1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
|
//===-- AMDGPULowerBufferFatPointers.cpp ---------------------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers operations on buffer fat pointers (addrspace 7) to
// operations on buffer resources (addrspace 8) and is needed for correct
// codegen.
//
// # Background
//
// Address space 7 (the buffer fat pointer) is a 160-bit pointer that consists
// of a 128-bit buffer descriptor and a 32-bit offset into that descriptor.
// The buffer resource part needs to be it needs to be a "raw" buffer resource
// (it must have a stride of 0 and bounds checks must be in raw buffer mode
// or disabled).
//
// When these requirements are met, a buffer resource can be treated as a
// typical (though quite wide) pointer that follows typical LLVM pointer
// semantics. This allows the frontend to reason about such buffers (which are
// often encountered in the context of SPIR-V kernels).
//
// However, because of their non-power-of-2 size, these fat pointers cannot be
// present during translation to MIR (though this restriction may be lifted
// during the transition to GlobalISel). Therefore, this pass is needed in order
// to correctly implement these fat pointers.
//
// The resource intrinsics take the resource part (the address space 8 pointer)
// and the offset part (the 32-bit integer) as separate arguments. In addition,
// many users of these buffers manipulate the offset while leaving the resource
// part alone. For these reasons, we want to typically separate the resource
// and offset parts into separate variables, but combine them together when
// encountering cases where this is required, such as by inserting these values
// into aggretates or moving them to memory.
//
// Therefore, at a high level, `ptr addrspace(7) %x` becomes `ptr addrspace(8)
// %x.rsrc` and `i32 %x.off`, which will be combined into `{ptr addrspace(8),
// i32} %x = {%x.rsrc, %x.off}` if needed. Similarly, `vector<Nxp7>` becomes
// `{vector<Nxp8>, vector<Nxi32 >}` and its component parts.
//
// # Implementation
//
// This pass proceeds in three main phases:
//
// ## Rewriting loads and stores of p7
//
// The first phase is to rewrite away all loads and stors of `ptr addrspace(7)`,
// including aggregates containing such pointers, to ones that use `i160`. This
// is handled by `StoreFatPtrsAsIntsVisitor` , which visits loads, stores, and
// allocas and, if the loaded or stored type contains `ptr addrspace(7)`,
// rewrites that type to one where the p7s are replaced by i160s, copying other
// parts of aggregates as needed. In the case of a store, each pointer is
// `ptrtoint`d to i160 before storing, and load integers are `inttoptr`d back.
// This same transformation is applied to vectors of pointers.
//
// Such a transformation allows the later phases of the pass to not need
// to handle buffer fat pointers moving to and from memory, where we load
// have to handle the incompatibility between a `{Nxp8, Nxi32}` representation
// and `Nxi60` directly. Instead, that transposing action (where the vectors
// of resources and vectors of offsets are concatentated before being stored to
// memory) are handled through implementing `inttoptr` and `ptrtoint` only.
//
// Atomics operations on `ptr addrspace(7)` values are not suppported, as the
// hardware does not include a 160-bit atomic.
//
// ## Type remapping
//
// We use a `ValueMapper` to mangle uses of [vectors of] buffer fat pointers
// to the corresponding struct type, which has a resource part and an offset
// part.
//
// This uses a `BufferFatPtrToStructTypeMap` and a `FatPtrConstMaterializer`
// to, usually by way of `setType`ing values. Constants are handled here
// because there isn't a good way to fix them up later.
//
// This has the downside of leaving the IR in an invalid state (for example,
// the instruction `getelementptr {ptr addrspace(8), i32} %p, ...` will exist),
// but all such invalid states will be resolved by the third phase.
//
// Functions that don't take buffer fat pointers are modified in place. Those
// that do take such pointers have their basic blocks moved to a new function
// with arguments that are {ptr addrspace(8), i32} arguments and return values.
// This phase also records intrinsics so that they can be remangled or deleted
// later.
//
//
// ## Splitting pointer structs
//
// The meat of this pass consists of defining semantics for operations that
// produce or consume [vectors of] buffer fat pointers in terms of their
// resource and offset parts. This is accomplished throgh the `SplitPtrStructs`
// visitor.
//
// In the first pass through each function that is being lowered, the splitter
// inserts new instructions to implement the split-structures behavior, which is
// needed for correctness and performance. It records a list of "split users",
// instructions that are being replaced by operations on the resource and offset
// parts.
//
// Split users do not necessarily need to produce parts themselves (
// a `load float, ptr addrspace(7)` does not, for example), but, if they do not
// generate fat buffer pointers, they must RAUW in their replacement
// instructions during the initial visit.
//
// When these new instructions are created, they use the split parts recorded
// for their initial arguments in order to generate their replacements, creating
// a parallel set of instructions that does not refer to the original fat
// pointer values but instead to their resource and offset components.
//
// Instructions, such as `extractvalue`, that produce buffer fat pointers from
// sources that do not have split parts, have such parts generated using
// `extractvalue`. This is also the initial handling of PHI nodes, which
// are then cleaned up.
//
// ### Conditionals
//
// PHI nodes are initially given resource parts via `extractvalue`. However,
// this is not an efficient rewrite of such nodes, as, in most cases, the
// resource part in a conditional or loop remains constant throughout the loop
// and only the offset varies. Failing to optimize away these constant resources
// would cause additional registers to be sent around loops and might lead to
// waterfall loops being generated for buffer operations due to the
// "non-uniform" resource argument.
//
// Therefore, after all instructions have been visited, the pointer splitter
// post-processes all encountered conditionals. Given a PHI node or select,
// getPossibleRsrcRoots() collects all values that the resource parts of that
// conditional's input could come from as well as collecting all conditional
// instructions encountered during the search. If, after filtering out the
// initial node itself, the set of encountered conditionals is a subset of the
// potential roots and there is a single potential resource that isn't in the
// conditional set, that value is the only possible value the resource argument
// could have throughout the control flow.
//
// If that condition is met, then a PHI node can have its resource part changed
// to the singleton value and then be replaced by a PHI on the offsets.
// Otherwise, each PHI node is split into two, one for the resource part and one
// for the offset part, which replace the temporary `extractvalue` instructions
// that were added during the first pass.
//
// Similar logic applies to `select`, where
// `%z = select i1 %cond, %cond, ptr addrspace(7) %x, ptr addrspace(7) %y`
// can be split into `%z.rsrc = %x.rsrc` and
// `%z.off = select i1 %cond, ptr i32 %x.off, i32 %y.off`
// if both `%x` and `%y` have the same resource part, but two `select`
// operations will be needed if they do not.
//
// ### Final processing
//
// After conditionals have been cleaned up, the IR for each function is
// rewritten to remove all the old instructions that have been split up.
//
// Any instruction that used to produce a buffer fat pointer (and therefore now
// produces a resource-and-offset struct after type remapping) is
// replaced as follows:
// 1. All debug value annotations are cloned to reflect that the resource part
// and offset parts are computed separately and constitute different
// fragments of the underlying source language variable.
// 2. All uses that were themselves split are replaced by a `poison` of the
// struct type, as they will themselves be erased soon. This rule, combined
// with debug handling, should leave the use lists of split instructions
// empty in almost all cases.
// 3. If a user of the original struct-valued result remains, the structure
// needed for the new types to work is constructed out of the newly-defined
// parts, and the original instruction is replaced by this structure
// before being erased. Instructions requiring this construction include
// `ret` and `insertvalue`.
//
// # Consequences
//
// This pass does not alter the CFG.
//
// Alias analysis information will become coarser, as the LLVM alias analyzer
// cannot handle the buffer intrinsics. Specifically, while we can determine
// that the following two loads do not alias:
// ```
// %y = getelementptr i32, ptr addrspace(7) %x, i32 1
// %a = load i32, ptr addrspace(7) %x
// %b = load i32, ptr addrspace(7) %y
// ```
// we cannot (except through some code that runs during scheduling) determine
// that the rewritten loads below do not alias.
// ```
// %y.off = add i32 %x.off, 1
// %a = call @llvm.amdgcn.raw.ptr.buffer.load(ptr addrspace(8) %x.rsrc, i32
// %x.off, ...)
// %b = call @llvm.amdgcn.raw.ptr.buffer.load(ptr addrspace(8)
// %x.rsrc, i32 %y.off, ...)
