1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR *just* before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/UniformityAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "amdgpu-late-codegenprepare"
using namespace llvm;
// Scalar load widening needs running after load-store-vectorizer as that pass
// doesn't handle overlapping cases. In addition, this pass enhances the
// widening to handle cases where scalar sub-dword loads are naturally aligned
// only but not dword aligned.
static cl::opt<bool>
WidenLoads("amdgpu-late-codegenprepare-widen-constant-loads",
cl::desc("Widen sub-dword constant address space loads in "
"AMDGPULateCodeGenPrepare"),
cl::ReallyHidden, cl::init(true));
namespace {
class AMDGPULateCodeGenPrepare
: public FunctionPass,
public InstVisitor<AMDGPULateCodeGenPrepare, bool> {
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
AssumptionCache *AC = nullptr;
UniformityInfo *UA = nullptr;
SmallVector<WeakTrackingVH, 8> DeadInsts;
public:
static char ID;
AMDGPULateCodeGenPrepare() : FunctionPass(ID) {}
StringRef getPassName() const override {
return "AMDGPU IR late optimizations";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetPassConfig>();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<UniformityInfoWrapperPass>();
AU.setPreservesAll();
}
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
bool visitInstruction(Instruction &) { return false; }
// Check if the specified value is at least DWORD aligned.
bool isDWORDAligned(const Value *V) const {
KnownBits Known = computeKnownBits(V, *DL, 0, AC);
return Known.countMinTrailingZeros() >= 2;
}
bool canWidenScalarExtLoad(LoadInst &LI) const;
bool visitLoadInst(LoadInst &LI);
};
using ValueToValueMap = DenseMap<const Value *, Value *>;
class LiveRegOptimizer {
private:
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
const GCNSubtarget *ST;
/// The scalar type to convert to
Type *ConvertToScalar;
/// The set of visited Instructions
SmallPtrSet<Instruction *, 4> Visited;
/// Map of Value -> Converted Value
ValueToValueMap ValMap;
/// Map of containing conversions from Optimal Type -> Original Type per BB.
DenseMap<BasicBlock *, ValueToValueMap> BBUseValMap;
public:
/// Calculate the and \p return the type to convert to given a problematic \p
/// OriginalType. In some instances, we may widen the type (e.g. v2i8 -> i32).
Type *calculateConvertType(Type *OriginalType);
/// Convert the virtual register defined by \p V to the compatible vector of
/// legal type
Value *convertToOptType(Instruction *V, BasicBlock::iterator &InstPt);
/// Convert the virtual register defined by \p V back to the original type \p
/// ConvertType, stripping away the MSBs in cases where there was an imperfect
/// fit (e.g. v2i32 -> v7i8)
Value *convertFromOptType(Type *ConvertType, Instruction *V,
BasicBlock::iterator &InstPt,
BasicBlock *InsertBlock);
/// Check for problematic PHI nodes or cross-bb values based on the value
/// defined by \p I, and coerce to legal types if necessary. For problematic
/// PHI node, we coerce all incoming values in a single invocation.
bool optimizeLiveType(Instruction *I,
SmallVectorImpl<WeakTrackingVH> &DeadInsts);
// Whether or not the type should be replaced to avoid inefficient
// legalization code
bool shouldReplace(Type *ITy) {
FixedVectorType *VTy = dyn_cast<FixedVectorType>(ITy);
if (!VTy)
return false;
auto TLI = ST->getTargetLowering();
Type *EltTy = VTy->getElementType();
// If the element size is not less than the convert to scalar size, then we
// can't do any bit packing
if (!EltTy->isIntegerTy() ||
EltTy->getScalarSizeInBits() > ConvertToScalar->getScalarSizeInBits())
return false;
// Only coerce illegal types
TargetLoweringBase::LegalizeKind LK =
TLI->getTypeConversion(EltTy->getContext(), EVT::getEVT(EltTy, false));
return LK.first != TargetLoweringBase::TypeLegal;
}
LiveRegOptimizer(Module *Mod, const GCNSubtarget *ST) : Mod(Mod), ST(ST) {
DL = &Mod->getDataLayout();
ConvertToScalar = Type::getInt32Ty(Mod->getContext());
}
};
} // end anonymous namespace
bool AMDGPULateCodeGenPrepare::doInitialization(Module &M) {
Mod = &M;
DL = &Mod->getDataLayout();
return false;
}
bool AMDGPULateCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
const TargetMachine &TM = TPC.getTM<TargetMachine>();
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
// "Optimize" the virtual regs that cross basic block boundaries. When
// building the SelectionDAG, vectors of illegal types that cross basic blocks
// will be scalarized and widened, with each scalar living in its
// own register. To work around this, this optimization converts the
// vectors to equivalent vectors of legal type (which are converted back
// before uses in subsequent blocks), to pack the bits into fewer physical
// registers (used in CopyToReg/CopyFromReg pairs).
