bail out.
if (any_of(LoadValsSinceLastStore, [&](Register LoadVal) {
return New.St->getValueReg() == LoadVal;
}))
return false;
// Check if the current offset would be too large for STP.
// If not, then STP formation should be able to handle it, so we don't
// need to do anything.
int64_t MaxLegalOffset;
switch (New.StoredType.getSizeInBits()) {
case 32:
MaxLegalOffset = 252;
break;
case 64:
MaxLegalOffset = 504;
break;
case 128:
MaxLegalOffset = 1008;
break;
default:
llvm_unreachable("Unexpected stored type size");
}
if (New.Offset < MaxLegalOffset)
return false;
// If factoring it out still wouldn't help then don't bother.
return New.Offset - Stores[0].Offset <= MaxLegalOffset;
};
auto resetState = [&]() {
Stores.clear();
LoadValsSinceLastStore.clear();
};
for (auto &MBB : MF) {
// We're looking inside a single BB at a time since the memset pattern
// should only be in a single block.
resetState();
for (auto &MI : MBB) {
// Skip for scalable vectors
if (auto *LdSt = dyn_cast<GLoadStore>(&MI);
LdSt && MRI.getType(LdSt->getOperand(0).getReg()).isScalableVector())
continue;
if (auto *St = dyn_cast<GStore>(&MI)) {
Register PtrBaseReg;
APInt Offset;
LLT StoredValTy = MRI.getType(St->getValueReg());
unsigned ValSize = StoredValTy.getSizeInBits();
if (ValSize < 32 || St->getMMO().getSizeInBits() != ValSize)
continue;
Register PtrReg = St->getPointerReg();
if (mi_match(
PtrReg, MRI,
m_OneNonDBGUse(m_GPtrAdd(m_Reg(PtrBaseReg), m_ICst(Offset))))) {
GPtrAdd *PtrAdd = cast<GPtrAdd>(MRI.getVRegDef(PtrReg));
StoreInfo New = {St, PtrAdd, Offset.getSExtValue(), StoredValTy};
if (Stores.empty()) {
Stores.push_back(New);
continue;
}
// Check if this store is a valid continuation of the sequence.
auto &Last = Stores.back();
if (storeIsValid(Last, New)) {
Stores.push_back(New);
LoadValsSinceLastStore.clear(); // Reset the load value tracking.
} else {
// The store isn't a valid to consider for the prior sequence,
// so try to optimize what we have so far and start a new sequence.
Changed |= tryOptimizeConsecStores(Stores, MIB);
resetState();
Stores.push_back(New);
}
}
} else if (auto *Ld = dyn_cast<GLoad>(&MI)) {
LoadValsSinceLastStore.push_back(Ld->getDstReg());
}
}
Changed |= tryOptimizeConsecStores(Stores, MIB);
resetState();
}
return Changed;
}
char AArch64PostLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 MachineInstrs after legalization", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 MachineInstrs after legalization", false,
false)
namespace llvm {
FunctionPass *createAArch64PostLegalizerCombiner(bool IsOptNone) {
return new AArch64PostLegalizerCombiner(IsOptNone);
}
} // end namespace llvm
|