File: GCNRegPressure.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (747 lines) | stat: -rw-r--r-- 25,148 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
//===- GCNRegPressure.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the GCNRegPressure class.
///
//===----------------------------------------------------------------------===//

#include "GCNRegPressure.h"
#include "AMDGPU.h"
#include "llvm/CodeGen/RegisterPressure.h"

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

bool llvm::isEqual(const GCNRPTracker::LiveRegSet &S1,
                   const GCNRPTracker::LiveRegSet &S2) {
  if (S1.size() != S2.size())
    return false;

  for (const auto &P : S1) {
    auto I = S2.find(P.first);
    if (I == S2.end() || I->second != P.second)
      return false;
  }
  return true;
}

///////////////////////////////////////////////////////////////////////////////
// GCNRegPressure

unsigned GCNRegPressure::getRegKind(Register Reg,
                                    const MachineRegisterInfo &MRI) {
  assert(Reg.isVirtual());
  const auto RC = MRI.getRegClass(Reg);
  auto STI = static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
  return STI->isSGPRClass(RC)
             ? (STI->getRegSizeInBits(*RC) == 32 ? SGPR32 : SGPR_TUPLE)
         : STI->isAGPRClass(RC)
             ? (STI->getRegSizeInBits(*RC) == 32 ? AGPR32 : AGPR_TUPLE)
             : (STI->getRegSizeInBits(*RC) == 32 ? VGPR32 : VGPR_TUPLE);
}

void GCNRegPressure::inc(unsigned Reg,
                         LaneBitmask PrevMask,
                         LaneBitmask NewMask,
                         const MachineRegisterInfo &MRI) {
  if (SIRegisterInfo::getNumCoveredRegs(NewMask) ==
      SIRegisterInfo::getNumCoveredRegs(PrevMask))
    return;

  int Sign = 1;
  if (NewMask < PrevMask) {
    std::swap(NewMask, PrevMask);
    Sign = -1;
  }

  switch (auto Kind = getRegKind(Reg, MRI)) {
  case SGPR32:
  case VGPR32:
  case AGPR32:
    Value[Kind] += Sign;
    break;

  case SGPR_TUPLE:
  case VGPR_TUPLE:
  case AGPR_TUPLE:
    assert(PrevMask < NewMask);

    Value[Kind == SGPR_TUPLE ? SGPR32 : Kind == AGPR_TUPLE ? AGPR32 : VGPR32] +=
      Sign * SIRegisterInfo::getNumCoveredRegs(~PrevMask & NewMask);

    if (PrevMask.none()) {
      assert(NewMask.any());
      const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
      Value[Kind] +=
          Sign * TRI->getRegClassWeight(MRI.getRegClass(Reg)).RegWeight;
    }
    break;

  default: llvm_unreachable("Unknown register kind");
  }
}

bool GCNRegPressure::less(const MachineFunction &MF, const GCNRegPressure &O,
                          unsigned MaxOccupancy) const {
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();

  const auto SGPROcc = std::min(MaxOccupancy,
                                ST.getOccupancyWithNumSGPRs(getSGPRNum()));
  const auto VGPROcc =
    std::min(MaxOccupancy,
             ST.getOccupancyWithNumVGPRs(getVGPRNum(ST.hasGFX90AInsts())));
  const auto OtherSGPROcc = std::min(MaxOccupancy,
                                ST.getOccupancyWithNumSGPRs(O.getSGPRNum()));
  const auto OtherVGPROcc =
    std::min(MaxOccupancy,
             ST.getOccupancyWithNumVGPRs(O.getVGPRNum(ST.hasGFX90AInsts())));

  const auto Occ = std::min(SGPROcc, VGPROcc);
  const auto OtherOcc = std::min(OtherSGPROcc, OtherVGPROcc);

  // Give first precedence to the better occupancy.
  if (Occ != OtherOcc)
    return Occ > OtherOcc;

  unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
  unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);

  // SGPR excess pressure conditions
  unsigned ExcessSGPR = std::max(static_cast<int>(getSGPRNum() - MaxSGPRs), 0);
  unsigned OtherExcessSGPR =
      std::max(static_cast<int>(O.getSGPRNum() - MaxSGPRs), 0);

  auto WaveSize = ST.getWavefrontSize();
  // The number of virtual VGPRs required to handle excess SGPR
  unsigned VGPRForSGPRSpills = (ExcessSGPR + (WaveSize - 1)) / WaveSize;
  unsigned OtherVGPRForSGPRSpills =
      (OtherExcessSGPR + (WaveSize - 1)) / WaveSize;

  unsigned MaxArchVGPRs = ST.getAddressableNumArchVGPRs();