LiveRegOptimizer LRO(Mod, &ST);
bool Changed = false;
bool HasScalarSubwordLoads = ST.hasScalarSubwordLoads();
for (auto &BB : reverse(F))
for (Instruction &I : make_early_inc_range(reverse(BB))) {
Changed |= !HasScalarSubwordLoads && visit(I);
Changed |= LRO.optimizeLiveType(&I, DeadInsts);
}
RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts);
return Changed;
}
Type *LiveRegOptimizer::calculateConvertType(Type *OriginalType) {
assert(OriginalType->getScalarSizeInBits() <=
ConvertToScalar->getScalarSizeInBits());
FixedVectorType *VTy = cast<FixedVectorType>(OriginalType);
TypeSize OriginalSize = DL->getTypeSizeInBits(VTy);
TypeSize ConvertScalarSize = DL->getTypeSizeInBits(ConvertToScalar);
unsigned ConvertEltCount =
(OriginalSize + ConvertScalarSize - 1) / ConvertScalarSize;
if (OriginalSize <= ConvertScalarSize)
return IntegerType::get(Mod->getContext(), ConvertScalarSize);
return VectorType::get(Type::getIntNTy(Mod->getContext(), ConvertScalarSize),
ConvertEltCount, false);
}
Value *LiveRegOptimizer::convertToOptType(Instruction *V,
BasicBlock::iterator &InsertPt) {
FixedVectorType *VTy = cast<FixedVectorType>(V->getType());
Type *NewTy = calculateConvertType(V->getType());
TypeSize OriginalSize = DL->getTypeSizeInBits(VTy);
TypeSize NewSize = DL->getTypeSizeInBits(NewTy);
IRBuilder<> Builder(V->getParent(), InsertPt);
// If there is a bitsize match, we can fit the old vector into a new vector of
// desired type.
if (OriginalSize == NewSize)
return Builder.CreateBitCast(V, NewTy, V->getName() + ".bc");
// If there is a bitsize mismatch, we must use a wider vector.
assert(NewSize > OriginalSize);
uint64_t ExpandedVecElementCount = NewSize / VTy->getScalarSizeInBits();
SmallVector<int, 8> ShuffleMask;
uint64_t OriginalElementCount = VTy->getElementCount().getFixedValue();
for (unsigned I = 0; I < OriginalElementCount; I++)
ShuffleMask.push_back(I);
for (uint64_t I = OriginalElementCount; I < ExpandedVecElementCount; I++)
ShuffleMask.push_back(OriginalElementCount);
Value *ExpandedVec = Builder.CreateShuffleVector(V, ShuffleMask);
return Builder.CreateBitCast(ExpandedVec, NewTy, V->getName() + ".bc");
}
Value *LiveRegOptimizer::convertFromOptType(Type *ConvertType, Instruction *V,
BasicBlock::iterator &InsertPt,
BasicBlock *InsertBB) {
FixedVectorType *NewVTy = cast<FixedVectorType>(ConvertType);
TypeSize OriginalSize = DL->getTypeSizeInBits(V->getType());
TypeSize NewSize = DL->getTypeSizeInBits(NewVTy);
IRBuilder<> Builder(InsertBB, InsertPt);
// If there is a bitsize match, we simply convert back to the original type.
if (OriginalSize == NewSize)
return Builder.CreateBitCast(V, NewVTy, V->getName() + ".bc");
// If there is a bitsize mismatch, then we must have used a wider value to
// hold the bits.
assert(OriginalSize > NewSize);
// For wide scalars, we can just truncate the value.
if (!V->getType()->isVectorTy()) {
Instruction *Trunc = cast<Instruction>(
Builder.CreateTrunc(V, IntegerType::get(Mod->getContext(), NewSize)));
return cast<Instruction>(Builder.CreateBitCast(Trunc, NewVTy));
}
// For wider vectors, we must strip the MSBs to convert back to the original
// type.
