1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
|
//=== lib/CodeGen/GlobalISel/AArch64PreLegalizerCombiner.cpp --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// before the legalizer.
//
//===----------------------------------------------------------------------===//
#include "AArch64GlobalISelUtils.h"
#include "AArch64TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#define GET_GICOMBINER_DEPS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_DEPS
#define DEBUG_TYPE "aarch64-prelegalizer-combiner"
using namespace llvm;
using namespace MIPatternMatch;
namespace {
#define GET_GICOMBINER_TYPES
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_TYPES
/// Return true if a G_FCONSTANT instruction is known to be better-represented
/// as a G_CONSTANT.
bool matchFConstantToConstant(MachineInstr &MI, MachineRegisterInfo &MRI) {
assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
Register DstReg = MI.getOperand(0).getReg();
const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
if (DstSize != 32 && DstSize != 64)
return false;
// When we're storing a value, it doesn't matter what register bank it's on.
// Since not all floating point constants can be materialized using a fmov,
// it makes more sense to just use a GPR.
return all_of(MRI.use_nodbg_instructions(DstReg),
[](const MachineInstr &Use) { return Use.mayStore(); });
}
/// Change a G_FCONSTANT into a G_CONSTANT.
void applyFConstantToConstant(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT);
MachineIRBuilder MIB(MI);
const APFloat &ImmValAPF = MI.getOperand(1).getFPImm()->getValueAPF();
MIB.buildConstant(MI.getOperand(0).getReg(), ImmValAPF.bitcastToAPInt());
MI.eraseFromParent();
}
/// Try to match a G_ICMP of a G_TRUNC with zero, in which the truncated bits
/// are sign bits. In this case, we can transform the G_ICMP to directly compare
/// the wide value with a zero.
bool matchICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
GISelKnownBits *KB, Register &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP && KB);
auto Pred = (CmpInst::Predicate)MI.getOperand(1).getPredicate();
if (!ICmpInst::isEquality(Pred))
return false;
Register LHS = MI.getOperand(2).getReg();
LLT LHSTy = MRI.getType(LHS);
if (!LHSTy.isScalar())
return false;
Register RHS = MI.getOperand(3).getReg();
Register WideReg;
if (!mi_match(LHS, MRI, m_GTrunc(m_Reg(WideReg))) ||
!mi_match(RHS, MRI, m_SpecificICst(0)))
return false;
LLT WideTy = MRI.getType(WideReg);
if (KB->computeNumSignBits(WideReg) <=
WideTy.getSizeInBits() - LHSTy.getSizeInBits())
return false;
MatchInfo = WideReg;
return true;
}
void applyICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &Builder,
GISelChangeObserver &Observer, Register &WideReg) {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
LLT WideTy = MRI.getType(WideReg);
// We're going to directly use the wide register as the LHS, and then use an
// equivalent size zero for RHS.
Builder.setInstrAndDebugLoc(MI);
auto WideZero = Builder.buildConstant(WideTy, 0);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(WideReg);
MI.getOperand(3).setReg(WideZero.getReg(0));
Observer.changedInstr(MI);
}
/// \returns true if it is possible to fold a constant into a G_GLOBAL_VALUE.
///
/// e.g.
///
/// %g = G_GLOBAL_VALUE @x -> %g = G_GLOBAL_VALUE @x + cst
bool matchFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
std::pair<uint64_t, uint64_t> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
MachineFunction &MF = *MI.getMF();
auto &GlobalOp = MI.getOperand(1);
auto *GV = GlobalOp.getGlobal();
if (GV->isThreadLocal())
return false;
// Don't allow anything that could represent offsets etc.
if (MF.getSubtarget<AArch64Subtarget>().ClassifyGlobalReference(
GV, MF.getTarget()) != AArch64II::MO_NO_FLAG)
return false;
// Look for a G_GLOBAL_VALUE only used by G_PTR_ADDs against constants:
//
// %g = G_GLOBAL_VALUE @x
// %ptr1 = G_PTR_ADD %g, cst1
// %ptr2 = G_PTR_ADD %g, cst2
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// Identify the *smallest* constant. We want to be able to form this:
//
// %offset_g = G_GLOBAL_VALUE @x + min_cst
// %g = G_PTR_ADD %offset_g, -min_cst
// %ptr1 = G_PTR_ADD %g, cst1
// ...