  // Unified excess pressure conditions, accounting for VGPRs used for SGPR
  // spills
  unsigned ExcessVGPR =
      std::max(static_cast<int>(getVGPRNum(ST.hasGFX90AInsts()) +
                                VGPRForSGPRSpills - MaxVGPRs),
               0);
  unsigned OtherExcessVGPR =
      std::max(static_cast<int>(O.getVGPRNum(ST.hasGFX90AInsts()) +
                                OtherVGPRForSGPRSpills - MaxVGPRs),
               0);
  // Arch VGPR excess pressure conditions, accounting for VGPRs used for SGPR
  // spills
  unsigned ExcessArchVGPR = std::max(
      static_cast<int>(getVGPRNum(false) + VGPRForSGPRSpills - MaxArchVGPRs),
      0);
  unsigned OtherExcessArchVGPR =
      std::max(static_cast<int>(O.getVGPRNum(false) + OtherVGPRForSGPRSpills -
                                MaxArchVGPRs),
               0);
  // AGPR excess pressure conditions
  unsigned ExcessAGPR = std::max(
      static_cast<int>(ST.hasGFX90AInsts() ? (getAGPRNum() - MaxArchVGPRs)
                                           : (getAGPRNum() - MaxVGPRs)),
      0);
  unsigned OtherExcessAGPR = std::max(
      static_cast<int>(ST.hasGFX90AInsts() ? (O.getAGPRNum() - MaxArchVGPRs)
                                           : (O.getAGPRNum() - MaxVGPRs)),
      0);

  bool ExcessRP = ExcessSGPR || ExcessVGPR || ExcessArchVGPR || ExcessAGPR;
  bool OtherExcessRP = OtherExcessSGPR || OtherExcessVGPR ||
                       OtherExcessArchVGPR || OtherExcessAGPR;

  // Give second precedence to the reduced number of spills to hold the register
  // pressure.
  if (ExcessRP || OtherExcessRP) {
    // The difference in excess VGPR pressure, after including VGPRs used for
    // SGPR spills
    int VGPRDiff = ((OtherExcessVGPR + OtherExcessArchVGPR + OtherExcessAGPR) -
                    (ExcessVGPR + ExcessArchVGPR + ExcessAGPR));

    int SGPRDiff = OtherExcessSGPR - ExcessSGPR;

    if (VGPRDiff != 0)
      return VGPRDiff > 0;
    if (SGPRDiff != 0) {
      unsigned PureExcessVGPR =
          std::max(static_cast<int>(getVGPRNum(ST.hasGFX90AInsts()) - MaxVGPRs),
                   0) +
          std::max(static_cast<int>(getVGPRNum(false) - MaxArchVGPRs), 0);
      unsigned OtherPureExcessVGPR =
          std::max(
              static_cast<int>(O.getVGPRNum(ST.hasGFX90AInsts()) - MaxVGPRs),
              0) +
          std::max(static_cast<int>(O.getVGPRNum(false) - MaxArchVGPRs), 0);

      // If we have a special case where there is a tie in excess VGPR, but one
      // of the pressures has VGPR usage from SGPR spills, prefer the pressure
      // with SGPR spills.
      if (PureExcessVGPR != OtherPureExcessVGPR)
        return SGPRDiff < 0;
      // If both pressures have the same excess pressure before and after
      // accounting for SGPR spills, prefer fewer SGPR spills.
      return SGPRDiff > 0;
    }
  }

  bool SGPRImportant = SGPROcc < VGPROcc;
  const bool OtherSGPRImportant = OtherSGPROcc < OtherVGPROcc;

  // If both pressures disagree on what is more important compare vgprs.
  if (SGPRImportant != OtherSGPRImportant) {
    SGPRImportant = false;
  }