VectorType *ExpandedVT = VectorType::get(
Type::getIntNTy(Mod->getContext(), NewVTy->getScalarSizeInBits()),
(OriginalSize / NewVTy->getScalarSizeInBits()), false);
Instruction *Converted =
cast<Instruction>(Builder.CreateBitCast(V, ExpandedVT));
unsigned NarrowElementCount = NewVTy->getElementCount().getFixedValue();
SmallVector<int, 8> ShuffleMask(NarrowElementCount);
std::iota(ShuffleMask.begin(), ShuffleMask.end(), 0);
return Builder.CreateShuffleVector(Converted, ShuffleMask);
}
bool LiveRegOptimizer::optimizeLiveType(
Instruction *I, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
SmallVector<Instruction *, 4> Worklist;
SmallPtrSet<PHINode *, 4> PhiNodes;
SmallPtrSet<Instruction *, 4> Defs;
SmallPtrSet<Instruction *, 4> Uses;
Worklist.push_back(cast<Instruction>(I));
while (!Worklist.empty()) {
Instruction *II = Worklist.pop_back_val();
if (!Visited.insert(II).second)
continue;
if (!shouldReplace(II->getType()))
continue;
if (PHINode *Phi = dyn_cast<PHINode>(II)) {
PhiNodes.insert(Phi);
// Collect all the incoming values of problematic PHI nodes.
for (Value *V : Phi->incoming_values()) {
// Repeat the collection process for newly found PHI nodes.
if (PHINode *OpPhi = dyn_cast<PHINode>(V)) {
if (!PhiNodes.count(OpPhi) && !Visited.count(OpPhi))
Worklist.push_back(OpPhi);
continue;
}
Instruction *IncInst = dyn_cast<Instruction>(V);
// Other incoming value types (e.g. vector literals) are unhandled
if (!IncInst && !isa<ConstantAggregateZero>(V))
return false;
// Collect all other incoming values for coercion.
if (IncInst)
Defs.insert(IncInst);
}
}
// Collect all relevant uses.
for (User *V : II->users()) {
// Repeat the collection process for problematic PHI nodes.
if (PHINode *OpPhi = dyn_cast<PHINode>(V)) {
if (!PhiNodes.count(OpPhi) && !Visited.count(OpPhi))
Worklist.push_back(OpPhi);
continue;
}
Instruction *UseInst = cast<Instruction>(V);
// Collect all uses of PHINodes and any use the crosses BB boundaries.
if (UseInst->getParent() != II->getParent() || isa<PHINode>(II)) {
Uses.insert(UseInst);
if (!Defs.count(II) && !isa<PHINode>(II)) {
Defs.insert(II);
}
}
}
}
// Coerce and track the defs.
for (Instruction *D : Defs) {
if (!ValMap.contains(D)) {
BasicBlock::iterator InsertPt = std::next(D->getIterator());
Value *ConvertVal = convertToOptType(D, InsertPt);
assert(ConvertVal);
ValMap[D] = ConvertVal;
}
}
// Construct new-typed PHI nodes.
for (PHINode *Phi : PhiNodes) {
ValMap[Phi] = PHINode::Create(calculateConvertType(Phi->getType()),
Phi->getNumIncomingValues(),
Phi->getName() + ".tc", Phi->getIterator());
}
// Connect all the PHI nodes with their new incoming values.
for (PHINode *Phi : PhiNodes) {
PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
bool MissingIncVal = false;
for (int I = 0, E = Phi->getNumIncomingValues(); I < E; I++) {
Value *IncVal = Phi->getIncomingValue(I);
if (isa<ConstantAggregateZero>(IncVal)) {
Type *NewType = calculateConvertType(Phi->getType());
NewPhi->addIncoming(ConstantInt::get(NewType, 0, false),
Phi->getIncomingBlock(I));
} else if (ValMap.contains(IncVal) && ValMap[IncVal])
NewPhi->addIncoming(ValMap[IncVal], Phi->getIncomingBlock(I));
else
MissingIncVal = true;
}
if (MissingIncVal) {
Value *DeadVal = ValMap[Phi];
// The coercion chain of the PHI is broken. Delete the Phi
// from the ValMap and any connected / user Phis.