// ```
// However, existing alias information is preserved.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "GCNSubtarget.h"
#include "SIDefines.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#define DEBUG_TYPE "amdgpu-lower-buffer-fat-pointers"
using namespace llvm;
static constexpr unsigned BufferOffsetWidth = 32;
namespace {
/// Recursively replace instances of ptr addrspace(7) and vector<Nxptr
/// addrspace(7)> with some other type as defined by the relevant subclass.
class BufferFatPtrTypeLoweringBase : public ValueMapTypeRemapper {
DenseMap<Type *, Type *> Map;
Type *remapTypeImpl(Type *Ty, SmallPtrSetImpl<StructType *> &Seen);
protected:
virtual Type *remapScalar(PointerType *PT) = 0;
virtual Type *remapVector(VectorType *VT) = 0;
const DataLayout &DL;
public:
BufferFatPtrTypeLoweringBase(const DataLayout &DL) : DL(DL) {}
Type *remapType(Type *SrcTy) override;
void clear() { Map.clear(); }
};
/// Remap ptr addrspace(7) to i160 and vector<Nxptr addrspace(7)> to
/// vector<Nxi60> in order to correctly handling loading/storing these values
/// from memory.
class BufferFatPtrToIntTypeMap : public BufferFatPtrTypeLoweringBase {
using BufferFatPtrTypeLoweringBase::BufferFatPtrTypeLoweringBase;
protected:
Type *remapScalar(PointerType *PT) override { return DL.getIntPtrType(PT); }
Type *remapVector(VectorType *VT) override { return DL.getIntPtrType(VT); }
};
/// Remap ptr addrspace(7) to {ptr addrspace(8), i32} (the resource and offset
/// parts of the pointer) so that we can easily rewrite operations on these
/// values that aren't loading them from or storing them to memory.
class BufferFatPtrToStructTypeMap : public BufferFatPtrTypeLoweringBase {
using BufferFatPtrTypeLoweringBase::BufferFatPtrTypeLoweringBase;
protected:
Type *remapScalar(PointerType *PT) override;
Type *remapVector(VectorType *VT) override;
};
} // namespace
// This code is adapted from the type remapper in lib/Linker/IRMover.cpp
Type *BufferFatPtrTypeLoweringBase::remapTypeImpl(
Type *Ty, SmallPtrSetImpl<StructType *> &Seen) {
Type **Entry = &Map[Ty];
if (*Entry)
return *Entry;
if (auto *PT = dyn_cast<PointerType>(Ty)) {
if (PT->getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER) {
return *Entry = remapScalar(PT);
}
}
if (auto *VT = dyn_cast<VectorType>(Ty)) {
auto *PT = dyn_cast<PointerType>(VT->getElementType());
if (PT && PT->getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER) {
return *Entry = remapVector(VT);
}
return *Entry = Ty;
}
// Whether the type is one that is structurally uniqued - that is, if it is
// not a named struct (the only kind of type where multiple structurally
// identical types that have a distinct `Type*`)
StructType *TyAsStruct = dyn_cast<StructType>(Ty);
bool IsUniqued = !TyAsStruct || TyAsStruct->isLiteral();
// Base case for ints, floats, opaque pointers, and so on, which don't
// require recursion.
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
return *Entry = Ty;
if (!IsUniqued) {
// Create a dummy type for recursion purposes.
if (!Seen.insert(TyAsStruct).second) {
StructType *Placeholder = StructType::create(Ty->getContext());
return *Entry = Placeholder;
}
}
bool Changed = false;
SmallVector<Type *> ElementTypes(Ty->getNumContainedTypes(), nullptr);
for (unsigned int I = 0, E = Ty->getNumContainedTypes(); I < E; ++I) {
Type *OldElem = Ty->getContainedType(I);
Type *NewElem = remapTypeImpl(OldElem, Seen);
ElementTypes[I] = NewElem;
Changed |= (OldElem != NewElem);
}
// Recursive calls to remapTypeImpl() may have invalidated pointer.
Entry = &Map[Ty];
if (!Changed) {
return *Entry = Ty;
}
if (auto *ArrTy = dyn_cast<ArrayType>(Ty))
return *Entry = ArrayType::get(ElementTypes[0], ArrTy->getNumElements());
if (auto *FnTy = dyn_cast<FunctionType>(Ty))
return *Entry = FunctionType::get(ElementTypes[0],
ArrayRef(ElementTypes).slice(1),
FnTy->isVarArg());
if (auto *STy = dyn_cast<StructType>(Ty)) {
// Genuine opaque types don't have a remapping.
if (STy->isOpaque())
return *Entry = Ty;
bool IsPacked = STy->isPacked();
if (IsUniqued)
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
SmallString<16> Name(STy->getName());
STy->setName("");
Type **RecursionEntry = &Map[Ty];
if (*RecursionEntry) {
auto *Placeholder = cast<StructType>(*RecursionEntry);
Placeholder->setBody(ElementTypes, IsPacked);
Placeholder->setName(Name);
return *Entry = Placeholder;
}
return *Entry = StructType::create(Ty->getContext(), ElementTypes, Name,
IsPacked);
}
llvm_unreachable("Unknown type of type that contains elements");
}
Type *BufferFatPtrTypeLoweringBase::remapType(Type *SrcTy) {
SmallPtrSet<StructType *, 2> Visited;
return remapTypeImpl(SrcTy, Visited);
}
Type *BufferFatPtrToStructTypeMap::remapScalar(PointerType *PT) {
LLVMContext &Ctx = PT->getContext();
return StructType::get(PointerType::get(Ctx, AMDGPUAS::BUFFER_RESOURCE),
IntegerType::get(Ctx, BufferOffsetWidth));
}
Type *BufferFatPtrToStructTypeMap::remapVector(VectorType *VT) {
ElementCount EC = VT->getElementCount();
LLVMContext &Ctx = VT->getContext();
Type *RsrcVec =
VectorType::get(PointerType::get(Ctx, AMDGPUAS::BUFFER_RESOURCE), EC);
Type *OffVec = VectorType::get(IntegerType::get(Ctx, BufferOffsetWidth), EC);
return StructType::get(RsrcVec, OffVec);
}
static bool isBufferFatPtrOrVector(Type *Ty) {
if (auto *PT = dyn_cast<PointerType>(Ty->getScalarType()))
return PT->getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER;
return false;
}
// True if the type is {ptr addrspace(8), i32} or a struct containing vectors of
// those types. Used to quickly skip instructions we don't need to process.
static bool isSplitFatPtr(Type *Ty) {
auto *ST = dyn_cast<StructType>(Ty);
if (!ST)
return false;
if (!ST->isLiteral() || ST->getNumElements() != 2)
return false;
auto *MaybeRsrc =
dyn_cast<PointerType>(ST->getElementType(0)->getScalarType());
auto *MaybeOff =
dyn_cast<IntegerType>(ST->getElementType(1)->getScalarType());
return MaybeRsrc && MaybeOff &&
MaybeRsrc->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE &&
MaybeOff->getBitWidth() == BufferOffsetWidth;
}
// True if the result type or any argument types are buffer fat pointers.
static bool isBufferFatPtrConst(Constant *C) {
Type *T = C->getType();
return isBufferFatPtrOrVector(T) || any_of(C->operands(), [](const Use &U) {
return isBufferFatPtrOrVector(U.get()->getType());
});
}
namespace {
/// Convert [vectors of] buffer fat pointers to integers when they are read from
/// or stored to memory. This ensures that these pointers will have the same
/// memory layout as before they are lowered, even though they will no longer
/// have their previous layout in registers/in the program (they'll be broken
/// down into resource and offset parts). This has the downside of imposing
/// marshalling costs when reading or storing these values, but since placing
/// such pointers into memory is an uncommon operation at best, we feel that
/// this cost is acceptable for better performance in the common case.
class StoreFatPtrsAsIntsVisitor
: public InstVisitor<StoreFatPtrsAsIntsVisitor, bool> {
BufferFatPtrToIntTypeMap *TypeMap;
ValueToValueMapTy ConvertedForStore;
IRBuilder<> IRB;
// Convert all the buffer fat pointers within the input value to inttegers
// so that it can be stored in memory.
Value *fatPtrsToInts(Value *V, Type *From, Type *To, const Twine &Name);
// Convert all the i160s that need to be buffer fat pointers (as specified)
// by the To type) into those pointers to preserve the semantics of the rest
// of the program.
Value *intsToFatPtrs(Value *V, Type *From, Type *To, const Twine &Name);
public:
StoreFatPtrsAsIntsVisitor(BufferFatPtrToIntTypeMap *TypeMap, LLVMContext &Ctx)
: TypeMap(TypeMap), IRB(Ctx) {}
bool processFunction(Function &F);
bool visitInstruction(Instruction &I) { return false; }
bool visitAllocaInst(AllocaInst &I);
bool visitLoadInst(LoadInst &LI);
bool visitStoreInst(StoreInst &SI);
bool visitGetElementPtrInst(GetElementPtrInst &I);
};
} // namespace
Value *StoreFatPtrsAsIntsVisitor::fatPtrsToInts(Value *V, Type *From, Type *To,
const Twine &Name) {
if (From == To)
return V;
ValueToValueMapTy::iterator Find = ConvertedForStore.find(V);
if (Find != ConvertedForStore.end())
return Find->second;
if (isBufferFatPtrOrVector(From)) {
Value *Cast = IRB.CreatePtrToInt(V, To, Name + ".int");
ConvertedForStore[V] = Cast;
return Cast;
}
if (From->getNumContainedTypes() == 0)
return V;
// Structs, arrays, and other compound types.
Value *Ret = PoisonValue::get(To);
if (auto *AT = dyn_cast<ArrayType>(From)) {
Type *FromPart = AT->getArrayElementType();
Type *ToPart = cast<ArrayType>(To)->getElementType();
for (uint64_t I = 0, E = AT->getArrayNumElements(); I < E; ++I) {
Value *Field = IRB.CreateExtractValue(V, I);
Value *NewField =
fatPtrsToInts(Field, FromPart, ToPart, Name + "." + Twine(I));
Ret = IRB.CreateInsertValue(Ret, NewField, I);
}
} else {
for (auto [Idx, FromPart, ToPart] :
enumerate(From->subtypes(), To->subtypes())) {
Value *Field = IRB.CreateExtractValue(V, Idx);
Value *NewField =
fatPtrsToInts(Field, FromPart, ToPart, Name + "." + Twine(Idx));
Ret = IRB.CreateInsertValue(Ret, NewField, Idx);
}
}
ConvertedForStore[V] = Ret;
return Ret;
}
Value *StoreFatPtrsAsIntsVisitor::intsToFatPtrs(Value *V, Type *From, Type *To,
const Twine &Name) {
if (From == To)
return V;
if (isBufferFatPtrOrVector(To)) {
Value *Cast = IRB.CreateIntToPtr(V, To, Name + ".ptr");
return Cast;
}
if (From->getNumContainedTypes() == 0)
return V;
// Structs, arrays, and other compound types.
