1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
|
//===- AMDGPUSplitModule.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Implements a module splitting algorithm designed to support the
/// FullLTO --lto-partitions option for parallel codegen. This is completely
/// different from the common SplitModule pass, as this system is designed with
/// AMDGPU in mind.
///
/// The basic idea of this module splitting implementation is the same as
/// SplitModule: load-balance the module's functions across a set of N
/// partitions to allow parallel codegen. However, it does it very
/// differently than the target-agnostic variant:
/// - The module has "split roots", which are kernels in the vast
// majority of cases.
/// - Each root has a set of dependencies, and when a root and its
/// dependencies is considered "big", we try to put it in a partition where
/// most dependencies are already imported, to avoid duplicating large
/// amounts of code.
/// - There's special care for indirect calls in order to ensure
/// AMDGPUResourceUsageAnalysis can work correctly.
///
/// This file also includes a more elaborate logging system to enable
/// users to easily generate logs that (if desired) do not include any value
/// names, in order to not leak information about the source file.
/// Such logs are very helpful to understand and fix potential issues with
/// module splitting.
#include "AMDGPUSplitModule.h"
#include "AMDGPUTargetMachine.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/SHA256.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "amdgpu-split-module"
namespace {
static cl::opt<float> LargeFnFactor(
"amdgpu-module-splitting-large-function-threshold", cl::init(2.0f),
cl::Hidden,
cl::desc(
"consider a function as large and needing special treatment when the "
"cost of importing it into a partition"
"exceeds the average cost of a partition by this factor; e;g. 2.0 "
"means if the function and its dependencies is 2 times bigger than "
"an average partition; 0 disables large functions handling entirely"));
static cl::opt<float> LargeFnOverlapForMerge(
"amdgpu-module-splitting-large-function-merge-overlap", cl::init(0.8f),
cl::Hidden,
cl::desc(
"defines how much overlap between two large function's dependencies "
"is needed to put them in the same partition"));
static cl::opt<bool> NoExternalizeGlobals(
"amdgpu-module-splitting-no-externalize-globals", cl::Hidden,
cl::desc("disables externalization of global variable with local linkage; "
"may cause globals to be duplicated which increases binary size"));
static cl::opt<std::string>
LogDirOpt("amdgpu-module-splitting-log-dir", cl::Hidden,
cl::desc("output directory for AMDGPU module splitting logs"));
static cl::opt<bool>
LogPrivate("amdgpu-module-splitting-log-private", cl::Hidden,
cl::desc("hash value names before printing them in the AMDGPU "
"module splitting logs"));
using CostType = InstructionCost::CostType;
using PartitionID = unsigned;
using GetTTIFn = function_ref<const TargetTransformInfo &(Function &)>;
static bool isEntryPoint(const Function *F) {
return AMDGPU::isEntryFunctionCC(F->getCallingConv());
}
static std::string getName(const Value &V) {
static bool HideNames;
static llvm::once_flag HideNameInitFlag;
llvm::call_once(HideNameInitFlag, [&]() {
if (LogPrivate.getNumOccurrences())
HideNames = LogPrivate;
else {
const auto EV = sys::Process::GetEnv("AMD_SPLIT_MODULE_LOG_PRIVATE");
HideNames = (EV.value_or("0") != "0");
}
});
if (!HideNames)
return V.getName().str();
return toHex(SHA256::hash(arrayRefFromStringRef(V.getName())),
/*LowerCase=*/true);
}
/// Main logging helper.
///
/// Logging can be configured by the following environment variable.
/// AMD_SPLIT_MODULE_LOG_DIR=<filepath>
/// If set, uses <filepath> as the directory to write logfiles to
/// each time module splitting is used.
/// AMD_SPLIT_MODULE_LOG_PRIVATE
/// If set to anything other than zero, all names are hidden.
///
/// Both environment variables have corresponding CL options which
/// takes priority over them.