  // Give third precedence to lower register tuple pressure.
  bool SGPRFirst = SGPRImportant;
  for (int I = 2; I > 0; --I, SGPRFirst = !SGPRFirst) {
    if (SGPRFirst) {
      auto SW = getSGPRTuplesWeight();
      auto OtherSW = O.getSGPRTuplesWeight();
      if (SW != OtherSW)
        return SW < OtherSW;
    } else {
      auto VW = getVGPRTuplesWeight();
      auto OtherVW = O.getVGPRTuplesWeight();
      if (VW != OtherVW)
        return VW < OtherVW;
    }
  }

  // Give final precedence to lower general RP.
  return SGPRImportant ? (getSGPRNum() < O.getSGPRNum()):
                         (getVGPRNum(ST.hasGFX90AInsts()) <
                          O.getVGPRNum(ST.hasGFX90AInsts()));
}

Printable llvm::print(const GCNRegPressure &RP, const GCNSubtarget *ST) {
  return Printable([&RP, ST](raw_ostream &OS) {
    OS << "VGPRs: " << RP.Value[GCNRegPressure::VGPR32] << ' '
       << "AGPRs: " << RP.getAGPRNum();
    if (ST)
      OS << "(O"
         << ST->getOccupancyWithNumVGPRs(RP.getVGPRNum(ST->hasGFX90AInsts()))
         << ')';
    OS << ", SGPRs: " << RP.getSGPRNum();
    if (ST)
      OS << "(O" << ST->getOccupancyWithNumSGPRs(RP.getSGPRNum()) << ')';
    OS << ", LVGPR WT: " << RP.getVGPRTuplesWeight()
       << ", LSGPR WT: " << RP.getSGPRTuplesWeight();
    if (ST)
      OS << " -> Occ: " << RP.getOccupancy(*ST);
    OS << '\n';
  });
}

static LaneBitmask getDefRegMask(const MachineOperand &MO,
                                 const MachineRegisterInfo &MRI) {
  assert(MO.isDef() && MO.isReg() && MO.getReg().isVirtual());

  // We don't rely on read-undef flag because in case of tentative schedule
  // tracking it isn't set correctly yet. This works correctly however since
  // use mask has been tracked before using LIS.
  return MO.getSubReg() == 0 ?
    MRI.getMaxLaneMaskForVReg(MO.getReg()) :
    MRI.getTargetRegisterInfo()->getSubRegIndexLaneMask(MO.getSubReg());
}

static void
collectVirtualRegUses(SmallVectorImpl<RegisterMaskPair> &RegMaskPairs,
                      const MachineInstr &MI, const LiveIntervals &LIS,
                      const MachineRegisterInfo &MRI) {
  SlotIndex InstrSI;
  for (const auto &MO : MI.operands()) {
    if (!MO.isReg() || !MO.getReg().isVirtual())
      continue;
    if (!MO.isUse() || !MO.readsReg())
      continue;

    Register Reg = MO.getReg();
    if (llvm::any_of(RegMaskPairs, [Reg](const RegisterMaskPair &RM) {
          return RM.RegUnit == Reg;
        }))
      continue;

    LaneBitmask UseMask;
    auto &LI = LIS.getInterval(Reg);
    if (!LI.hasSubRanges())
      UseMask = MRI.getMaxLaneMaskForVReg(Reg);
    else {
      // For a tentative schedule LIS isn't updated yet but livemask should
      // remain the same on any schedule. Subreg defs can be reordered but they
      // all must dominate uses anyway.
      if (!InstrSI)
        InstrSI = LIS.getInstructionIndex(*MO.getParent()).getBaseIndex();
      UseMask = getLiveLaneMask(LI, InstrSI, MRI);
    }

    RegMaskPairs.emplace_back(Reg, UseMask);
  }
}

///////////////////////////////////////////////////////////////////////////////
// GCNRPTracker

LaneBitmask llvm::getLiveLaneMask(unsigned Reg, SlotIndex SI,
                                  const LiveIntervals &LIS,
                                  const MachineRegisterInfo &MRI) {
  return getLiveLaneMask(LIS.getInterval(Reg), SI, MRI);
}

LaneBitmask llvm::getLiveLaneMask(const LiveInterval &LI, SlotIndex SI,
                                  const MachineRegisterInfo &MRI) {
  LaneBitmask LiveMask;
  if (LI.hasSubRanges()) {
    for (const auto &S : LI.subranges())
      if (S.liveAt(SI)) {
        LiveMask |= S.LaneMask;
        assert(LiveMask == (LiveMask & MRI.getMaxLaneMaskForVReg(LI.reg())));
      }
  } else if (LI.liveAt(SI)) {
    LiveMask = MRI.getMaxLaneMaskForVReg(LI.reg());
  }
  return LiveMask;
}