Value *Ret = PoisonValue::get(To);
if (auto *AT = dyn_cast<ArrayType>(From)) {
Type *FromPart = AT->getArrayElementType();
Type *ToPart = cast<ArrayType>(To)->getElementType();
for (uint64_t I = 0, E = AT->getArrayNumElements(); I < E; ++I) {
Value *Field = IRB.CreateExtractValue(V, I);
Value *NewField =
intsToFatPtrs(Field, FromPart, ToPart, Name + "." + Twine(I));
Ret = IRB.CreateInsertValue(Ret, NewField, I);
}
} else {
for (auto [Idx, FromPart, ToPart] :
enumerate(From->subtypes(), To->subtypes())) {
Value *Field = IRB.CreateExtractValue(V, Idx);
Value *NewField =
intsToFatPtrs(Field, FromPart, ToPart, Name + "." + Twine(Idx));
Ret = IRB.CreateInsertValue(Ret, NewField, Idx);
}
}
return Ret;
}
bool StoreFatPtrsAsIntsVisitor::processFunction(Function &F) {
bool Changed = false;
// The visitors will mutate GEPs and allocas, but will push loads and stores
// to the worklist to avoid invalidation.
for (Instruction &I : make_early_inc_range(instructions(F))) {
Changed |= visit(I);
}
ConvertedForStore.clear();
return Changed;
}
bool StoreFatPtrsAsIntsVisitor::visitAllocaInst(AllocaInst &I) {
Type *Ty = I.getAllocatedType();
Type *NewTy = TypeMap->remapType(Ty);
if (Ty == NewTy)
return false;
I.setAllocatedType(NewTy);
return true;
}
bool StoreFatPtrsAsIntsVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
Type *Ty = I.getSourceElementType();
Type *NewTy = TypeMap->remapType(Ty);
if (Ty == NewTy)
return false;
// We'll be rewriting the type `ptr addrspace(7)` out of existence soon, so
// make sure GEPs don't have different semantics with the new type.
I.setSourceElementType(NewTy);
I.setResultElementType(TypeMap->remapType(I.getResultElementType()));
return true;
}
bool StoreFatPtrsAsIntsVisitor::visitLoadInst(LoadInst &LI) {
Type *Ty = LI.getType();
Type *IntTy = TypeMap->remapType(Ty);
if (Ty == IntTy)
return false;
IRB.SetInsertPoint(&LI);
auto *NLI = cast<LoadInst>(LI.clone());
NLI->mutateType(IntTy);
NLI = IRB.Insert(NLI);
copyMetadataForLoad(*NLI, LI);
NLI->takeName(&LI);
Value *CastBack = intsToFatPtrs(NLI, IntTy, Ty, NLI->getName());
LI.replaceAllUsesWith(CastBack);
LI.eraseFromParent();
return true;
}
bool StoreFatPtrsAsIntsVisitor::visitStoreInst(StoreInst &SI) {
Value *V = SI.getValueOperand();
Type *Ty = V->getType();
Type *IntTy = TypeMap->remapType(Ty);
if (Ty == IntTy)
return false;
IRB.SetInsertPoint(&SI);
Value *IntV = fatPtrsToInts(V, Ty, IntTy, V->getName());
for (auto *Dbg : at::getAssignmentMarkers(&SI))
Dbg->setValue(IntV);
SI.setOperand(0, IntV);
return true;
}
/// Return the ptr addrspace(8) and i32 (resource and offset parts) in a lowered
/// buffer fat pointer constant.
static std::pair<Constant *, Constant *>
splitLoweredFatBufferConst(Constant *C) {
assert(isSplitFatPtr(C->getType()) && "Not a split fat buffer pointer");
return std::make_pair(C->getAggregateElement(0u), C->getAggregateElement(1u));
}
namespace {
/// Handle the remapping of ptr addrspace(7) constants.
class FatPtrConstMaterializer final : public ValueMaterializer {
BufferFatPtrToStructTypeMap *TypeMap;
// An internal mapper that is used to recurse into the arguments of constants.
// While the documentation for `ValueMapper` specifies not to use it
// recursively, examination of the logic in mapValue() shows that it can
// safely be used recursively when handling constants, like it does in its own
// logic.
ValueMapper InternalMapper;
Constant *materializeBufferFatPtrConst(Constant *C);
public:
// UnderlyingMap is the value map this materializer will be filling.
FatPtrConstMaterializer(BufferFatPtrToStructTypeMap *TypeMap,
ValueToValueMapTy &UnderlyingMap)
: TypeMap(TypeMap),
InternalMapper(UnderlyingMap, RF_None, TypeMap, this) {}
virtual ~FatPtrConstMaterializer() = default;
Value *materialize(Value *V) override;
};
} // namespace
Constant *FatPtrConstMaterializer::materializeBufferFatPtrConst(Constant *C) {
Type *SrcTy = C->getType();
auto *NewTy = dyn_cast<StructType>(TypeMap->remapType(SrcTy));
if (C->isNullValue())
return ConstantAggregateZero::getNullValue(NewTy);
if (isa<PoisonValue>(C)) {
return ConstantStruct::get(NewTy,
{PoisonValue::get(NewTy->getElementType(0)),
PoisonValue::get(NewTy->getElementType(1))});
}
if (isa<UndefValue>(C)) {
return ConstantStruct::get(NewTy,
{UndefValue::get(NewTy->getElementType(0)),
UndefValue::get(NewTy->getElementType(1))});
}
if (auto *VC = dyn_cast<ConstantVector>(C)) {
if (Constant *S = VC->getSplatValue()) {
Constant *NewS = InternalMapper.mapConstant(*S);
if (!NewS)
return nullptr;
auto [Rsrc, Off] = splitLoweredFatBufferConst(NewS);
auto EC = VC->getType()->getElementCount();
return ConstantStruct::get(NewTy, {ConstantVector::getSplat(EC, Rsrc),
ConstantVector::getSplat(EC, Off)});
}
SmallVector<Constant *> Rsrcs;
SmallVector<Constant *> Offs;
for (Value *Op : VC->operand_values()) {
auto *NewOp = dyn_cast_or_null<Constant>(InternalMapper.mapValue(*Op));
if (!NewOp)
return nullptr;
auto [Rsrc, Off] = splitLoweredFatBufferConst(NewOp);
Rsrcs.push_back(Rsrc);
Offs.push_back(Off);
}
Constant *RsrcVec = ConstantVector::get(Rsrcs);
Constant *OffVec = ConstantVector::get(Offs);
return ConstantStruct::get(NewTy, {RsrcVec, OffVec});
}
if (isa<GlobalValue>(C))
report_fatal_error("Global values containing ptr addrspace(7) (buffer "
"fat pointer) values are not supported");
if (isa<ConstantExpr>(C))
report_fatal_error("Constant exprs containing ptr addrspace(7) (buffer "
"fat pointer) values should have been expanded earlier");
return nullptr;
}
Value *FatPtrConstMaterializer::materialize(Value *V) {
Constant *C = dyn_cast<Constant>(V);
if (!C)
return nullptr;
// Structs and other types that happen to contain fat pointers get remapped
// by the mapValue() logic.
if (!isBufferFatPtrConst(C))
return nullptr;
return materializeBufferFatPtrConst(C);
}
using PtrParts = std::pair<Value *, Value *>;
namespace {
// The visitor returns the resource and offset parts for an instruction if they
// can be computed, or (nullptr, nullptr) for cases that don't have a meaningful
// value mapping.
class SplitPtrStructs : public InstVisitor<SplitPtrStructs, PtrParts> {
ValueToValueMapTy RsrcParts;
ValueToValueMapTy OffParts;
// Track instructions that have been rewritten into a user of the component
// parts of their ptr addrspace(7) input. Instructions that produced
// ptr addrspace(7) parts should **not** be RAUW'd before being added to this
// set, as that replacement will be handled in a post-visit step. However,
// instructions that yield values that aren't fat pointers (ex. ptrtoint)
// should RAUW themselves with new instructions that use the split parts
// of their arguments during processing.
DenseSet<Instruction *> SplitUsers;
// Nodes that need a second look once we've computed the parts for all other
// instructions to see if, for example, we really need to phi on the resource
// part.
SmallVector<Instruction *> Conditionals;
// Temporary instructions produced while lowering conditionals that should be
// killed.
SmallVector<Instruction *> ConditionalTemps;
// Subtarget info, needed for determining what cache control bits to set.
const TargetMachine *TM;
const GCNSubtarget *ST = nullptr;
IRBuilder<> IRB;
// Copy metadata between instructions if applicable.
void copyMetadata(Value *Dest, Value *Src);
// Get the resource and offset parts of the value V, inserting appropriate
// extractvalue calls if needed.