///
/// Any output printed to the log files is also printed to dbgs() when -debug is
/// used and LLVM_DEBUG is defined.
///
/// This approach has a small disadvantage over LLVM_DEBUG though: logging logic
/// cannot be removed from the code (by building without debug). This probably
/// has a small performance cost because if some computation/formatting is
/// needed for logging purpose, it may be done everytime only to be ignored
/// by the logger.
///
/// As this pass only runs once and is not doing anything computationally
/// expensive, this is likely a reasonable trade-off.
///
/// If some computation should really be avoided when unused, users of the class
/// can check whether any logging will occur by using the bool operator.
///
/// \code
/// if (SML) {
/// // Executes only if logging to a file or if -debug is available and
/// used.
/// }
/// \endcode
class SplitModuleLogger {
public:
SplitModuleLogger(const Module &M) {
std::string LogDir = LogDirOpt;
if (LogDir.empty())
LogDir = sys::Process::GetEnv("AMD_SPLIT_MODULE_LOG_DIR").value_or("");
// No log dir specified means we don't need to log to a file.
// We may still log to dbgs(), though.
if (LogDir.empty())
return;
// If a log directory is specified, create a new file with a unique name in
// that directory.
int Fd;
SmallString<0> PathTemplate;
SmallString<0> RealPath;
sys::path::append(PathTemplate, LogDir, "Module-%%-%%-%%-%%-%%-%%-%%.txt");
if (auto Err =
sys::fs::createUniqueFile(PathTemplate.str(), Fd, RealPath)) {
report_fatal_error("Failed to create log file at '" + Twine(LogDir) +
"': " + Err.message(),
/*CrashDiag=*/false);
}
FileOS = std::make_unique<raw_fd_ostream>(Fd, /*shouldClose=*/true);
}
bool hasLogFile() const { return FileOS != nullptr; }
raw_ostream &logfile() {
assert(FileOS && "no logfile!");
return *FileOS;
}
/// \returns true if this SML will log anything either to a file or dbgs().
/// Can be used to avoid expensive computations that are ignored when logging
/// is disabled.
operator bool() const {
return hasLogFile() || (DebugFlag && isCurrentDebugType(DEBUG_TYPE));
}
private:
std::unique_ptr<raw_fd_ostream> FileOS;
};
template <typename Ty>
static SplitModuleLogger &operator<<(SplitModuleLogger &SML, const Ty &Val) {
static_assert(
!std::is_same_v<Ty, Value>,
"do not print values to logs directly, use handleName instead!");
LLVM_DEBUG(dbgs() << Val);
if (SML.hasLogFile())
SML.logfile() << Val;
return SML;
}
/// Calculate the cost of each function in \p M
/// \param SML Log Helper
/// \param GetTTI Abstract getter for TargetTransformInfo.
/// \param M Module to analyze.
/// \param CostMap[out] Resulting Function -> Cost map.
/// \return The module's total cost.
static CostType
calculateFunctionCosts(SplitModuleLogger &SML, GetTTIFn GetTTI, Module &M,
DenseMap<const Function *, CostType> &CostMap) {
CostType ModuleCost = 0;
CostType KernelCost = 0;
for (auto &Fn : M) {
if (Fn.isDeclaration())
continue;
CostType FnCost = 0;
const auto &TTI = GetTTI(Fn);
for (const auto &BB : Fn) {
for (const auto &I : BB) {
auto Cost =
TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
assert(Cost != InstructionCost::getMax());
// Assume expensive if we can't tell the cost of an instruction.