GCNRPTracker::LiveRegSet llvm::getLiveRegs(SlotIndex SI,
                                           const LiveIntervals &LIS,
                                           const MachineRegisterInfo &MRI) {
  GCNRPTracker::LiveRegSet LiveRegs;
  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
    auto Reg = Register::index2VirtReg(I);
    if (!LIS.hasInterval(Reg))
      continue;
    auto LiveMask = getLiveLaneMask(Reg, SI, LIS, MRI);
    if (LiveMask.any())
      LiveRegs[Reg] = LiveMask;
  }
  return LiveRegs;
}

void GCNRPTracker::reset(const MachineInstr &MI,
                         const LiveRegSet *LiveRegsCopy,
                         bool After) {
  const MachineFunction &MF = *MI.getMF();
  MRI = &MF.getRegInfo();
  if (LiveRegsCopy) {
    if (&LiveRegs != LiveRegsCopy)
      LiveRegs = *LiveRegsCopy;
  } else {
    LiveRegs = After ? getLiveRegsAfter(MI, LIS)
                     : getLiveRegsBefore(MI, LIS);
  }

  MaxPressure = CurPressure = getRegPressure(*MRI, LiveRegs);
}

////////////////////////////////////////////////////////////////////////////////
// GCNUpwardRPTracker

void GCNUpwardRPTracker::reset(const MachineRegisterInfo &MRI_,
                               const LiveRegSet &LiveRegs_) {
  MRI = &MRI_;
  LiveRegs = LiveRegs_;
  LastTrackedMI = nullptr;
  MaxPressure = CurPressure = getRegPressure(MRI_, LiveRegs_);
}

void GCNUpwardRPTracker::recede(const MachineInstr &MI) {
  assert(MRI && "call reset first");

  LastTrackedMI = &MI;

  if (MI.isDebugInstr())
    return;

  // Kill all defs.
  GCNRegPressure DefPressure, ECDefPressure;
  bool HasECDefs = false;
  for (const MachineOperand &MO : MI.all_defs()) {
    if (!MO.getReg().isVirtual())
      continue;

    Register Reg = MO.getReg();
    LaneBitmask DefMask = getDefRegMask(MO, *MRI);

    // Treat a def as fully live at the moment of definition: keep a record.
    if (MO.isEarlyClobber()) {
      ECDefPressure.inc(Reg, LaneBitmask::getNone(), DefMask, *MRI);
      HasECDefs = true;
    } else
      DefPressure.inc(Reg, LaneBitmask::getNone(), DefMask, *MRI);

    auto I = LiveRegs.find(Reg);
    if (I == LiveRegs.end())
      continue;

    LaneBitmask &LiveMask = I->second;
    LaneBitmask PrevMask = LiveMask;
    LiveMask &= ~DefMask;
    CurPressure.inc(Reg, PrevMask, LiveMask, *MRI);
    if (LiveMask.none())
      LiveRegs.erase(I);
  }

  // Update MaxPressure with defs pressure.
  DefPressure += CurPressure;
  if (HasECDefs)
    DefPressure += ECDefPressure;
  MaxPressure = max(DefPressure, MaxPressure);

  // Make uses alive.
  SmallVector<RegisterMaskPair, 8> RegUses;
  collectVirtualRegUses(RegUses, MI, LIS, *MRI);
  for (const RegisterMaskPair &U : RegUses) {
    LaneBitmask &LiveMask = LiveRegs[U.RegUnit];
    LaneBitmask PrevMask = LiveMask;
    LiveMask |= U.LaneMask;
    CurPressure.inc(U.RegUnit, PrevMask, LiveMask, *MRI);
  }