Register Dst = MI.getOperand(0).getReg();
uint64_t MinOffset = -1ull;
for (auto &UseInstr : MRI.use_nodbg_instructions(Dst)) {
if (UseInstr.getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
auto Cst = getIConstantVRegValWithLookThrough(
UseInstr.getOperand(2).getReg(), MRI);
if (!Cst)
return false;
MinOffset = std::min(MinOffset, Cst->Value.getZExtValue());
}
// Require that the new offset is larger than the existing one to avoid
// infinite loops.
uint64_t CurrOffset = GlobalOp.getOffset();
uint64_t NewOffset = MinOffset + CurrOffset;
if (NewOffset <= CurrOffset)
return false;
// Check whether folding this offset is legal. It must not go out of bounds of
// the referenced object to avoid violating the code model, and must be
// smaller than 2^20 because this is the largest offset expressible in all
// object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF
// stores an immediate signed 21 bit offset.)
//
// This check also prevents us from folding negative offsets, which will end
// up being treated in the same way as large positive ones. They could also
// cause code model violations, and aren't really common enough to matter.
if (NewOffset >= (1 << 20))
return false;
Type *T = GV->getValueType();
if (!T->isSized() ||
NewOffset > GV->getDataLayout().getTypeAllocSize(T))
return false;
MatchInfo = std::make_pair(NewOffset, MinOffset);
return true;
}
void applyFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, GISelChangeObserver &Observer,
std::pair<uint64_t, uint64_t> &MatchInfo) {
// Change:
//
// %g = G_GLOBAL_VALUE @x
// %ptr1 = G_PTR_ADD %g, cst1
// %ptr2 = G_PTR_ADD %g, cst2
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// To:
//
// %offset_g = G_GLOBAL_VALUE @x + min_cst
// %g = G_PTR_ADD %offset_g, -min_cst
// %ptr1 = G_PTR_ADD %g, cst1
// ...
// %ptrN = G_PTR_ADD %g, cstN
//
// Then, the original G_PTR_ADDs should be folded later on so that they look
// like this:
//
// %ptrN = G_PTR_ADD %offset_g, cstN - min_cst
uint64_t Offset, MinOffset;
std::tie(Offset, MinOffset) = MatchInfo;
B.setInstrAndDebugLoc(*std::next(MI.getIterator()));
Observer.changingInstr(MI);
auto &GlobalOp = MI.getOperand(1);
auto *GV = GlobalOp.getGlobal();
GlobalOp.ChangeToGA(GV, Offset, GlobalOp.getTargetFlags());
Register Dst = MI.getOperand(0).getReg();
Register NewGVDst = MRI.cloneVirtualRegister(Dst);
MI.getOperand(0).setReg(NewGVDst);
Observer.changedInstr(MI);
B.buildPtrAdd(
Dst, NewGVDst,
B.buildConstant(LLT::scalar(64), -static_cast<int64_t>(MinOffset)));
}
// Combines vecreduce_add(mul(ext(x), ext(y))) -> vecreduce_add(udot(x, y))
// Or vecreduce_add(ext(x)) -> vecreduce_add(udot(x, 1))
// Similar to performVecReduceAddCombine in SelectionDAG
bool matchExtAddvToUdotAddv(MachineInstr &MI, MachineRegisterInfo &MRI,
const AArch64Subtarget &STI,
std::tuple<Register, Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected a G_VECREDUCE_ADD instruction");
assert(STI.hasDotProd() && "Target should have Dot Product feature");
MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
Register DstReg = MI.getOperand(0).getReg();
Register MidReg = I1->getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
LLT MidTy = MRI.getType(MidReg);
if (DstTy.getScalarSizeInBits() != 32 || MidTy.getScalarSizeInBits() != 32)
return false;
LLT SrcTy;
auto I1Opc = I1->getOpcode();