SmallVector<Value *, 4> PHIWorklist;
SmallPtrSet<Value *, 4> VisitedPhis;
PHIWorklist.push_back(DeadVal);
while (!PHIWorklist.empty()) {
Value *NextDeadValue = PHIWorklist.pop_back_val();
VisitedPhis.insert(NextDeadValue);
auto OriginalPhi =
std::find_if(PhiNodes.begin(), PhiNodes.end(),
[this, &NextDeadValue](PHINode *CandPhi) {
return ValMap[CandPhi] == NextDeadValue;
});
// This PHI may have already been removed from maps when
// unwinding a previous Phi
if (OriginalPhi != PhiNodes.end())
ValMap.erase(*OriginalPhi);
DeadInsts.emplace_back(cast<Instruction>(NextDeadValue));
for (User *U : NextDeadValue->users()) {
if (!VisitedPhis.contains(cast<PHINode>(U)))
PHIWorklist.push_back(U);
}
}
} else {
DeadInsts.emplace_back(cast<Instruction>(Phi));
}
}
// Coerce back to the original type and replace the uses.
for (Instruction *U : Uses) {
// Replace all converted operands for a use.
for (auto [OpIdx, Op] : enumerate(U->operands())) {
if (ValMap.contains(Op) && ValMap[Op]) {
Value *NewVal = nullptr;
if (BBUseValMap.contains(U->getParent()) &&
BBUseValMap[U->getParent()].contains(ValMap[Op]))
NewVal = BBUseValMap[U->getParent()][ValMap[Op]];
else {
BasicBlock::iterator InsertPt = U->getParent()->getFirstNonPHIIt();
// We may pick up ops that were previously converted for users in
// other blocks. If there is an originally typed definition of the Op
// already in this block, simply reuse it.
if (isa<Instruction>(Op) && !isa<PHINode>(Op) &&
U->getParent() == cast<Instruction>(Op)->getParent()) {
NewVal = Op;
} else {
NewVal =
convertFromOptType(Op->getType(), cast<Instruction>(ValMap[Op]),
InsertPt, U->getParent());
BBUseValMap[U->getParent()][ValMap[Op]] = NewVal;
}
}
assert(NewVal);
U->setOperand(OpIdx, NewVal);
}
}
}
return true;
}
bool AMDGPULateCodeGenPrepare::canWidenScalarExtLoad(LoadInst &LI) const {
unsigned AS = LI.getPointerAddressSpace();
// Skip non-constant address space.
if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT)
return false;
// Skip non-simple loads.
if (!LI.isSimple())
return false;
Type *Ty = LI.getType();
// Skip aggregate types.
if (Ty->isAggregateType())
return false;
unsigned TySize = DL->getTypeStoreSize(Ty);
// Only handle sub-DWORD loads.
if (TySize >= 4)
return false;
// That load must be at least naturally aligned.
if (LI.getAlign() < DL->getABITypeAlign(Ty))
return false;
// It should be uniform, i.e. a scalar load.
return UA->isUniform(&LI);
}
bool AMDGPULateCodeGenPrepare::visitLoadInst(LoadInst &LI) {
if (!WidenLoads)
return false;
// Skip if that load is already aligned on DWORD at least as it's handled in
// SDAG.
if (LI.getAlign() >= 4)
return false;
if (!canWidenScalarExtLoad(LI))
return false;
int64_t Offset = 0;
auto *Base =
GetPointerBaseWithConstantOffset(LI.getPointerOperand(), Offset, *DL);
// If that base is not DWORD aligned, it's not safe to perform the following
// transforms.
if (!isDWORDAligned(Base))
return false;
int64_t Adjust = Offset & 0x3;
if (Adjust == 0) {
// With a zero adjust, the original alignment could be promoted with a
// better one.
LI.setAlignment(Align(4));
return true;
}
IRBuilder<> IRB(&LI);
IRB.SetCurrentDebugLocation(LI.getDebugLoc());
unsigned LdBits = DL->getTypeStoreSizeInBits(LI.getType());
auto IntNTy = Type::getIntNTy(LI.getContext(), LdBits);
auto *NewPtr = IRB.CreateConstGEP1_64(
IRB.getInt8Ty(),
IRB.CreateAddrSpaceCast(Base, LI.getPointerOperand()->getType()),
Offset - Adjust);
LoadInst *NewLd = IRB.CreateAlignedLoad(IRB.getInt32Ty(), NewPtr, Align(4));
NewLd->copyMetadata(LI);
NewLd->setMetadata(LLVMContext::MD_range, nullptr);
unsigned ShAmt = Adjust * 8;
auto *NewVal = IRB.CreateBitCast(
IRB.CreateTrunc(IRB.CreateLShr(NewLd, ShAmt), IntNTy), LI.getType());
LI.replaceAllUsesWith(NewVal);
DeadInsts.emplace_back(&LI);
return true;
}
INITIALIZE_PASS_BEGIN(AMDGPULateCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR late optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
INITIALIZE_PASS_END(AMDGPULateCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR late optimizations", false, false)
char AMDGPULateCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPULateCodeGenPreparePass() {
return new AMDGPULateCodeGenPrepare();
}
|