PtrParts getPtrParts(Value *V);
// Given an instruction that could produce multiple resource parts (a PHI or
// select), collect the set of possible instructions that could have provided
// its resource parts that it could have (the `Roots`) and the set of
// conditional instructions visited during the search (`Seen`). If, after
// removing the root of the search from `Seen` and `Roots`, `Seen` is a subset
// of `Roots` and `Roots - Seen` contains one element, the resource part of
// that element can replace the resource part of all other elements in `Seen`.
void getPossibleRsrcRoots(Instruction *I, SmallPtrSetImpl<Value *> &Roots,
SmallPtrSetImpl<Value *> &Seen);
void processConditionals();
// If an instruction hav been split into resource and offset parts,
// delete that instruction. If any of its uses have not themselves been split
// into parts (for example, an insertvalue), construct the structure
// that the type rewrites declared should be produced by the dying instruction
// and use that.
// Also, kill the temporary extractvalue operations produced by the two-stage
// lowering of PHIs and conditionals.
void killAndReplaceSplitInstructions(SmallVectorImpl<Instruction *> &Origs);
void setAlign(CallInst *Intr, Align A, unsigned RsrcArgIdx);
void insertPreMemOpFence(AtomicOrdering Order, SyncScope::ID SSID);
void insertPostMemOpFence(AtomicOrdering Order, SyncScope::ID SSID);
Value *handleMemoryInst(Instruction *I, Value *Arg, Value *Ptr, Type *Ty,
Align Alignment, AtomicOrdering Order,
bool IsVolatile, SyncScope::ID SSID);
public:
SplitPtrStructs(LLVMContext &Ctx, const TargetMachine *TM)
: TM(TM), IRB(Ctx) {}
void processFunction(Function &F);
PtrParts visitInstruction(Instruction &I);
PtrParts visitLoadInst(LoadInst &LI);
PtrParts visitStoreInst(StoreInst &SI);
PtrParts visitAtomicRMWInst(AtomicRMWInst &AI);
PtrParts visitAtomicCmpXchgInst(AtomicCmpXchgInst &AI);
PtrParts visitGetElementPtrInst(GetElementPtrInst &GEP);
PtrParts visitPtrToIntInst(PtrToIntInst &PI);
PtrParts visitIntToPtrInst(IntToPtrInst &IP);
PtrParts visitAddrSpaceCastInst(AddrSpaceCastInst &I);
PtrParts visitICmpInst(ICmpInst &Cmp);
PtrParts visitFreezeInst(FreezeInst &I);
PtrParts visitExtractElementInst(ExtractElementInst &I);
PtrParts visitInsertElementInst(InsertElementInst &I);
PtrParts visitShuffleVectorInst(ShuffleVectorInst &I);
PtrParts visitPHINode(PHINode &PHI);
PtrParts visitSelectInst(SelectInst &SI);
PtrParts visitIntrinsicInst(IntrinsicInst &II);
};
} // namespace
void SplitPtrStructs::copyMetadata(Value *Dest, Value *Src) {
auto *DestI = dyn_cast<Instruction>(Dest);
auto *SrcI = dyn_cast<Instruction>(Src);
if (!DestI || !SrcI)
return;
DestI->copyMetadata(*SrcI);
}
PtrParts SplitPtrStructs::getPtrParts(Value *V) {
assert(isSplitFatPtr(V->getType()) && "it's not meaningful to get the parts "
"of something that wasn't rewritten");
auto *RsrcEntry = &RsrcParts[V];
auto *OffEntry = &OffParts[V];
if (*RsrcEntry && *OffEntry)
return {*RsrcEntry, *OffEntry};
if (auto *C = dyn_cast<Constant>(V)) {
auto [Rsrc, Off] = splitLoweredFatBufferConst(C);
return {*RsrcEntry = Rsrc, *OffEntry = Off};
}
IRBuilder<>::InsertPointGuard Guard(IRB);
if (auto *I = dyn_cast<Instruction>(V)) {
LLVM_DEBUG(dbgs() << "Recursing to split parts of " << *I << "\n");
auto [Rsrc, Off] = visit(*I);
if (Rsrc && Off)
return {*RsrcEntry = Rsrc, *OffEntry = Off};
// We'll be creating the new values after the relevant instruction.
// This instruction generates a value and so isn't a terminator.
IRB.SetInsertPoint(*I->getInsertionPointAfterDef());
IRB.SetCurrentDebugLocation(I->getDebugLoc());
} else if (auto *A = dyn_cast<Argument>(V)) {
IRB.SetInsertPointPastAllocas(A->getParent());
IRB.SetCurrentDebugLocation(DebugLoc());
}
Value *Rsrc = IRB.CreateExtractValue(V, 0, V->getName() + ".rsrc");
Value *Off = IRB.CreateExtractValue(V, 1, V->getName() + ".off");
return {*RsrcEntry = Rsrc, *OffEntry = Off};
}
/// Returns the instruction that defines the resource part of the value V.
/// Note that this is not getUnderlyingObject(), since that looks through
/// operations like ptrmask which might modify the resource part.
///
/// We can limit ourselves to just looking through GEPs followed by looking
/// through addrspacecasts because only those two operations preserve the
/// resource part, and because operations on an `addrspace(8)` (which is the
/// legal input to this addrspacecast) would produce a different resource part.
static Value *rsrcPartRoot(Value *V) {
while (auto *GEP = dyn_cast<GEPOperator>(V))
V = GEP->getPointerOperand();
while (auto *ASC = dyn_cast<AddrSpaceCastOperator>(V))
V = ASC->getPointerOperand();
return V;
}
void SplitPtrStructs::getPossibleRsrcRoots(Instruction *I,
SmallPtrSetImpl<Value *> &Roots,
SmallPtrSetImpl<Value *> &Seen) {
if (auto *PHI = dyn_cast<PHINode>(I)) {
if (!Seen.insert(I).second)
return;
for (Value *In : PHI->incoming_values()) {
In = rsrcPartRoot(In);
Roots.insert(In);
if (isa<PHINode, SelectInst>(In))
getPossibleRsrcRoots(cast<Instruction>(In), Roots, Seen);
}
} else if (auto *SI = dyn_cast<SelectInst>(I)) {
if (!Seen.insert(SI).second)
return;
Value *TrueVal = rsrcPartRoot(SI->getTrueValue());
Value *FalseVal = rsrcPartRoot(SI->getFalseValue());
Roots.insert(TrueVal);
Roots.insert(FalseVal);
if (isa<PHINode, SelectInst>(TrueVal))
getPossibleRsrcRoots(cast<Instruction>(TrueVal), Roots, Seen);
if (isa<PHINode, SelectInst>(FalseVal))
getPossibleRsrcRoots(cast<Instruction>(FalseVal), Roots, Seen);
} else {
llvm_unreachable("getPossibleRsrcParts() only works on phi and select");
}
}
void SplitPtrStructs::processConditionals() {
SmallDenseMap<Instruction *, Value *> FoundRsrcs;
SmallPtrSet<Value *, 4> Roots;
SmallPtrSet<Value *, 4> Seen;
for (Instruction *I : Conditionals) {
// These have to exist by now because we've visited these nodes.
Value *Rsrc = RsrcParts[I];
Value *Off = OffParts[I];
assert(Rsrc && Off && "must have visited conditionals by now");
std::optional<Value *> MaybeRsrc;
auto MaybeFoundRsrc = FoundRsrcs.find(I);
if (MaybeFoundRsrc != FoundRsrcs.end()) {
MaybeRsrc = MaybeFoundRsrc->second;
} else {
IRBuilder<>::InsertPointGuard Guard(IRB);
Roots.clear();
Seen.clear();
getPossibleRsrcRoots(I, Roots, Seen);
LLVM_DEBUG(dbgs() << "Processing conditional: " << *I << "\n");
#ifndef NDEBUG
for (Value *V : Roots)
LLVM_DEBUG(dbgs() << "Root: " << *V << "\n");
for (Value *V : Seen)
LLVM_DEBUG(dbgs() << "Seen: " << *V << "\n");
#endif
// If we are our own possible root, then we shouldn't block our
// replacement with a valid incoming value.
Roots.erase(I);
// We don't want to block the optimization for conditionals that don't
// refer to themselves but did see themselves during the traversal.
Seen.erase(I);
if (set_is_subset(Seen, Roots)) {
auto Diff = set_difference(Roots, Seen);
if (Diff.size() == 1) {
Value *RootVal = *Diff.begin();
// Handle the case where previous loops already looked through
// an addrspacecast.
if (isSplitFatPtr(RootVal->getType()))
MaybeRsrc = std::get<0>(getPtrParts(RootVal));
else
MaybeRsrc = RootVal;
}
}
}
if (auto *PHI = dyn_cast<PHINode>(I)) {
Value *NewRsrc;
StructType *PHITy = cast<StructType>(PHI->getType());
IRB.SetInsertPoint(*PHI->getInsertionPointAfterDef());
IRB.SetCurrentDebugLocation(PHI->getDebugLoc());
if (MaybeRsrc) {
NewRsrc = *MaybeRsrc;
} else {
Type *RsrcTy = PHITy->getElementType(0);
auto *RsrcPHI = IRB.CreatePHI(RsrcTy, PHI->getNumIncomingValues());
RsrcPHI->takeName(Rsrc);
for (auto [V, BB] : llvm::zip(PHI->incoming_values(), PHI->blocks())) {
Value *VRsrc = std::get<0>(getPtrParts(V));
RsrcPHI->addIncoming(VRsrc, BB);
}
copyMetadata(RsrcPHI, PHI);
NewRsrc = RsrcPHI;
}
Type *OffTy = PHITy->getElementType(1);
auto *NewOff = IRB.CreatePHI(OffTy, PHI->getNumIncomingValues());
NewOff->takeName(Off);
for (auto [V, BB] : llvm::zip(PHI->incoming_values(), PHI->blocks())) {
assert(OffParts.count(V) && "An offset part had to be created by now");
Value *VOff = std::get<1>(getPtrParts(V));
NewOff->addIncoming(VOff, BB);
}
copyMetadata(NewOff, PHI);
// Note: We don't eraseFromParent() the temporaries because we don't want
// to put the corrections maps in an inconstent state. That'll be handed
// during the rest of the killing. Also, `ValueToValueMapTy` guarantees
// that references in that map will be updated as well.