if (I1Opc == TargetOpcode::G_MUL) {
// If result of this has more than 1 use, then there is no point in creating
// udot instruction
if (!MRI.hasOneNonDBGUse(MidReg))
return false;
MachineInstr *ExtMI1 =
getDefIgnoringCopies(I1->getOperand(1).getReg(), MRI);
MachineInstr *ExtMI2 =
getDefIgnoringCopies(I1->getOperand(2).getReg(), MRI);
LLT Ext1DstTy = MRI.getType(ExtMI1->getOperand(0).getReg());
LLT Ext2DstTy = MRI.getType(ExtMI2->getOperand(0).getReg());
if (ExtMI1->getOpcode() != ExtMI2->getOpcode() || Ext1DstTy != Ext2DstTy)
return false;
I1Opc = ExtMI1->getOpcode();
SrcTy = MRI.getType(ExtMI1->getOperand(1).getReg());
std::get<0>(MatchInfo) = ExtMI1->getOperand(1).getReg();
std::get<1>(MatchInfo) = ExtMI2->getOperand(1).getReg();
} else {
SrcTy = MRI.getType(I1->getOperand(1).getReg());
std::get<0>(MatchInfo) = I1->getOperand(1).getReg();
std::get<1>(MatchInfo) = 0;
}
if (I1Opc == TargetOpcode::G_ZEXT)
std::get<2>(MatchInfo) = 0;
else if (I1Opc == TargetOpcode::G_SEXT)
std::get<2>(MatchInfo) = 1;
else
return false;
if (SrcTy.getScalarSizeInBits() != 8 || SrcTy.getNumElements() % 8 != 0)
return false;
return true;
}
void applyExtAddvToUdotAddv(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &Builder,
GISelChangeObserver &Observer,
const AArch64Subtarget &STI,
std::tuple<Register, Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected a G_VECREDUCE_ADD instruction");
assert(STI.hasDotProd() && "Target should have Dot Product feature");
// Initialise the variables
unsigned DotOpcode =
std::get<2>(MatchInfo) ? AArch64::G_SDOT : AArch64::G_UDOT;
Register Ext1SrcReg = std::get<0>(MatchInfo);
// If there is one source register, create a vector of 0s as the second
// source register
Register Ext2SrcReg;
if (std::get<1>(MatchInfo) == 0)
Ext2SrcReg = Builder.buildConstant(MRI.getType(Ext1SrcReg), 1)
->getOperand(0)
.getReg();
else
Ext2SrcReg = std::get<1>(MatchInfo);
// Find out how many DOT instructions are needed
LLT SrcTy = MRI.getType(Ext1SrcReg);
LLT MidTy;
unsigned NumOfDotMI;
if (SrcTy.getNumElements() % 16 == 0) {
NumOfDotMI = SrcTy.getNumElements() / 16;
MidTy = LLT::fixed_vector(4, 32);
} else if (SrcTy.getNumElements() % 8 == 0) {
NumOfDotMI = SrcTy.getNumElements() / 8;
MidTy = LLT::fixed_vector(2, 32);
} else {
llvm_unreachable("Source type number of elements is not multiple of 8");
}
// Handle case where one DOT instruction is needed
if (NumOfDotMI == 1) {
auto Zeroes = Builder.buildConstant(MidTy, 0)->getOperand(0).getReg();
auto Dot = Builder.buildInstr(DotOpcode, {MidTy},
{Zeroes, Ext1SrcReg, Ext2SrcReg});
Builder.buildVecReduceAdd(MI.getOperand(0), Dot->getOperand(0));
} else {
// If not pad the last v8 element with 0s to a v16
SmallVector<Register, 4> Ext1UnmergeReg;
SmallVector<Register, 4> Ext2UnmergeReg;
if (SrcTy.getNumElements() % 16 != 0) {
SmallVector<Register> Leftover1;
SmallVector<Register> Leftover2;
// Split the elements into v16i8 and v8i8
LLT MainTy = LLT::fixed_vector(16, 8);
LLT LeftoverTy1, LeftoverTy2;
if ((!extractParts(Ext1SrcReg, MRI.getType(Ext1SrcReg), MainTy,
LeftoverTy1, Ext1UnmergeReg, Leftover1, Builder,
MRI)) ||
(!extractParts(Ext2SrcReg, MRI.getType(Ext2SrcReg), MainTy,
LeftoverTy2, Ext2UnmergeReg, Leftover2, Builder,
MRI))) {
llvm_unreachable("Unable to split this vector properly");
}