CostType CostVal =
Cost.getValue().value_or(TargetTransformInfo::TCC_Expensive);
assert((FnCost + CostVal) >= FnCost && "Overflow!");
FnCost += CostVal;
}
}
assert(FnCost != 0);
CostMap[&Fn] = FnCost;
assert((ModuleCost + FnCost) >= ModuleCost && "Overflow!");
ModuleCost += FnCost;
if (isEntryPoint(&Fn))
KernelCost += FnCost;
}
CostType FnCost = (ModuleCost - KernelCost);
CostType ModuleCostOr1 = ModuleCost ? ModuleCost : 1;
SML << "=> Total Module Cost: " << ModuleCost << '\n'
<< " => KernelCost: " << KernelCost << " ("
<< format("%0.2f", (float(KernelCost) / ModuleCostOr1) * 100) << "%)\n"
<< " => FnsCost: " << FnCost << " ("
<< format("%0.2f", (float(FnCost) / ModuleCostOr1) * 100) << "%)\n";
return ModuleCost;
}
static bool canBeIndirectlyCalled(const Function &F) {
if (F.isDeclaration() || isEntryPoint(&F))
return false;
return !F.hasLocalLinkage() ||
F.hasAddressTaken(/*PutOffender=*/nullptr,
/*IgnoreCallbackUses=*/false,
/*IgnoreAssumeLikeCalls=*/true,
/*IgnoreLLVMUsed=*/true,
/*IgnoreARCAttachedCall=*/false,
/*IgnoreCastedDirectCall=*/true);
}
/// When a function or any of its callees performs an indirect call, this
/// takes over \ref addAllDependencies and adds all potentially callable
/// functions to \p Fns so they can be counted as dependencies of the function.
///
/// This is needed due to how AMDGPUResourceUsageAnalysis operates: in the
/// presence of an indirect call, the function's resource usage is the same as
/// the most expensive function in the module.
/// \param M The module.
/// \param Fns[out] Resulting list of functions.
static void addAllIndirectCallDependencies(const Module &M,
DenseSet<const Function *> &Fns) {
for (const auto &Fn : M) {
if (canBeIndirectlyCalled(Fn))
Fns.insert(&Fn);
}
}
/// Adds the functions that \p Fn may call to \p Fns, then recurses into each
/// callee until all reachable functions have been gathered.
///
/// \param SML Log Helper
/// \param CG Call graph for \p Fn's module.
/// \param Fn Current function to look at.
/// \param Fns[out] Resulting list of functions.
/// \param OnlyDirect Whether to only consider direct callees.
/// \param HadIndirectCall[out] Set to true if an indirect call was seen at some
/// point, either in \p Fn or in one of the function it calls. When that
/// happens, we fall back to adding all callable functions inside \p Fn's module
/// to \p Fns.
static void addAllDependencies(SplitModuleLogger &SML, const CallGraph &CG,
const Function &Fn,
DenseSet<const Function *> &Fns, bool OnlyDirect,
bool &HadIndirectCall) {
assert(!Fn.isDeclaration());
const Module &M = *Fn.getParent();
SmallVector<const Function *> WorkList({&Fn});
while (!WorkList.empty()) {
const auto &CurFn = *WorkList.pop_back_val();
assert(!CurFn.isDeclaration());
// Scan for an indirect call. If such a call is found, we have to
// conservatively assume this can call all non-entrypoint functions in the
// module.
for (auto &CGEntry : *CG[&CurFn]) {
auto *CGNode = CGEntry.second;
auto *Callee = CGNode->getFunction();
if (!Callee) {
if (OnlyDirect)
continue;
// Functions have an edge towards CallsExternalNode if they're external
// declarations, or if they do an indirect call. As we only process
// definitions here, we know this means the function has an indirect
// call. We then have to conservatively assume this can call all
// non-entrypoint functions in the module.
if (CGNode != CG.getCallsExternalNode())
continue; // this is another function-less node we don't care about.
SML << "Indirect call detected in " << getName(CurFn)
<< " - treating all non-entrypoint functions as "
"potential dependencies\n";
// TODO: Print an ORE as well ?
addAllIndirectCallDependencies(M, Fns);
HadIndirectCall = true;
continue;
}
if (Callee->isDeclaration())
continue;
auto [It, Inserted] = Fns.insert(Callee);
if (Inserted)
WorkList.push_back(Callee);
}
}
}
/// Contains information about a function and its dependencies.