  // Update MaxPressure with uses plus early-clobber defs pressure.
  MaxPressure = HasECDefs ? max(CurPressure + ECDefPressure, MaxPressure)
                          : max(CurPressure, MaxPressure);

  assert(CurPressure == getRegPressure(*MRI, LiveRegs));
}

////////////////////////////////////////////////////////////////////////////////
// GCNDownwardRPTracker

bool GCNDownwardRPTracker::reset(const MachineInstr &MI,
                                 const LiveRegSet *LiveRegsCopy) {
  MRI = &MI.getParent()->getParent()->getRegInfo();
  LastTrackedMI = nullptr;
  MBBEnd = MI.getParent()->end();
  NextMI = &MI;
  NextMI = skipDebugInstructionsForward(NextMI, MBBEnd);
  if (NextMI == MBBEnd)
    return false;
  GCNRPTracker::reset(*NextMI, LiveRegsCopy, false);
  return true;
}

bool GCNDownwardRPTracker::advanceBeforeNext() {
  assert(MRI && "call reset first");
  if (!LastTrackedMI)
    return NextMI == MBBEnd;

  assert(NextMI == MBBEnd || !NextMI->isDebugInstr());

  SlotIndex SI = NextMI == MBBEnd
                     ? LIS.getInstructionIndex(*LastTrackedMI).getDeadSlot()
                     : LIS.getInstructionIndex(*NextMI).getBaseIndex();
  assert(SI.isValid());

  // Remove dead registers or mask bits.
  SmallSet<Register, 8> SeenRegs;
  for (auto &MO : LastTrackedMI->operands()) {
    if (!MO.isReg() || !MO.getReg().isVirtual())
      continue;
    if (MO.isUse() && !MO.readsReg())
      continue;
    if (!SeenRegs.insert(MO.getReg()).second)
      continue;
    const LiveInterval &LI = LIS.getInterval(MO.getReg());
    if (LI.hasSubRanges()) {
      auto It = LiveRegs.end();
      for (const auto &S : LI.subranges()) {
        if (!S.liveAt(SI)) {
          if (It == LiveRegs.end()) {
            It = LiveRegs.find(MO.getReg());
            if (It == LiveRegs.end())
              llvm_unreachable("register isn't live");
          }
          auto PrevMask = It->second;
          It->second &= ~S.LaneMask;
          CurPressure.inc(MO.getReg(), PrevMask, It->second, *MRI);
        }
      }
      if (It != LiveRegs.end() && It->second.none())
        LiveRegs.erase(It);
    } else if (!LI.liveAt(SI)) {
      auto It = LiveRegs.find(MO.getReg());
      if (It == LiveRegs.end())
        llvm_unreachable("register isn't live");
      CurPressure.inc(MO.getReg(), It->second, LaneBitmask::getNone(), *MRI);
      LiveRegs.erase(It);
    }
  }

  MaxPressure = max(MaxPressure, CurPressure);

  LastTrackedMI = nullptr;

  return NextMI == MBBEnd;
}

void GCNDownwardRPTracker::advanceToNext() {
  LastTrackedMI = &*NextMI++;
  NextMI = skipDebugInstructionsForward(NextMI, MBBEnd);

  // Add new registers or mask bits.
  for (const auto &MO : LastTrackedMI->all_defs()) {
    Register Reg = MO.getReg();
    if (!Reg.isVirtual())
      continue;
    auto &LiveMask = LiveRegs[Reg];
    auto PrevMask = LiveMask;
    LiveMask |= getDefRegMask(MO, *MRI);
    CurPressure.inc(Reg, PrevMask, LiveMask, *MRI);
  }

  MaxPressure = max(MaxPressure, CurPressure);
}

bool GCNDownwardRPTracker::advance() {
  if (NextMI == MBBEnd)
    return false;
  advanceBeforeNext();
  advanceToNext();
  return true;
}

bool GCNDownwardRPTracker::advance(MachineBasicBlock::const_iterator End) {
  while (NextMI != End)
    if (!advance()) return false;
  return true;
}

bool GCNDownwardRPTracker::advance(MachineBasicBlock::const_iterator Begin,
                                   MachineBasicBlock::const_iterator End,
                                   const LiveRegSet *LiveRegsCopy) {
  reset(*Begin, LiveRegsCopy);
  return advance(End);
}