// Pad the leftover v8i8 vector with register of 0s of type v8i8
Register v8Zeroes = Builder.buildConstant(LLT::fixed_vector(8, 8), 0)
->getOperand(0)
.getReg();
Ext1UnmergeReg.push_back(
Builder
.buildMergeLikeInstr(LLT::fixed_vector(16, 8),
{Leftover1[0], v8Zeroes})
.getReg(0));
Ext2UnmergeReg.push_back(
Builder
.buildMergeLikeInstr(LLT::fixed_vector(16, 8),
{Leftover2[0], v8Zeroes})
.getReg(0));
} else {
// Unmerge the source vectors to v16i8
unsigned SrcNumElts = SrcTy.getNumElements();
extractParts(Ext1SrcReg, LLT::fixed_vector(16, 8), SrcNumElts / 16,
Ext1UnmergeReg, Builder, MRI);
extractParts(Ext2SrcReg, LLT::fixed_vector(16, 8), SrcNumElts / 16,
Ext2UnmergeReg, Builder, MRI);
}
// Build the UDOT instructions
SmallVector<Register, 2> DotReg;
unsigned NumElements = 0;
for (unsigned i = 0; i < Ext1UnmergeReg.size(); i++) {
LLT ZeroesLLT;
// Check if it is 16 or 8 elements. Set Zeroes to the according size
if (MRI.getType(Ext1UnmergeReg[i]).getNumElements() == 16) {
ZeroesLLT = LLT::fixed_vector(4, 32);
NumElements += 4;
} else {
ZeroesLLT = LLT::fixed_vector(2, 32);
NumElements += 2;
}
auto Zeroes = Builder.buildConstant(ZeroesLLT, 0)->getOperand(0).getReg();
DotReg.push_back(
Builder
.buildInstr(DotOpcode, {MRI.getType(Zeroes)},
{Zeroes, Ext1UnmergeReg[i], Ext2UnmergeReg[i]})
.getReg(0));
}
// Merge the output
auto ConcatMI =
Builder.buildConcatVectors(LLT::fixed_vector(NumElements, 32), DotReg);
// Put it through a vector reduction
Builder.buildVecReduceAdd(MI.getOperand(0).getReg(),
ConcatMI->getOperand(0).getReg());
}
// Erase the dead instructions
MI.eraseFromParent();
}
// Matches {U/S}ADDV(ext(x)) => {U/S}ADDLV(x)
// Ensure that the type coming from the extend instruction is the right size
bool matchExtUaddvToUaddlv(MachineInstr &MI, MachineRegisterInfo &MRI,
std::pair<Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected G_VECREDUCE_ADD Opcode");
// Check if the last instruction is an extend
MachineInstr *ExtMI = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
auto ExtOpc = ExtMI->getOpcode();
if (ExtOpc == TargetOpcode::G_ZEXT)
std::get<1>(MatchInfo) = 0;
else if (ExtOpc == TargetOpcode::G_SEXT)
std::get<1>(MatchInfo) = 1;
else
return false;
// Check if the source register is a valid type
Register ExtSrcReg = ExtMI->getOperand(1).getReg();
LLT ExtSrcTy = MRI.getType(ExtSrcReg);
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
if ((DstTy.getScalarSizeInBits() == 16 &&
ExtSrcTy.getNumElements() % 8 == 0 && ExtSrcTy.getNumElements() < 256) ||
(DstTy.getScalarSizeInBits() == 32 &&
ExtSrcTy.getNumElements() % 4 == 0) ||
(DstTy.getScalarSizeInBits() == 64 &&
ExtSrcTy.getNumElements() % 4 == 0)) {
std::get<0>(MatchInfo) = ExtSrcReg;
return true;
}
return false;
}
void applyExtUaddvToUaddlv(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, GISelChangeObserver &Observer,
std::pair<Register, bool> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_VECREDUCE_ADD &&
"Expected G_VECREDUCE_ADD Opcode");
unsigned Opc = std::get<1>(MatchInfo) ? AArch64::G_SADDLV : AArch64::G_UADDLV;
Register SrcReg = std::get<0>(MatchInfo);
Register DstReg = MI.getOperand(0).getReg();
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(DstReg);
// If SrcTy has more elements than expected, split them into multiple
// insructions and sum the results
LLT MainTy;