/// This is a splitting root. The splitting algorithm works by
/// assigning these to partitions.
struct FunctionWithDependencies {
FunctionWithDependencies(SplitModuleLogger &SML, CallGraph &CG,
const DenseMap<const Function *, CostType> &FnCosts,
const Function *Fn)
: Fn(Fn) {
// When Fn is not a kernel, we don't need to collect indirect callees.
// Resource usage analysis is only performed on kernels, and we collect
// indirect callees for resource usage analysis.
addAllDependencies(SML, CG, *Fn, Dependencies,
/*OnlyDirect*/ !isEntryPoint(Fn), HasIndirectCall);
TotalCost = FnCosts.at(Fn);
for (const auto *Dep : Dependencies) {
TotalCost += FnCosts.at(Dep);
// We cannot duplicate functions with external linkage, or functions that
// may be overriden at runtime.
HasNonDuplicatableDependecy |=
(Dep->hasExternalLinkage() || !Dep->isDefinitionExact());
}
}
const Function *Fn = nullptr;
DenseSet<const Function *> Dependencies;
/// Whether \p Fn or any of its \ref Dependencies contains an indirect call.
bool HasIndirectCall = false;
/// Whether any of \p Fn's dependencies cannot be duplicated.
bool HasNonDuplicatableDependecy = false;
CostType TotalCost = 0;
/// \returns true if this function and its dependencies can be considered
/// large according to \p Threshold.
bool isLarge(CostType Threshold) const {
return TotalCost > Threshold && !Dependencies.empty();
}
};
/// Calculates how much overlap there is between \p A and \p B.
/// \return A number between 0.0 and 1.0, where 1.0 means A == B and 0.0 means A
/// and B have no shared elements. Kernels do not count in overlap calculation.
static float calculateOverlap(const DenseSet<const Function *> &A,
const DenseSet<const Function *> &B) {
DenseSet<const Function *> Total;
for (const auto *F : A) {
if (!isEntryPoint(F))
Total.insert(F);
}
if (Total.empty())
return 0.0f;
unsigned NumCommon = 0;
for (const auto *F : B) {
if (isEntryPoint(F))
continue;
auto [It, Inserted] = Total.insert(F);
if (!Inserted)
++NumCommon;
}
return static_cast<float>(NumCommon) / Total.size();
}
/// Performs all of the partitioning work on \p M.
/// \param SML Log Helper
/// \param M Module to partition.
/// \param NumParts Number of partitions to create.
/// \param ModuleCost Total cost of all functions in \p M.
/// \param FnCosts Map of Function -> Cost
/// \param WorkList Functions and their dependencies to process in order.
/// \returns The created partitions (a vector of size \p NumParts )
static std::vector<DenseSet<const Function *>>
doPartitioning(SplitModuleLogger &SML, Module &M, unsigned NumParts,
CostType ModuleCost,
const DenseMap<const Function *, CostType> &FnCosts,
const SmallVector<FunctionWithDependencies> &WorkList) {
SML << "\n--Partitioning Starts--\n";
// Calculate a "large function threshold". When more than one function's total
// import cost exceeds this value, we will try to assign it to an existing
// partition to reduce the amount of duplication needed.
//
// e.g. let two functions X and Y have a import cost of ~10% of the module, we
// assign X to a partition as usual, but when we get to Y, we check if it's
// worth also putting it in Y's partition.
const CostType LargeFnThreshold =
LargeFnFactor ? CostType(((ModuleCost / NumParts) * LargeFnFactor))
: std::numeric_limits<CostType>::max();
std::vector<DenseSet<const Function *>> Partitions;
Partitions.resize(NumParts);
// Assign functions to partitions, and try to keep the partitions more or
// less balanced. We do that through a priority queue sorted in reverse, so we
// can always look at the partition with the least content.
//
// There are some cases where we will be deliberately unbalanced though.