ConditionalTemps.push_back(cast<Instruction>(Rsrc));
ConditionalTemps.push_back(cast<Instruction>(Off));
Rsrc->replaceAllUsesWith(NewRsrc);
Off->replaceAllUsesWith(NewOff);
// Save on recomputing the cycle traversals in known-root cases.
if (MaybeRsrc)
for (Value *V : Seen)
FoundRsrcs[cast<Instruction>(V)] = NewRsrc;
} else if (isa<SelectInst>(I)) {
if (MaybeRsrc) {
ConditionalTemps.push_back(cast<Instruction>(Rsrc));
Rsrc->replaceAllUsesWith(*MaybeRsrc);
for (Value *V : Seen)
FoundRsrcs[cast<Instruction>(V)] = *MaybeRsrc;
}
} else {
llvm_unreachable("Only PHIs and selects go in the conditionals list");
}
}
}
void SplitPtrStructs::killAndReplaceSplitInstructions(
SmallVectorImpl<Instruction *> &Origs) {
for (Instruction *I : ConditionalTemps)
I->eraseFromParent();
for (Instruction *I : Origs) {
if (!SplitUsers.contains(I))
continue;
SmallVector<DbgValueInst *> Dbgs;
findDbgValues(Dbgs, I);
for (auto *Dbg : Dbgs) {
IRB.SetInsertPoint(Dbg);
auto &DL = I->getDataLayout();
assert(isSplitFatPtr(I->getType()) &&
"We should've RAUW'd away loads, stores, etc. at this point");
auto *OffDbg = cast<DbgValueInst>(Dbg->clone());
copyMetadata(OffDbg, Dbg);
auto [Rsrc, Off] = getPtrParts(I);
int64_t RsrcSz = DL.getTypeSizeInBits(Rsrc->getType());
int64_t OffSz = DL.getTypeSizeInBits(Off->getType());
std::optional<DIExpression *> RsrcExpr =
DIExpression::createFragmentExpression(Dbg->getExpression(), 0,
RsrcSz);
std::optional<DIExpression *> OffExpr =
DIExpression::createFragmentExpression(Dbg->getExpression(), RsrcSz,
OffSz);
if (OffExpr) {
OffDbg->setExpression(*OffExpr);
OffDbg->replaceVariableLocationOp(I, Off);
IRB.Insert(OffDbg);
} else {
OffDbg->deleteValue();
}
if (RsrcExpr) {
Dbg->setExpression(*RsrcExpr);
Dbg->replaceVariableLocationOp(I, Rsrc);
} else {
Dbg->replaceVariableLocationOp(I, UndefValue::get(I->getType()));
}
}
Value *Poison = PoisonValue::get(I->getType());
I->replaceUsesWithIf(Poison, [&](const Use &U) -> bool {
if (const auto *UI = dyn_cast<Instruction>(U.getUser()))
return SplitUsers.contains(UI);
return false;
});
if (I->use_empty()) {
I->eraseFromParent();
continue;
}
IRB.SetInsertPoint(*I->getInsertionPointAfterDef());
IRB.SetCurrentDebugLocation(I->getDebugLoc());
auto [Rsrc, Off] = getPtrParts(I);
Value *Struct = PoisonValue::get(I->getType());
Struct = IRB.CreateInsertValue(Struct, Rsrc, 0);
Struct = IRB.CreateInsertValue(Struct, Off, 1);
copyMetadata(Struct, I);
Struct->takeName(I);
I->replaceAllUsesWith(Struct);
I->eraseFromParent();
}
}
void SplitPtrStructs::setAlign(CallInst *Intr, Align A, unsigned RsrcArgIdx) {
LLVMContext &Ctx = Intr->getContext();
Intr->addParamAttr(RsrcArgIdx, Attribute::getWithAlignment(Ctx, A));
}
void SplitPtrStructs::insertPreMemOpFence(AtomicOrdering Order,
SyncScope::ID SSID) {
switch (Order) {
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
IRB.CreateFence(AtomicOrdering::Release, SSID);
break;
default:
break;
}
}
void SplitPtrStructs::insertPostMemOpFence(AtomicOrdering Order,
SyncScope::ID SSID) {
switch (Order) {
case AtomicOrdering::Acquire:
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
IRB.CreateFence(AtomicOrdering::Acquire, SSID);
break;
default:
break;
}
}
Value *SplitPtrStructs::handleMemoryInst(Instruction *I, Value *Arg, Value *Ptr,
Type *Ty, Align Alignment,
AtomicOrdering Order, bool IsVolatile,
SyncScope::ID SSID) {
IRB.SetInsertPoint(I);
auto [Rsrc, Off] = getPtrParts(Ptr);
SmallVector<Value *, 5> Args;
if (Arg)
Args.push_back(Arg);
Args.push_back(Rsrc);
Args.push_back(Off);
insertPreMemOpFence(Order, SSID);
// soffset is always 0 for these cases, where we always want any offset to be
// part of bounds checking and we don't know which parts of the GEPs is
// uniform.
Args.push_back(IRB.getInt32(0));
uint32_t Aux = 0;
bool IsInvariant =
(isa<LoadInst>(I) && I->getMetadata(LLVMContext::MD_invariant_load));
bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal);
// Atomic loads and stores need glc, atomic read-modify-write doesn't.
bool IsOneWayAtomic =
!isa<AtomicRMWInst>(I) && Order != AtomicOrdering::NotAtomic;
if (IsOneWayAtomic)
Aux |= AMDGPU::CPol::GLC;
if (IsNonTemporal && !IsInvariant)
Aux |= AMDGPU::CPol::SLC;
if (isa<LoadInst>(I) && ST->getGeneration() == AMDGPUSubtarget::GFX10)
Aux |= (Aux & AMDGPU::CPol::GLC ? AMDGPU::CPol::DLC : 0);
if (IsVolatile)
Aux |= AMDGPU::CPol::VOLATILE;
Args.push_back(IRB.getInt32(Aux));
Intrinsic::ID IID = Intrinsic::not_intrinsic;
if (isa<LoadInst>(I))
IID = Order == AtomicOrdering::NotAtomic
? Intrinsic::amdgcn_raw_ptr_buffer_load
: Intrinsic::amdgcn_raw_ptr_atomic_buffer_load;
else if (isa<StoreInst>(I))
IID = Intrinsic::amdgcn_raw_ptr_buffer_store;
else if (auto *RMW = dyn_cast<AtomicRMWInst>(I)) {
switch (RMW->getOperation()) {
case AtomicRMWInst::Xchg:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap;
break;
case AtomicRMWInst::Add:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_add;
break;
case AtomicRMWInst::Sub:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub;
break;
case AtomicRMWInst::And:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_and;
break;
case AtomicRMWInst::Or:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_or;
break;
case AtomicRMWInst::Xor:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor;
break;
case AtomicRMWInst::Max:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax;
break;
case AtomicRMWInst::Min:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin;
break;
case AtomicRMWInst::UMax:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax;
break;
case AtomicRMWInst::UMin:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin;
break;
case AtomicRMWInst::FAdd:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd;
break;
case AtomicRMWInst::FMax:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax;
break;
case AtomicRMWInst::FMin:
IID = Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin;
break;
case AtomicRMWInst::FSub: {
report_fatal_error("atomic floating point subtraction not supported for "
"buffer resources and should've been expanded away");
break;
}
case AtomicRMWInst::Nand:
report_fatal_error("atomic nand not supported for buffer resources and "
"should've been expanded away");
break;
case AtomicRMWInst::UIncWrap:
case AtomicRMWInst::UDecWrap:
report_fatal_error("wrapping increment/decrement not supported for "
"buffer resources and should've ben expanded away");
break;
case AtomicRMWInst::BAD_BINOP:
llvm_unreachable("Not sure how we got a bad binop");
}
}
auto *Call = IRB.CreateIntrinsic(IID, Ty, Args);
copyMetadata(Call, I);
setAlign(Call, Alignment, Arg ? 1 : 0);
Call->takeName(I);
insertPostMemOpFence(Order, SSID);
// The "no moving p7 directly" rewrites ensure that this load or store won't
// itself need to be split into parts.