SmallVector<Register, 1> WorkingRegisters;
unsigned SrcScalSize = SrcTy.getScalarSizeInBits();
unsigned SrcNumElem = SrcTy.getNumElements();
if ((SrcScalSize == 8 && SrcNumElem > 16) ||
(SrcScalSize == 16 && SrcNumElem > 8) ||
(SrcScalSize == 32 && SrcNumElem > 4)) {
LLT LeftoverTy;
SmallVector<Register, 4> LeftoverRegs;
if (SrcScalSize == 8)
MainTy = LLT::fixed_vector(16, 8);
else if (SrcScalSize == 16)
MainTy = LLT::fixed_vector(8, 16);
else if (SrcScalSize == 32)
MainTy = LLT::fixed_vector(4, 32);
else
llvm_unreachable("Source's Scalar Size not supported");
// Extract the parts and put each extracted sources through U/SADDLV and put
// the values inside a small vec
extractParts(SrcReg, SrcTy, MainTy, LeftoverTy, WorkingRegisters,
LeftoverRegs, B, MRI);
for (unsigned I = 0; I < LeftoverRegs.size(); I++) {
WorkingRegisters.push_back(LeftoverRegs[I]);
}
} else {
WorkingRegisters.push_back(SrcReg);
MainTy = SrcTy;
}
unsigned MidScalarSize = MainTy.getScalarSizeInBits() * 2;
LLT MidScalarLLT = LLT::scalar(MidScalarSize);
Register zeroReg = B.buildConstant(LLT::scalar(64), 0).getReg(0);
for (unsigned I = 0; I < WorkingRegisters.size(); I++) {
// If the number of elements is too small to build an instruction, extend
// its size before applying addlv
LLT WorkingRegTy = MRI.getType(WorkingRegisters[I]);
if ((WorkingRegTy.getScalarSizeInBits() == 8) &&
(WorkingRegTy.getNumElements() == 4)) {
WorkingRegisters[I] =
B.buildInstr(std::get<1>(MatchInfo) ? TargetOpcode::G_SEXT
: TargetOpcode::G_ZEXT,
{LLT::fixed_vector(4, 16)}, {WorkingRegisters[I]})
.getReg(0);
}
// Generate the {U/S}ADDLV instruction, whose output is always double of the
// Src's Scalar size
LLT addlvTy = MidScalarSize <= 32 ? LLT::fixed_vector(4, 32)
: LLT::fixed_vector(2, 64);
Register addlvReg =
B.buildInstr(Opc, {addlvTy}, {WorkingRegisters[I]}).getReg(0);
// The output from {U/S}ADDLV gets placed in the lowest lane of a v4i32 or
// v2i64 register.
// i16, i32 results uses v4i32 registers
// i64 results uses v2i64 registers
// Therefore we have to extract/truncate the the value to the right type
if (MidScalarSize == 32 || MidScalarSize == 64) {
WorkingRegisters[I] = B.buildInstr(AArch64::G_EXTRACT_VECTOR_ELT,
{MidScalarLLT}, {addlvReg, zeroReg})
.getReg(0);
} else {
Register extractReg = B.buildInstr(AArch64::G_EXTRACT_VECTOR_ELT,
{LLT::scalar(32)}, {addlvReg, zeroReg})
.getReg(0);
WorkingRegisters[I] =
B.buildTrunc({MidScalarLLT}, {extractReg}).getReg(0);
}
}
Register outReg;
if (WorkingRegisters.size() > 1) {
outReg = B.buildAdd(MidScalarLLT, WorkingRegisters[0], WorkingRegisters[1])
.getReg(0);
for (unsigned I = 2; I < WorkingRegisters.size(); I++) {
outReg = B.buildAdd(MidScalarLLT, outReg, WorkingRegisters[I]).getReg(0);
}
} else {
outReg = WorkingRegisters[0];
}
if (DstTy.getScalarSizeInBits() > MidScalarSize) {
// Handle the scalar value if the DstTy's Scalar Size is more than double
// Src's ScalarType
B.buildInstr(std::get<1>(MatchInfo) ? TargetOpcode::G_SEXT
: TargetOpcode::G_ZEXT,
{DstReg}, {outReg});
} else {
B.buildCopy(DstReg, outReg);
}
MI.eraseFromParent();
}
// Pushes ADD/SUB through extend instructions to decrease the number of extend
// instruction at the end by allowing selection of {s|u}addl sooner
// i32 add(i32 ext i8, i32 ext i8) => i32 ext(i16 add(i16 ext i8, i16 ext i8))