Printable llvm::reportMismatch(const GCNRPTracker::LiveRegSet &LISLR,
                               const GCNRPTracker::LiveRegSet &TrackedLR,
                               const TargetRegisterInfo *TRI, StringRef Pfx) {
  return Printable([&LISLR, &TrackedLR, TRI, Pfx](raw_ostream &OS) {
    for (auto const &P : TrackedLR) {
      auto I = LISLR.find(P.first);
      if (I == LISLR.end()) {
        OS << Pfx << printReg(P.first, TRI) << ":L" << PrintLaneMask(P.second)
           << " isn't found in LIS reported set\n";
      } else if (I->second != P.second) {
        OS << Pfx << printReg(P.first, TRI)
           << " masks doesn't match: LIS reported " << PrintLaneMask(I->second)
           << ", tracked " << PrintLaneMask(P.second) << '\n';
      }
    }
    for (auto const &P : LISLR) {
      auto I = TrackedLR.find(P.first);
      if (I == TrackedLR.end()) {
        OS << Pfx << printReg(P.first, TRI) << ":L" << PrintLaneMask(P.second)
           << " isn't found in tracked set\n";
      }
    }
  });
}

bool GCNUpwardRPTracker::isValid() const {
  const auto &SI = LIS.getInstructionIndex(*LastTrackedMI).getBaseIndex();
  const auto LISLR = llvm::getLiveRegs(SI, LIS, *MRI);
  const auto &TrackedLR = LiveRegs;

  if (!isEqual(LISLR, TrackedLR)) {
    dbgs() << "\nGCNUpwardRPTracker error: Tracked and"
              " LIS reported livesets mismatch:\n"
           << print(LISLR, *MRI);
    reportMismatch(LISLR, TrackedLR, MRI->getTargetRegisterInfo());
    return false;
  }

  auto LISPressure = getRegPressure(*MRI, LISLR);
  if (LISPressure != CurPressure) {
    dbgs() << "GCNUpwardRPTracker error: Pressure sets different\nTracked: "
           << print(CurPressure) << "LIS rpt: " << print(LISPressure);
    return false;
  }
  return true;
}

Printable llvm::print(const GCNRPTracker::LiveRegSet &LiveRegs,
                      const MachineRegisterInfo &MRI) {
  return Printable([&LiveRegs, &MRI](raw_ostream &OS) {
    const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
    for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
      Register Reg = Register::index2VirtReg(I);
      auto It = LiveRegs.find(Reg);
      if (It != LiveRegs.end() && It->second.any())
        OS << ' ' << printVRegOrUnit(Reg, TRI) << ':'
           << PrintLaneMask(It->second);
    }
    OS << '\n';
  });
}

void GCNRegPressure::dump() const { dbgs() << print(*this); }

static cl::opt<bool> UseDownwardTracker(
    "amdgpu-print-rp-downward",
    cl::desc("Use GCNDownwardRPTracker for GCNRegPressurePrinter pass"),
    cl::init(false), cl::Hidden);

char llvm::GCNRegPressurePrinter::ID = 0;
char &llvm::GCNRegPressurePrinterID = GCNRegPressurePrinter::ID;

INITIALIZE_PASS(GCNRegPressurePrinter, "amdgpu-print-rp", "", true, true)

// Return lanemask of Reg's subregs that are live-through at [Begin, End] and
// are fully covered by Mask.
static LaneBitmask
getRegLiveThroughMask(const MachineRegisterInfo &MRI, const LiveIntervals &LIS,
                      Register Reg, SlotIndex Begin, SlotIndex End,
                      LaneBitmask Mask = LaneBitmask::getAll()) {

  auto IsInOneSegment = [Begin, End](const LiveRange &LR) -> bool {
    auto *Segment = LR.getSegmentContaining(Begin);
    return Segment && Segment->contains(End);
  };

  LaneBitmask LiveThroughMask;
  const LiveInterval &LI = LIS.getInterval(Reg);
  if (LI.hasSubRanges()) {
    for (auto &SR : LI.subranges()) {
      if ((SR.LaneMask & Mask) == SR.LaneMask && IsInOneSegment(SR))
        LiveThroughMask |= SR.LaneMask;
    }
  } else {
    LaneBitmask RegMask = MRI.getMaxLaneMaskForVReg(Reg);
    if ((RegMask & Mask) == RegMask && IsInOneSegment(LI))
      LiveThroughMask = RegMask;
  }

  return LiveThroughMask;
}

bool GCNRegPressurePrinter::runOnMachineFunction(MachineFunction &MF) {
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
  const LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();

  auto &OS = dbgs();

// Leading spaces are important for YAML syntax.
#define PFX "  "