SplitUsers.insert(I);
I->replaceAllUsesWith(Call);
return Call;
}
PtrParts SplitPtrStructs::visitInstruction(Instruction &I) {
return {nullptr, nullptr};
}
PtrParts SplitPtrStructs::visitLoadInst(LoadInst &LI) {
if (!isSplitFatPtr(LI.getPointerOperandType()))
return {nullptr, nullptr};
handleMemoryInst(&LI, nullptr, LI.getPointerOperand(), LI.getType(),
LI.getAlign(), LI.getOrdering(), LI.isVolatile(),
LI.getSyncScopeID());
return {nullptr, nullptr};
}
PtrParts SplitPtrStructs::visitStoreInst(StoreInst &SI) {
if (!isSplitFatPtr(SI.getPointerOperandType()))
return {nullptr, nullptr};
Value *Arg = SI.getValueOperand();
handleMemoryInst(&SI, Arg, SI.getPointerOperand(), Arg->getType(),
SI.getAlign(), SI.getOrdering(), SI.isVolatile(),
SI.getSyncScopeID());
return {nullptr, nullptr};
}
PtrParts SplitPtrStructs::visitAtomicRMWInst(AtomicRMWInst &AI) {
if (!isSplitFatPtr(AI.getPointerOperand()->getType()))
return {nullptr, nullptr};
Value *Arg = AI.getValOperand();
handleMemoryInst(&AI, Arg, AI.getPointerOperand(), Arg->getType(),
AI.getAlign(), AI.getOrdering(), AI.isVolatile(),
AI.getSyncScopeID());
return {nullptr, nullptr};
}
// Unlike load, store, and RMW, cmpxchg needs special handling to account
// for the boolean argument.
PtrParts SplitPtrStructs::visitAtomicCmpXchgInst(AtomicCmpXchgInst &AI) {
Value *Ptr = AI.getPointerOperand();
if (!isSplitFatPtr(Ptr->getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&AI);
Type *Ty = AI.getNewValOperand()->getType();
AtomicOrdering Order = AI.getMergedOrdering();
SyncScope::ID SSID = AI.getSyncScopeID();
bool IsNonTemporal = AI.getMetadata(LLVMContext::MD_nontemporal);
auto [Rsrc, Off] = getPtrParts(Ptr);
insertPreMemOpFence(Order, SSID);
uint32_t Aux = 0;
if (IsNonTemporal)
Aux |= AMDGPU::CPol::SLC;
if (AI.isVolatile())
Aux |= AMDGPU::CPol::VOLATILE;
auto *Call =
IRB.CreateIntrinsic(Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap, Ty,
{AI.getNewValOperand(), AI.getCompareOperand(), Rsrc,
Off, IRB.getInt32(0), IRB.getInt32(Aux)});
copyMetadata(Call, &AI);
setAlign(Call, AI.getAlign(), 2);
Call->takeName(&AI);
insertPostMemOpFence(Order, SSID);
Value *Res = PoisonValue::get(AI.getType());
Res = IRB.CreateInsertValue(Res, Call, 0);
if (!AI.isWeak()) {
Value *Succeeded = IRB.CreateICmpEQ(Call, AI.getCompareOperand());
Res = IRB.CreateInsertValue(Res, Succeeded, 1);
}
SplitUsers.insert(&AI);
AI.replaceAllUsesWith(Res);
return {nullptr, nullptr};
}
PtrParts SplitPtrStructs::visitGetElementPtrInst(GetElementPtrInst &GEP) {
using namespace llvm::PatternMatch;
Value *Ptr = GEP.getPointerOperand();
if (!isSplitFatPtr(Ptr->getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&GEP);
auto [Rsrc, Off] = getPtrParts(Ptr);
const DataLayout &DL = GEP.getDataLayout();
bool InBounds = GEP.isInBounds();
// In order to call emitGEPOffset() and thus not have to reimplement it,
// we need the GEP result to have ptr addrspace(7) type.
Type *FatPtrTy = IRB.getPtrTy(AMDGPUAS::BUFFER_FAT_POINTER);
if (auto *VT = dyn_cast<VectorType>(Off->getType()))
FatPtrTy = VectorType::get(FatPtrTy, VT->getElementCount());
GEP.mutateType(FatPtrTy);
Value *OffAccum = emitGEPOffset(&IRB, DL, &GEP);
GEP.mutateType(Ptr->getType());
if (match(OffAccum, m_Zero())) { // Constant-zero offset
SplitUsers.insert(&GEP);
return {Rsrc, Off};
}
bool HasNonNegativeOff = false;
if (auto *CI = dyn_cast<ConstantInt>(OffAccum)) {
HasNonNegativeOff = !CI->isNegative();
}
Value *NewOff;
if (match(Off, m_Zero())) {
NewOff = OffAccum;
} else {
NewOff = IRB.CreateAdd(Off, OffAccum, "",
/*hasNUW=*/InBounds && HasNonNegativeOff,
/*hasNSW=*/false);
}
copyMetadata(NewOff, &GEP);
NewOff->takeName(&GEP);
SplitUsers.insert(&GEP);
return {Rsrc, NewOff};
}
PtrParts SplitPtrStructs::visitPtrToIntInst(PtrToIntInst &PI) {
Value *Ptr = PI.getPointerOperand();
if (!isSplitFatPtr(Ptr->getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&PI);
Type *ResTy = PI.getType();
unsigned Width = ResTy->getScalarSizeInBits();
auto [Rsrc, Off] = getPtrParts(Ptr);
const DataLayout &DL = PI.getDataLayout();
unsigned FatPtrWidth = DL.getPointerSizeInBits(AMDGPUAS::BUFFER_FAT_POINTER);
Value *Res;
if (Width <= BufferOffsetWidth) {
Res = IRB.CreateIntCast(Off, ResTy, /*isSigned=*/false,
PI.getName() + ".off");
} else {
Value *RsrcInt = IRB.CreatePtrToInt(Rsrc, ResTy, PI.getName() + ".rsrc");
Value *Shl = IRB.CreateShl(
RsrcInt,
ConstantExpr::getIntegerValue(ResTy, APInt(Width, BufferOffsetWidth)),
"", Width >= FatPtrWidth, Width > FatPtrWidth);
Value *OffCast = IRB.CreateIntCast(Off, ResTy, /*isSigned=*/false,
PI.getName() + ".off");
Res = IRB.CreateOr(Shl, OffCast);
}
copyMetadata(Res, &PI);
Res->takeName(&PI);
SplitUsers.insert(&PI);
PI.replaceAllUsesWith(Res);
return {nullptr, nullptr};
}
PtrParts SplitPtrStructs::visitIntToPtrInst(IntToPtrInst &IP) {
if (!isSplitFatPtr(IP.getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&IP);
const DataLayout &DL = IP.getDataLayout();
unsigned RsrcPtrWidth = DL.getPointerSizeInBits(AMDGPUAS::BUFFER_RESOURCE);
Value *Int = IP.getOperand(0);
Type *IntTy = Int->getType();
Type *RsrcIntTy = IntTy->getWithNewBitWidth(RsrcPtrWidth);
unsigned Width = IntTy->getScalarSizeInBits();
auto *RetTy = cast<StructType>(IP.getType());
Type *RsrcTy = RetTy->getElementType(0);
Type *OffTy = RetTy->getElementType(1);
Value *RsrcPart = IRB.CreateLShr(
Int,
ConstantExpr::getIntegerValue(IntTy, APInt(Width, BufferOffsetWidth)));
Value *RsrcInt = IRB.CreateIntCast(RsrcPart, RsrcIntTy, /*isSigned=*/false);
Value *Rsrc = IRB.CreateIntToPtr(RsrcInt, RsrcTy, IP.getName() + ".rsrc");
Value *Off =
IRB.CreateIntCast(Int, OffTy, /*IsSigned=*/false, IP.getName() + ".off");
copyMetadata(Rsrc, &IP);
SplitUsers.insert(&IP);
return {Rsrc, Off};
}
PtrParts SplitPtrStructs::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
if (!isSplitFatPtr(I.getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
Value *In = I.getPointerOperand();
// No-op casts preserve parts
if (In->getType() == I.getType()) {
auto [Rsrc, Off] = getPtrParts(In);
SplitUsers.insert(&I);
return {Rsrc, Off};
}
if (I.getSrcAddressSpace() != AMDGPUAS::BUFFER_RESOURCE)
report_fatal_error("Only buffer resources (addrspace 8) can be cast to "
"buffer fat pointers (addrspace 7)");
Type *OffTy = cast<StructType>(I.getType())->getElementType(1);
Value *ZeroOff = Constant::getNullValue(OffTy);
SplitUsers.insert(&I);
return {In, ZeroOff};
}
PtrParts SplitPtrStructs::visitICmpInst(ICmpInst &Cmp) {
Value *Lhs = Cmp.getOperand(0);
if (!isSplitFatPtr(Lhs->getType()))
return {nullptr, nullptr};
Value *Rhs = Cmp.getOperand(1);
IRB.SetInsertPoint(&Cmp);
ICmpInst::Predicate Pred = Cmp.getPredicate();
assert((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
"Pointer comparison is only equal or unequal");
auto [LhsRsrc, LhsOff] = getPtrParts(Lhs);
auto [RhsRsrc, RhsOff] = getPtrParts(Rhs);
Value *RsrcCmp =
IRB.CreateICmp(Pred, LhsRsrc, RhsRsrc, Cmp.getName() + ".rsrc");
copyMetadata(RsrcCmp, &Cmp);
Value *OffCmp = IRB.CreateICmp(Pred, LhsOff, RhsOff, Cmp.getName() + ".off");
copyMetadata(OffCmp, &Cmp);
Value *Res = nullptr;
if (Pred == ICmpInst::ICMP_EQ)
Res = IRB.CreateAnd(RsrcCmp, OffCmp);
else if (Pred == ICmpInst::ICMP_NE)
Res = IRB.CreateOr(RsrcCmp, OffCmp);
copyMetadata(Res, &Cmp);
Res->takeName(&Cmp);
SplitUsers.insert(&Cmp);
Cmp.replaceAllUsesWith(Res);
return {nullptr, nullptr};
}
PtrParts SplitPtrStructs::visitFreezeInst(FreezeInst &I) {
if (!isSplitFatPtr(I.getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
auto [Rsrc, Off] = getPtrParts(I.getOperand(0));
Value *RsrcRes = IRB.CreateFreeze(Rsrc, I.getName() + ".rsrc");
copyMetadata(RsrcRes, &I);
Value *OffRes = IRB.CreateFreeze(Off, I.getName() + ".off");
copyMetadata(OffRes, &I);
SplitUsers.insert(&I);
return {RsrcRes, OffRes};
}
PtrParts SplitPtrStructs::visitExtractElementInst(ExtractElementInst &I) {
if (!isSplitFatPtr(I.getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
Value *Vec = I.getVectorOperand();
Value *Idx = I.getIndexOperand();
auto [Rsrc, Off] = getPtrParts(Vec);
Value *RsrcRes = IRB.CreateExtractElement(Rsrc, Idx, I.getName() + ".rsrc");
copyMetadata(RsrcRes, &I);
Value *OffRes = IRB.CreateExtractElement(Off, Idx, I.getName() + ".off");
copyMetadata(OffRes, &I);
SplitUsers.insert(&I);
return {RsrcRes, OffRes};
}
PtrParts SplitPtrStructs::visitInsertElementInst(InsertElementInst &I) {
// The mutated instructions temporarily don't return vectors, and so
// we need the generic getType() here to avoid crashes.