bool matchPushAddSubExt(MachineInstr &MI, MachineRegisterInfo &MRI,
Register DstReg, Register SrcReg1, Register SrcReg2) {
assert((MI.getOpcode() == TargetOpcode::G_ADD ||
MI.getOpcode() == TargetOpcode::G_SUB) &&
"Expected a G_ADD or G_SUB instruction\n");
// Deal with vector types only
LLT DstTy = MRI.getType(DstReg);
if (!DstTy.isVector())
return false;
// Return true if G_{S|Z}EXT instruction is more than 2* source
Register ExtDstReg = MI.getOperand(1).getReg();
LLT Ext1SrcTy = MRI.getType(SrcReg1);
LLT Ext2SrcTy = MRI.getType(SrcReg2);
unsigned ExtDstScal = MRI.getType(ExtDstReg).getScalarSizeInBits();
unsigned Ext1SrcScal = Ext1SrcTy.getScalarSizeInBits();
if (((Ext1SrcScal == 8 && ExtDstScal == 32) ||
((Ext1SrcScal == 8 || Ext1SrcScal == 16) && ExtDstScal == 64)) &&
Ext1SrcTy == Ext2SrcTy)
return true;
return false;
}
void applyPushAddSubExt(MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, bool isSExt, Register DstReg,
Register SrcReg1, Register SrcReg2) {
LLT SrcTy = MRI.getType(SrcReg1);
LLT MidTy = SrcTy.changeElementSize(SrcTy.getScalarSizeInBits() * 2);
unsigned Opc = isSExt ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
Register Ext1Reg = B.buildInstr(Opc, {MidTy}, {SrcReg1}).getReg(0);
Register Ext2Reg = B.buildInstr(Opc, {MidTy}, {SrcReg2}).getReg(0);
Register AddReg =
B.buildInstr(MI.getOpcode(), {MidTy}, {Ext1Reg, Ext2Reg}).getReg(0);
// G_SUB has to sign-extend the result.
// G_ADD needs to sext from sext and can sext or zext from zext, so the
// original opcode is used.
if (MI.getOpcode() == TargetOpcode::G_ADD)
B.buildInstr(Opc, {DstReg}, {AddReg});
else
B.buildSExt(DstReg, AddReg);
MI.eraseFromParent();
}
bool tryToSimplifyUADDO(MachineInstr &MI, MachineIRBuilder &B,
CombinerHelper &Helper, GISelChangeObserver &Observer) {
// Try simplify G_UADDO with 8 or 16 bit operands to wide G_ADD and TBNZ if
// result is only used in the no-overflow case. It is restricted to cases
// where we know that the high-bits of the operands are 0. If there's an
// overflow, then the 9th or 17th bit must be set, which can be checked
// using TBNZ.
//
// Change (for UADDOs on 8 and 16 bits):
//
// %z0 = G_ASSERT_ZEXT _
// %op0 = G_TRUNC %z0
// %z1 = G_ASSERT_ZEXT _
// %op1 = G_TRUNC %z1
// %val, %cond = G_UADDO %op0, %op1
// G_BRCOND %cond, %error.bb
//
// error.bb:
// (no successors and no uses of %val)
//
// To:
//
// %z0 = G_ASSERT_ZEXT _
// %z1 = G_ASSERT_ZEXT _
// %add = G_ADD %z0, %z1
// %val = G_TRUNC %add
// %bit = G_AND %add, 1 << scalar-size-in-bits(%op1)
// %cond = G_ICMP NE, %bit, 0
// G_BRCOND %cond, %error.bb
auto &MRI = *B.getMRI();
MachineOperand *DefOp0 = MRI.getOneDef(MI.getOperand(2).getReg());
MachineOperand *DefOp1 = MRI.getOneDef(MI.getOperand(3).getReg());
Register Op0Wide;
Register Op1Wide;
if (!mi_match(DefOp0->getParent(), MRI, m_GTrunc(m_Reg(Op0Wide))) ||
!mi_match(DefOp1->getParent(), MRI, m_GTrunc(m_Reg(Op1Wide))))
return false;
LLT WideTy0 = MRI.getType(Op0Wide);
LLT WideTy1 = MRI.getType(Op1Wide);
Register ResVal = MI.getOperand(0).getReg();
LLT OpTy = MRI.getType(ResVal);
MachineInstr *Op0WideDef = MRI.getVRegDef(Op0Wide);
MachineInstr *Op1WideDef = MRI.getVRegDef(Op1Wide);
unsigned OpTySize = OpTy.getScalarSizeInBits();
// First check that the G_TRUNC feeding the G_UADDO are no-ops, because the
// inputs have been zero-extended.