// - Large functions: we try to merge with existing partitions to reduce code
// duplication.
// - Functions with indirect or external calls always go in the first
// partition (P0).
auto ComparePartitions = [](const std::pair<PartitionID, CostType> &a,
const std::pair<PartitionID, CostType> &b) {
// When two partitions have the same cost, assign to the one with the
// biggest ID first. This allows us to put things in P0 last, because P0 may
// have other stuff added later.
if (a.second == b.second)
return a.first < b.first;
return a.second > b.second;
};
// We can't use priority_queue here because we need to be able to access any
// element. This makes this a bit inefficient as we need to sort it again
// everytime we change it, but it's a very small array anyway (likely under 64
// partitions) so it's a cheap operation.
std::vector<std::pair<PartitionID, CostType>> BalancingQueue;
for (unsigned I = 0; I < NumParts; ++I)
BalancingQueue.emplace_back(I, 0);
// Helper function to handle assigning a function to a partition. This takes
// care of updating the balancing queue.
const auto AssignToPartition = [&](PartitionID PID,
const FunctionWithDependencies &FWD) {
auto &FnsInPart = Partitions[PID];
FnsInPart.insert(FWD.Fn);
FnsInPart.insert(FWD.Dependencies.begin(), FWD.Dependencies.end());
SML << "assign " << getName(*FWD.Fn) << " to P" << PID << "\n -> ";
if (!FWD.Dependencies.empty()) {
SML << FWD.Dependencies.size() << " dependencies added\n";
};
// Update the balancing queue. we scan backwards because in the common case
// the partition is at the end.
for (auto &[QueuePID, Cost] : reverse(BalancingQueue)) {
if (QueuePID == PID) {
CostType NewCost = 0;
for (auto *Fn : Partitions[PID])
NewCost += FnCosts.at(Fn);
SML << "[Updating P" << PID << " Cost]:" << Cost << " -> " << NewCost;
if (Cost) {
SML << " (" << unsigned(((float(NewCost) / Cost) - 1) * 100)
<< "% increase)";
}
SML << '\n';
Cost = NewCost;
}
}
sort(BalancingQueue, ComparePartitions);
};
for (auto &CurFn : WorkList) {
// When a function has indirect calls, it must stay in the first partition
// alongside every reachable non-entry function. This is a nightmare case
// for splitting as it severely limits what we can do.
if (CurFn.HasIndirectCall) {
SML << "Function with indirect call(s): " << getName(*CurFn.Fn)
<< " defaulting to P0\n";
AssignToPartition(0, CurFn);
continue;
}
// When a function has non duplicatable dependencies, we have to keep it in
// the first partition as well. This is a conservative approach, a
// finer-grained approach could keep track of which dependencies are
// non-duplicatable exactly and just make sure they're grouped together.
if (CurFn.HasNonDuplicatableDependecy) {
SML << "Function with externally visible dependency "
<< getName(*CurFn.Fn) << " defaulting to P0\n";
AssignToPartition(0, CurFn);
continue;
}
// Be smart with large functions to avoid duplicating their dependencies.
if (CurFn.isLarge(LargeFnThreshold)) {
assert(LargeFnOverlapForMerge >= 0.0f && LargeFnOverlapForMerge <= 1.0f);
SML << "Large Function: " << getName(*CurFn.Fn)
<< " - looking for partition with at least "
<< format("%0.2f", LargeFnOverlapForMerge * 100) << "% overlap\n";
bool Assigned = false;
for (const auto &[PID, Fns] : enumerate(Partitions)) {
float Overlap = calculateOverlap(CurFn.Dependencies, Fns);
SML << " => " << format("%0.2f", Overlap * 100) << "% overlap with P"
<< PID << '\n';
if (Overlap > LargeFnOverlapForMerge) {
SML << " selecting P" << PID << '\n';
AssignToPartition(PID, CurFn);
Assigned = true;
}
}
if (Assigned)
continue;
}
// Normal "load-balancing", assign to partition with least pressure.