if (!isSplitFatPtr(cast<Instruction>(I).getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
Value *Vec = I.getOperand(0);
Value *Elem = I.getOperand(1);
Value *Idx = I.getOperand(2);
auto [VecRsrc, VecOff] = getPtrParts(Vec);
auto [ElemRsrc, ElemOff] = getPtrParts(Elem);
Value *RsrcRes =
IRB.CreateInsertElement(VecRsrc, ElemRsrc, Idx, I.getName() + ".rsrc");
copyMetadata(RsrcRes, &I);
Value *OffRes =
IRB.CreateInsertElement(VecOff, ElemOff, Idx, I.getName() + ".off");
copyMetadata(OffRes, &I);
SplitUsers.insert(&I);
return {RsrcRes, OffRes};
}
PtrParts SplitPtrStructs::visitShuffleVectorInst(ShuffleVectorInst &I) {
// Cast is needed for the same reason as insertelement's.
if (!isSplitFatPtr(cast<Instruction>(I).getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
Value *V1 = I.getOperand(0);
Value *V2 = I.getOperand(1);
ArrayRef<int> Mask = I.getShuffleMask();
auto [V1Rsrc, V1Off] = getPtrParts(V1);
auto [V2Rsrc, V2Off] = getPtrParts(V2);
Value *RsrcRes =
IRB.CreateShuffleVector(V1Rsrc, V2Rsrc, Mask, I.getName() + ".rsrc");
copyMetadata(RsrcRes, &I);
Value *OffRes =
IRB.CreateShuffleVector(V1Off, V2Off, Mask, I.getName() + ".off");
copyMetadata(OffRes, &I);
SplitUsers.insert(&I);
return {RsrcRes, OffRes};
}
PtrParts SplitPtrStructs::visitPHINode(PHINode &PHI) {
if (!isSplitFatPtr(PHI.getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(*PHI.getInsertionPointAfterDef());
// Phi nodes will be handled in post-processing after we've visited every
// instruction. However, instead of just returning {nullptr, nullptr},
// we explicitly create the temporary extractvalue operations that are our
// temporary results so that they end up at the beginning of the block with
// the PHIs.
Value *TmpRsrc = IRB.CreateExtractValue(&PHI, 0, PHI.getName() + ".rsrc");
Value *TmpOff = IRB.CreateExtractValue(&PHI, 1, PHI.getName() + ".off");
Conditionals.push_back(&PHI);
SplitUsers.insert(&PHI);
return {TmpRsrc, TmpOff};
}
PtrParts SplitPtrStructs::visitSelectInst(SelectInst &SI) {
if (!isSplitFatPtr(SI.getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&SI);
Value *Cond = SI.getCondition();
Value *True = SI.getTrueValue();
Value *False = SI.getFalseValue();
auto [TrueRsrc, TrueOff] = getPtrParts(True);
auto [FalseRsrc, FalseOff] = getPtrParts(False);
Value *RsrcRes =
IRB.CreateSelect(Cond, TrueRsrc, FalseRsrc, SI.getName() + ".rsrc", &SI);
copyMetadata(RsrcRes, &SI);
Conditionals.push_back(&SI);
Value *OffRes =
IRB.CreateSelect(Cond, TrueOff, FalseOff, SI.getName() + ".off", &SI);
copyMetadata(OffRes, &SI);
SplitUsers.insert(&SI);
return {RsrcRes, OffRes};
}
/// Returns true if this intrinsic needs to be removed when it is
/// applied to `ptr addrspace(7)` values. Calls to these intrinsics are
/// rewritten into calls to versions of that intrinsic on the resource
/// descriptor.
static bool isRemovablePointerIntrinsic(Intrinsic::ID IID) {
switch (IID) {
default:
return false;
case Intrinsic::ptrmask:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
return true;
}
}
PtrParts SplitPtrStructs::visitIntrinsicInst(IntrinsicInst &I) {
Intrinsic::ID IID = I.getIntrinsicID();
switch (IID) {
default:
break;
case Intrinsic::ptrmask: {
Value *Ptr = I.getArgOperand(0);
if (!isSplitFatPtr(Ptr->getType()))
return {nullptr, nullptr};
Value *Mask = I.getArgOperand(1);
IRB.SetInsertPoint(&I);
auto [Rsrc, Off] = getPtrParts(Ptr);
if (Mask->getType() != Off->getType())
report_fatal_error("offset width is not equal to index width of fat "
"pointer (data layout not set up correctly?)");
Value *OffRes = IRB.CreateAnd(Off, Mask, I.getName() + ".off");
copyMetadata(OffRes, &I);
SplitUsers.insert(&I);
return {Rsrc, OffRes};
}
// Pointer annotation intrinsics that, given their object-wide nature
// operate on the resource part.
case Intrinsic::invariant_start: {
Value *Ptr = I.getArgOperand(1);
if (!isSplitFatPtr(Ptr->getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
auto [Rsrc, Off] = getPtrParts(Ptr);
Type *NewTy = PointerType::get(I.getContext(), AMDGPUAS::BUFFER_RESOURCE);
auto *NewRsrc = IRB.CreateIntrinsic(IID, {NewTy}, {I.getOperand(0), Rsrc});
copyMetadata(NewRsrc, &I);
NewRsrc->takeName(&I);
SplitUsers.insert(&I);
I.replaceAllUsesWith(NewRsrc);
return {nullptr, nullptr};
}
case Intrinsic::invariant_end: {
Value *RealPtr = I.getArgOperand(2);
if (!isSplitFatPtr(RealPtr->getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
Value *RealRsrc = getPtrParts(RealPtr).first;
Value *InvPtr = I.getArgOperand(0);
Value *Size = I.getArgOperand(1);
Value *NewRsrc = IRB.CreateIntrinsic(IID, {RealRsrc->getType()},
{InvPtr, Size, RealRsrc});
copyMetadata(NewRsrc, &I);
NewRsrc->takeName(&I);
SplitUsers.insert(&I);
I.replaceAllUsesWith(NewRsrc);
return {nullptr, nullptr};
}
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group: {
Value *Ptr = I.getArgOperand(0);
if (!isSplitFatPtr(Ptr->getType()))
return {nullptr, nullptr};
IRB.SetInsertPoint(&I);
auto [Rsrc, Off] = getPtrParts(Ptr);
Value *NewRsrc = IRB.CreateIntrinsic(IID, {Rsrc->getType()}, {Rsrc});
copyMetadata(NewRsrc, &I);
NewRsrc->takeName(&I);
SplitUsers.insert(&I);
return {NewRsrc, Off};
}
}
return {nullptr, nullptr};
}
void SplitPtrStructs::processFunction(Function &F) {
ST = &TM->getSubtarget<GCNSubtarget>(F);
SmallVector<Instruction *, 0> Originals;
LLVM_DEBUG(dbgs() << "Splitting pointer structs in function: " << F.getName()
<< "\n");
for (Instruction &I : instructions(F))
Originals.push_back(&I);
for (Instruction *I : Originals) {
auto [Rsrc, Off] = visit(I);
assert(((Rsrc && Off) || (!Rsrc && !Off)) &&
"Can't have a resource but no offset");
if (Rsrc)
RsrcParts[I] = Rsrc;
if (Off)
OffParts[I] = Off;
}
processConditionals();
killAndReplaceSplitInstructions(Originals);
// Clean up after ourselves to save on memory.