  OS << "---\nname: " << MF.getName() << "\nbody:             |\n";

  auto printRP = [](const GCNRegPressure &RP) {
    return Printable([&RP](raw_ostream &OS) {
      OS << format(PFX "  %-5d", RP.getSGPRNum())
         << format(" %-5d", RP.getVGPRNum(false));
    });
  };

  auto ReportLISMismatchIfAny = [&](const GCNRPTracker::LiveRegSet &TrackedLR,
                                    const GCNRPTracker::LiveRegSet &LISLR) {
    if (LISLR != TrackedLR) {
      OS << PFX "  mis LIS: " << llvm::print(LISLR, MRI)
         << reportMismatch(LISLR, TrackedLR, TRI, PFX "    ");
    }
  };

  // Register pressure before and at an instruction (in program order).
  SmallVector<std::pair<GCNRegPressure, GCNRegPressure>, 16> RP;

  for (auto &MBB : MF) {
    RP.clear();
    RP.reserve(MBB.size());

    OS << PFX;
    MBB.printName(OS);
    OS << ":\n";

    SlotIndex MBBStartSlot = LIS.getSlotIndexes()->getMBBStartIdx(&MBB);
    SlotIndex MBBEndSlot = LIS.getSlotIndexes()->getMBBEndIdx(&MBB);

    GCNRPTracker::LiveRegSet LiveIn, LiveOut;
    GCNRegPressure RPAtMBBEnd;

    if (UseDownwardTracker) {
      if (MBB.empty()) {
        LiveIn = LiveOut = getLiveRegs(MBBStartSlot, LIS, MRI);
        RPAtMBBEnd = getRegPressure(MRI, LiveIn);
      } else {
        GCNDownwardRPTracker RPT(LIS);
        RPT.reset(MBB.front());

        LiveIn = RPT.getLiveRegs();

        while (!RPT.advanceBeforeNext()) {
          GCNRegPressure RPBeforeMI = RPT.getPressure();
          RPT.advanceToNext();
          RP.emplace_back(RPBeforeMI, RPT.getPressure());
        }

        LiveOut = RPT.getLiveRegs();
        RPAtMBBEnd = RPT.getPressure();
      }
    } else {
      GCNUpwardRPTracker RPT(LIS);
      RPT.reset(MRI, MBBEndSlot);

      LiveOut = RPT.getLiveRegs();
      RPAtMBBEnd = RPT.getPressure();

      for (auto &MI : reverse(MBB)) {
        RPT.resetMaxPressure();
        RPT.recede(MI);
        if (!MI.isDebugInstr())
          RP.emplace_back(RPT.getPressure(), RPT.getMaxPressure());
      }

      LiveIn = RPT.getLiveRegs();
    }

    OS << PFX "  Live-in: " << llvm::print(LiveIn, MRI);
    if (!UseDownwardTracker)
      ReportLISMismatchIfAny(LiveIn, getLiveRegs(MBBStartSlot, LIS, MRI));

    OS << PFX "  SGPR  VGPR\n";
    int I = 0;
    for (auto &MI : MBB) {
      if (!MI.isDebugInstr()) {
        auto &[RPBeforeInstr, RPAtInstr] =
            RP[UseDownwardTracker ? I : (RP.size() - 1 - I)];
        ++I;
        OS << printRP(RPBeforeInstr) << '\n' << printRP(RPAtInstr) << "  ";
      } else
        OS << PFX "               ";
      MI.print(OS);
    }
    OS << printRP(RPAtMBBEnd) << '\n';

    OS << PFX "  Live-out:" << llvm::print(LiveOut, MRI);
    if (UseDownwardTracker)
      ReportLISMismatchIfAny(LiveOut, getLiveRegs(MBBEndSlot, LIS, MRI));

    GCNRPTracker::LiveRegSet LiveThrough;
    for (auto [Reg, Mask] : LiveIn) {
      LaneBitmask MaskIntersection = Mask & LiveOut.lookup(Reg);
      if (MaskIntersection.any()) {
        LaneBitmask LTMask = getRegLiveThroughMask(
            MRI, LIS, Reg, MBBStartSlot, MBBEndSlot, MaskIntersection);
        if (LTMask.any())
          LiveThrough[Reg] = LTMask;
      }
    }
    OS << PFX "  Live-thr:" << llvm::print(LiveThrough, MRI);
    OS << printRP(getRegPressure(MRI, LiveThrough)) << '\n';
  }
  OS << "...\n";
  return false;

#undef PFX
}