auto [PID, CurCost] = BalancingQueue.back();
AssignToPartition(PID, CurFn);
}
if (SML) {
for (const auto &[Idx, Part] : enumerate(Partitions)) {
CostType Cost = 0;
for (auto *Fn : Part)
Cost += FnCosts.at(Fn);
SML << "P" << Idx << " has a total cost of " << Cost << " ("
<< format("%0.2f", (float(Cost) / ModuleCost) * 100)
<< "% of source module)\n";
}
SML << "--Partitioning Done--\n\n";
}
// Check no functions were missed.
#ifndef NDEBUG
DenseSet<const Function *> AllFunctions;
for (const auto &Part : Partitions)
AllFunctions.insert(Part.begin(), Part.end());
for (auto &Fn : M) {
if (!Fn.isDeclaration() && !AllFunctions.contains(&Fn)) {
assert(AllFunctions.contains(&Fn) && "Missed a function?!");
}
}
#endif
return Partitions;
}
static void externalize(GlobalValue &GV) {
if (GV.hasLocalLinkage()) {
GV.setLinkage(GlobalValue::ExternalLinkage);
GV.setVisibility(GlobalValue::HiddenVisibility);
}
// Unnamed entities must be named consistently between modules. setName will
// give a distinct name to each such entity.
if (!GV.hasName())
GV.setName("__llvmsplit_unnamed");
}
static bool hasDirectCaller(const Function &Fn) {
for (auto &U : Fn.uses()) {
if (auto *CB = dyn_cast<CallBase>(U.getUser()); CB && CB->isCallee(&U))
return true;
}
return false;
}
static void splitAMDGPUModule(
GetTTIFn GetTTI, Module &M, unsigned N,
function_ref<void(std::unique_ptr<Module> MPart)> ModuleCallback) {
SplitModuleLogger SML(M);
CallGraph CG(M);
// Externalize functions whose address are taken.
//
// This is needed because partitioning is purely based on calls, but sometimes
// a kernel/function may just look at the address of another local function
// and not do anything (no calls). After partitioning, that local function may
// end up in a different module (so it's just a declaration in the module
// where its address is taken), which emits a "undefined hidden symbol" linker
// error.
//
// Additionally, it guides partitioning to not duplicate this function if it's
// called directly at some point.
for (auto &Fn : M) {
if (Fn.hasAddressTaken()) {
if (Fn.hasLocalLinkage()) {
SML << "[externalize] " << Fn.getName()
<< " because its address is taken\n";
}
externalize(Fn);
}
}
// Externalize local GVs, which avoids duplicating their initializers, which
// in turns helps keep code size in check.
if (!NoExternalizeGlobals) {
for (auto &GV : M.globals()) {
if (GV.hasLocalLinkage())
SML << "[externalize] GV " << GV.getName() << '\n';
externalize(GV);
}
}
// Start by calculating the cost of every function in the module, as well as
// the module's overall cost.
DenseMap<const Function *, CostType> FnCosts;
const CostType ModuleCost = calculateFunctionCosts(SML, GetTTI, M, FnCosts);
// First, gather ever kernel into the worklist.
SmallVector<FunctionWithDependencies> WorkList;
for (auto &Fn : M) {
if (isEntryPoint(&Fn) && !Fn.isDeclaration())
WorkList.emplace_back(SML, CG, FnCosts, &Fn);
}
// Then, find missing functions that need to be considered as additional
// roots. These can't be called in theory, but in practice we still have to
// handle them to avoid linker errors.