RsrcParts.clear();
OffParts.clear();
SplitUsers.clear();
Conditionals.clear();
ConditionalTemps.clear();
}
namespace {
class AMDGPULowerBufferFatPointers : public ModulePass {
public:
static char ID;
AMDGPULowerBufferFatPointers() : ModulePass(ID) {
initializeAMDGPULowerBufferFatPointersPass(
*PassRegistry::getPassRegistry());
}
bool run(Module &M, const TargetMachine &TM);
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // namespace
/// Returns true if there are values that have a buffer fat pointer in them,
/// which means we'll need to perform rewrites on this function. As a side
/// effect, this will populate the type remapping cache.
static bool containsBufferFatPointers(const Function &F,
BufferFatPtrToStructTypeMap *TypeMap) {
bool HasFatPointers = false;
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
HasFatPointers |= (I.getType() != TypeMap->remapType(I.getType()));
return HasFatPointers;
}
static bool hasFatPointerInterface(const Function &F,
BufferFatPtrToStructTypeMap *TypeMap) {
Type *Ty = F.getFunctionType();
return Ty != TypeMap->remapType(Ty);
}
/// Move the body of `OldF` into a new function, returning it.
static Function *moveFunctionAdaptingType(Function *OldF, FunctionType *NewTy,
ValueToValueMapTy &CloneMap) {
bool IsIntrinsic = OldF->isIntrinsic();
Function *NewF =
Function::Create(NewTy, OldF->getLinkage(), OldF->getAddressSpace());
NewF->IsNewDbgInfoFormat = OldF->IsNewDbgInfoFormat;
NewF->copyAttributesFrom(OldF);
NewF->copyMetadata(OldF, 0);
NewF->takeName(OldF);
NewF->updateAfterNameChange();
NewF->setDLLStorageClass(OldF->getDLLStorageClass());
OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), NewF);
while (!OldF->empty()) {
BasicBlock *BB = &OldF->front();
BB->removeFromParent();
BB->insertInto(NewF);
CloneMap[BB] = BB;
for (Instruction &I : *BB) {
CloneMap[&I] = &I;
}
}
AttributeMask PtrOnlyAttrs;
for (auto K :
{Attribute::Dereferenceable, Attribute::DereferenceableOrNull,
Attribute::NoAlias, Attribute::NoCapture, Attribute::NoFree,
Attribute::NonNull, Attribute::NullPointerIsValid, Attribute::ReadNone,
Attribute::ReadOnly, Attribute::WriteOnly}) {
PtrOnlyAttrs.addAttribute(K);
}
SmallVector<AttributeSet> ArgAttrs;
AttributeList OldAttrs = OldF->getAttributes();
for (auto [I, OldArg, NewArg] : enumerate(OldF->args(), NewF->args())) {
CloneMap[&NewArg] = &OldArg;
NewArg.takeName(&OldArg);
Type *OldArgTy = OldArg.getType(), *NewArgTy = NewArg.getType();
// Temporarily mutate type of `NewArg` to allow RAUW to work.
NewArg.mutateType(OldArgTy);
OldArg.replaceAllUsesWith(&NewArg);
NewArg.mutateType(NewArgTy);
AttributeSet ArgAttr = OldAttrs.getParamAttrs(I);
// Intrinsics get their attributes fixed later.
if (OldArgTy != NewArgTy && !IsIntrinsic)
ArgAttr = ArgAttr.removeAttributes(NewF->getContext(), PtrOnlyAttrs);
ArgAttrs.push_back(ArgAttr);
}
AttributeSet RetAttrs = OldAttrs.getRetAttrs();
if (OldF->getReturnType() != NewF->getReturnType() && !IsIntrinsic)
RetAttrs = RetAttrs.removeAttributes(NewF->getContext(), PtrOnlyAttrs);
NewF->setAttributes(AttributeList::get(
NewF->getContext(), OldAttrs.getFnAttrs(), RetAttrs, ArgAttrs));
return NewF;
}
static void makeCloneInPraceMap(Function *F, ValueToValueMapTy &CloneMap) {
for (Argument &A : F->args())
CloneMap[&A] = &A;
for (BasicBlock &BB : *F) {
CloneMap[&BB] = &BB;
for (Instruction &I : BB)
CloneMap[&I] = &I;
}
}
bool AMDGPULowerBufferFatPointers::run(Module &M, const TargetMachine &TM) {
bool Changed = false;
const DataLayout &DL = M.getDataLayout();
// Record the functions which need to be remapped.
// The second element of the pair indicates whether the function has to have
// its arguments or return types adjusted.
SmallVector<std::pair<Function *, bool>> NeedsRemap;
BufferFatPtrToStructTypeMap StructTM(DL);
BufferFatPtrToIntTypeMap IntTM(DL);
for (const GlobalVariable &GV : M.globals()) {
if (GV.getAddressSpace() == AMDGPUAS::BUFFER_FAT_POINTER)
report_fatal_error("Global variables with a buffer fat pointer address "
"space (7) are not supported");
Type *VT = GV.getValueType();
if (VT != StructTM.remapType(VT))
report_fatal_error("Global variables that contain buffer fat pointers "
"(address space 7 pointers) are unsupported. Use "
"buffer resource pointers (address space 8) instead.");
}
{
// Collect all constant exprs and aggregates referenced by any function.
SmallVector<Constant *, 8> Worklist;
for (Function &F : M.functions())
for (Instruction &I : instructions(F))
for (Value *Op : I.operands())
if (isa<ConstantExpr>(Op) || isa<ConstantAggregate>(Op))
Worklist.push_back(cast<Constant>(Op));
// Recursively look for any referenced buffer pointer constants.
SmallPtrSet<Constant *, 8> Visited;
SetVector<Constant *> BufferFatPtrConsts;
while (!Worklist.empty()) {
Constant *C = Worklist.pop_back_val();
if (!Visited.insert(C).second)
continue;
if (isBufferFatPtrOrVector(C->getType()))
BufferFatPtrConsts.insert(C);
for (Value *Op : C->operands())
if (isa<ConstantExpr>(Op) || isa<ConstantAggregate>(Op))
Worklist.push_back(cast<Constant>(Op));
}
// Expand all constant expressions using fat buffer pointers to
// instructions.
Changed |= convertUsersOfConstantsToInstructions(
BufferFatPtrConsts.getArrayRef(), /*RestrictToFunc=*/nullptr,
/*RemoveDeadConstants=*/false, /*IncludeSelf=*/true);
}
StoreFatPtrsAsIntsVisitor MemOpsRewrite(&IntTM, M.getContext());
for (Function &F : M.functions()) {
bool InterfaceChange = hasFatPointerInterface(F, &StructTM);
bool BodyChanges = containsBufferFatPointers(F, &StructTM);
Changed |= MemOpsRewrite.processFunction(F);
if (InterfaceChange || BodyChanges)
NeedsRemap.push_back(std::make_pair(&F, InterfaceChange));
}
if (NeedsRemap.empty())
return Changed;
SmallVector<Function *> NeedsPostProcess;
SmallVector<Function *> Intrinsics;
// Keep one big map so as to memoize constants across functions.
ValueToValueMapTy CloneMap;
FatPtrConstMaterializer Materializer(&StructTM, CloneMap);
ValueMapper LowerInFuncs(CloneMap, RF_None, &StructTM, &Materializer);
for (auto [F, InterfaceChange] : NeedsRemap) {
Function *NewF = F;
if (InterfaceChange)
NewF = moveFunctionAdaptingType(
F, cast<FunctionType>(StructTM.remapType(F->getFunctionType())),
CloneMap);
else
makeCloneInPraceMap(F, CloneMap);
LowerInFuncs.remapFunction(*NewF);
if (NewF->isIntrinsic())
Intrinsics.push_back(NewF);
else
NeedsPostProcess.push_back(NewF);
if (InterfaceChange) {
F->replaceAllUsesWith(NewF);
F->eraseFromParent();
}
Changed = true;
}
StructTM.clear();
IntTM.clear();
CloneMap.clear();
SplitPtrStructs Splitter(M.getContext(), &TM);
for (Function *F : NeedsPostProcess)
Splitter.processFunction(*F);
for (Function *F : Intrinsics) {
if (isRemovablePointerIntrinsic(F->getIntrinsicID())) {
F->eraseFromParent();
} else {
std::optional<Function *> NewF = Intrinsic::remangleIntrinsicFunction(F);
if (NewF)
F->replaceAllUsesWith(*NewF);
}
}
return Changed;
}
bool AMDGPULowerBufferFatPointers::runOnModule(Module &M) {
TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
const TargetMachine &TM = TPC.getTM<TargetMachine>();
return run(M, TM);
}
char AMDGPULowerBufferFatPointers::ID = 0;
char &llvm::AMDGPULowerBufferFatPointersID = AMDGPULowerBufferFatPointers::ID;
void AMDGPULowerBufferFatPointers::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
}
#define PASS_DESC "Lower buffer fat pointer operations to buffer resources"
INITIALIZE_PASS_BEGIN(AMDGPULowerBufferFatPointers, DEBUG_TYPE, PASS_DESC,
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(AMDGPULowerBufferFatPointers, DEBUG_TYPE, PASS_DESC, false,
false)
#undef PASS_DESC
ModulePass *llvm::createAMDGPULowerBufferFatPointersPass() {
return new AMDGPULowerBufferFatPointers();
}
PreservedAnalyses
AMDGPULowerBufferFatPointersPass::run(Module &M, ModuleAnalysisManager &MA) {
return AMDGPULowerBufferFatPointers().run(M, TM) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
|