if (Op0WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
Op1WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT ||
OpTySize != Op0WideDef->getOperand(2).getImm() ||
OpTySize != Op1WideDef->getOperand(2).getImm())
return false;
// Only scalar UADDO with either 8 or 16 bit operands are handled.
if (!WideTy0.isScalar() || !WideTy1.isScalar() || WideTy0 != WideTy1 ||
OpTySize >= WideTy0.getScalarSizeInBits() ||
(OpTySize != 8 && OpTySize != 16))
return false;
// The overflow-status result must be used by a branch only.
Register ResStatus = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(ResStatus))
return false;
MachineInstr *CondUser = &*MRI.use_instr_nodbg_begin(ResStatus);
if (CondUser->getOpcode() != TargetOpcode::G_BRCOND)
return false;
// Make sure the computed result is only used in the no-overflow blocks.
MachineBasicBlock *CurrentMBB = MI.getParent();
MachineBasicBlock *FailMBB = CondUser->getOperand(1).getMBB();
if (!FailMBB->succ_empty() || CondUser->getParent() != CurrentMBB)
return false;
if (any_of(MRI.use_nodbg_instructions(ResVal),
[&MI, FailMBB, CurrentMBB](MachineInstr &I) {
return &MI != &I &&
(I.getParent() == FailMBB || I.getParent() == CurrentMBB);
}))
return false;
// Remove G_ADDO.
B.setInstrAndDebugLoc(*MI.getNextNode());
MI.eraseFromParent();
// Emit wide add.
Register AddDst = MRI.cloneVirtualRegister(Op0Wide);
B.buildInstr(TargetOpcode::G_ADD, {AddDst}, {Op0Wide, Op1Wide});
// Emit check of the 9th or 17th bit and update users (the branch). This will
// later be folded to TBNZ.
Register CondBit = MRI.cloneVirtualRegister(Op0Wide);
B.buildAnd(
CondBit, AddDst,
B.buildConstant(LLT::scalar(32), OpTySize == 8 ? 1 << 8 : 1 << 16));
B.buildICmp(CmpInst::ICMP_NE, ResStatus, CondBit,
B.buildConstant(LLT::scalar(32), 0));
// Update ZEXts users of the result value. Because all uses are in the
// no-overflow case, we know that the top bits are 0 and we can ignore ZExts.
B.buildZExtOrTrunc(ResVal, AddDst);
for (MachineOperand &U : make_early_inc_range(MRI.use_operands(ResVal))) {
Register WideReg;
if (mi_match(U.getParent(), MRI, m_GZExt(m_Reg(WideReg)))) {
auto OldR = U.getParent()->getOperand(0).getReg();
Observer.erasingInstr(*U.getParent());
U.getParent()->eraseFromParent();
Helper.replaceRegWith(MRI, OldR, AddDst);
}
}
return true;
}
class AArch64PreLegalizerCombinerImpl : public Combiner {
protected:
// TODO: Make CombinerHelper methods const.