{
DenseSet<const Function *> SeenFunctions;
for (const auto &FWD : WorkList) {
SeenFunctions.insert(FWD.Fn);
SeenFunctions.insert(FWD.Dependencies.begin(), FWD.Dependencies.end());
}
for (auto &Fn : M) {
// If this function is not part of any kernel's dependencies and isn't
// directly called, consider it as a root.
if (!Fn.isDeclaration() && !isEntryPoint(&Fn) &&
!SeenFunctions.count(&Fn) && !hasDirectCaller(Fn)) {
WorkList.emplace_back(SML, CG, FnCosts, &Fn);
}
}
}
// Sort the worklist so the most expensive roots are seen first.
sort(WorkList, [&](auto &A, auto &B) {
// Sort by total cost, and if the total cost is identical, sort
// alphabetically.
if (A.TotalCost == B.TotalCost)
return A.Fn->getName() < B.Fn->getName();
return A.TotalCost > B.TotalCost;
});
if (SML) {
SML << "Worklist\n";
for (const auto &FWD : WorkList) {
SML << "[root] " << getName(*FWD.Fn) << " (totalCost:" << FWD.TotalCost
<< " indirect:" << FWD.HasIndirectCall
<< " hasNonDuplicatableDep:" << FWD.HasNonDuplicatableDependecy
<< ")\n";
// Sort function names before printing to ensure determinism.
SmallVector<std::string> SortedDepNames;
SortedDepNames.reserve(FWD.Dependencies.size());
for (const auto *Dep : FWD.Dependencies)
SortedDepNames.push_back(getName(*Dep));
sort(SortedDepNames);
for (const auto &Name : SortedDepNames)
SML << " [dependency] " << Name << '\n';
}
}
// This performs all of the partitioning work.
auto Partitions = doPartitioning(SML, M, N, ModuleCost, FnCosts, WorkList);
assert(Partitions.size() == N);
// If we didn't externalize GVs, then local GVs need to be conservatively
// imported into every module (including their initializers), and then cleaned
// up afterwards.
const auto NeedsConservativeImport = [&](const GlobalValue *GV) {
// We conservatively import private/internal GVs into every module and clean
// them up afterwards.
const auto *Var = dyn_cast<GlobalVariable>(GV);
return Var && Var->hasLocalLinkage();
};
SML << "Creating " << N << " modules...\n";
unsigned TotalFnImpls = 0;
for (unsigned I = 0; I < N; ++I) {
const auto &FnsInPart = Partitions[I];
ValueToValueMapTy VMap;
std::unique_ptr<Module> MPart(
CloneModule(M, VMap, [&](const GlobalValue *GV) {
// Functions go in their assigned partition.
if (const auto *Fn = dyn_cast<Function>(GV))
return FnsInPart.contains(Fn);
if (NeedsConservativeImport(GV))
return true;
// Everything else goes in the first partition.
return I == 0;
}));
// Clean-up conservatively imported GVs without any users.
for (auto &GV : make_early_inc_range(MPart->globals())) {
if (NeedsConservativeImport(&GV) && GV.use_empty())
GV.eraseFromParent();
}
unsigned NumAllFns = 0, NumKernels = 0;
for (auto &Cur : *MPart) {
if (!Cur.isDeclaration()) {
++NumAllFns;
if (isEntryPoint(&Cur))
++NumKernels;
}
}
TotalFnImpls += NumAllFns;
SML << " - Module " << I << " with " << NumAllFns << " functions ("
<< NumKernels << " kernels)\n";
ModuleCallback(std::move(MPart));
}
SML << TotalFnImpls << " function definitions across all modules ("
<< format("%0.2f", (float(TotalFnImpls) / FnCosts.size()) * 100)
<< "% of original module)\n";
}
} // namespace
PreservedAnalyses AMDGPUSplitModulePass::run(Module &M,
ModuleAnalysisManager &MAM) {
FunctionAnalysisManager &FAM =
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
const auto TTIGetter = [&FAM](Function &F) -> const TargetTransformInfo & {
return FAM.getResult<TargetIRAnalysis>(F);
};
splitAMDGPUModule(TTIGetter, M, N, ModuleCallback);
// We don't change the original module.
return PreservedAnalyses::all();
}
|