mutable CombinerHelper Helper;
const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig;
const AArch64Subtarget &STI;
public:
AArch64PreLegalizerCombinerImpl(
MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig,
const AArch64Subtarget &STI, MachineDominatorTree *MDT,
const LegalizerInfo *LI);
static const char *getName() { return "AArch6400PreLegalizerCombiner"; }
bool tryCombineAll(MachineInstr &I) const override;
bool tryCombineAllImpl(MachineInstr &I) const;
private:
#define GET_GICOMBINER_CLASS_MEMBERS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_CLASS_MEMBERS
};
#define GET_GICOMBINER_IMPL
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_IMPL
AArch64PreLegalizerCombinerImpl::AArch64PreLegalizerCombinerImpl(
MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
const AArch64PreLegalizerCombinerImplRuleConfig &RuleConfig,
const AArch64Subtarget &STI, MachineDominatorTree *MDT,
const LegalizerInfo *LI)
: Combiner(MF, CInfo, TPC, &KB, CSEInfo),
Helper(Observer, B, /*IsPreLegalize*/ true, &KB, MDT, LI),
RuleConfig(RuleConfig), STI(STI),
#define GET_GICOMBINER_CONSTRUCTOR_INITS
#include "AArch64GenPreLegalizeGICombiner.inc"
#undef GET_GICOMBINER_CONSTRUCTOR_INITS
{
}
bool AArch64PreLegalizerCombinerImpl::tryCombineAll(MachineInstr &MI) const {
if (tryCombineAllImpl(MI))
return true;
unsigned Opc = MI.getOpcode();
switch (Opc) {
case TargetOpcode::G_SHUFFLE_VECTOR:
return Helper.tryCombineShuffleVector(MI);
case TargetOpcode::G_UADDO:
return tryToSimplifyUADDO(MI, B, Helper, Observer);
case TargetOpcode::G_MEMCPY_INLINE:
return Helper.tryEmitMemcpyInline(MI);
case TargetOpcode::G_MEMCPY:
case TargetOpcode::G_MEMMOVE:
case TargetOpcode::G_MEMSET: {
// If we're at -O0 set a maxlen of 32 to inline, otherwise let the other
// heuristics decide.
unsigned MaxLen = CInfo.EnableOpt ? 0 : 32;
// Try to inline memcpy type calls if optimizations are enabled.
if (Helper.tryCombineMemCpyFamily(MI, MaxLen))
return true;
if (Opc == TargetOpcode::G_MEMSET)
return llvm::AArch64GISelUtils::tryEmitBZero(MI, B, CInfo.EnableMinSize);
return false;
}
}
return false;
}
// Pass boilerplate
// ================
class AArch64PreLegalizerCombiner : public MachineFunctionPass {
public:
static char ID;
AArch64PreLegalizerCombiner();
StringRef getPassName() const override {
return "AArch64PreLegalizerCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
AArch64PreLegalizerCombinerImplRuleConfig RuleConfig;
};
} // end anonymous namespace
void AArch64PreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.addPreserved<MachineDominatorTreeWrapperPass>();
AU.addRequired<GISelCSEAnalysisWrapperPass>();
AU.addPreserved<GISelCSEAnalysisWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
AArch64PreLegalizerCombiner::AArch64PreLegalizerCombiner()
: MachineFunctionPass(ID) {
initializeAArch64PreLegalizerCombinerPass(*PassRegistry::getPassRegistry());
if (!RuleConfig.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
bool AArch64PreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
// Enable CSE.
GISelCSEAnalysisWrapper &Wrapper =
getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
auto *CSEInfo = &Wrapper.get(TPC.getCSEConfig());
const AArch64Subtarget &ST = MF.getSubtarget<AArch64Subtarget>();
const auto *LI = ST.getLegalizerInfo();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOptLevel::None && !skipFunction(F);
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT =
&getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
/*LegalizerInfo*/ nullptr, EnableOpt, F.hasOptSize(),
F.hasMinSize());
AArch64PreLegalizerCombinerImpl Impl(MF, CInfo, &TPC, *KB, CSEInfo,
RuleConfig, ST, MDT, LI);
return Impl.combineMachineInstrs();
}
char AArch64PreLegalizerCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64PreLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 machine instrs before legalization",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_END(AArch64PreLegalizerCombiner, DEBUG_TYPE,
"Combine AArch64 machine instrs before legalization", false,
false)
namespace llvm {
FunctionPass *createAArch64PreLegalizerCombiner() {
return new AArch64PreLegalizerCombiner();
}
} // end namespace llvm
|