1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
//===-- AMDGPUMemoryUtils.cpp - -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPUMemoryUtils.h"
#include "AMDGPU.h"
#include "AMDGPUBaseInfo.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ReplaceConstant.h"
#define DEBUG_TYPE "amdgpu-memory-utils"
using namespace llvm;
namespace llvm::AMDGPU {
Align getAlign(const DataLayout &DL, const GlobalVariable *GV) {
return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL),
GV->getValueType());
}
bool isDynamicLDS(const GlobalVariable &GV) {
// external zero size addrspace(3) without initializer is dynlds.
const Module *M = GV.getParent();
const DataLayout &DL = M->getDataLayout();
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
return false;
return DL.getTypeAllocSize(GV.getValueType()) == 0;
}
bool isLDSVariableToLower(const GlobalVariable &GV) {
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
return false;
}
if (isDynamicLDS(GV)) {
return true;
}
if (GV.isConstant()) {
// A constant undef variable can't be written to, and any load is
// undef, so it should be eliminated by the optimizer. It could be
// dropped by the back end if not. This pass skips over it.
return false;
}
if (GV.hasInitializer() && !isa<UndefValue>(GV.getInitializer())) {
// Initializers are unimplemented for LDS address space.
// Leave such variables in place for consistent error reporting.
return false;
}
return true;
}
bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
// Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
// global may have uses from multiple different functions as a result.
// This pass specialises LDS variables with respect to the kernel that
// allocates them.
// This is semantically equivalent to (the unimplemented as slow):
// for (auto &F : M.functions())
// for (auto &BB : F)
// for (auto &I : BB)
// for (Use &Op : I.operands())
// if (constantExprUsesLDS(Op))
// replaceConstantExprInFunction(I, Op);
SmallVector<Constant *> LDSGlobals;
for (auto &GV : M.globals())
if (AMDGPU::isLDSVariableToLower(GV))
LDSGlobals.push_back(&GV);
return convertUsersOfConstantsToInstructions(LDSGlobals);
}
void getUsesOfLDSByFunction(const CallGraph &CG, Module &M,
FunctionVariableMap &kernels,
FunctionVariableMap &Functions) {
// Get uses from the current function, excluding uses by called Functions
// Two output variables to avoid walking the globals list twice
for (auto &GV : M.globals()) {
if (!AMDGPU::isLDSVariableToLower(GV))
continue;
for (User *V : GV.users()) {
if (auto *I = dyn_cast<Instruction>(V)) {
Function *F = I->getFunction();
if (isKernelLDS(F))
kernels[F].insert(&GV);
else
Functions[F].insert(&GV);
}
}
}
}
bool isKernelLDS(const Function *F) {
// Some weirdness here. AMDGPU::isKernelCC does not call into
// AMDGPU::isKernel with the calling conv, it instead calls into
// isModuleEntryFunction which returns true for more calling conventions
// than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
// There's also a test that checks that the LDS lowering does not hit on
// a graphics shader, denoted amdgpu_ps, so stay with the limited case.
// Putting LDS in the name of the function to draw attention to this.
return AMDGPU::isKernel(F->getCallingConv());
}
LDSUsesInfoTy getTransitiveUsesOfLDS(const CallGraph &CG, Module &M) {
FunctionVariableMap DirectMapKernel;
FunctionVariableMap DirectMapFunction;
getUsesOfLDSByFunction(CG, M, DirectMapKernel, DirectMapFunction);
// Collect variables that are used by functions whose address has escaped
DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
for (Function &F : M.functions()) {
if (!isKernelLDS(&F))
if (F.hasAddressTaken(nullptr,
/* IgnoreCallbackUses */ false,
/* IgnoreAssumeLikeCalls */ false,
/* IgnoreLLVMUsed */ true,
/* IgnoreArcAttachedCall */ false)) {
set_union(VariablesReachableThroughFunctionPointer,
DirectMapFunction[&F]);
}
}
auto FunctionMakesUnknownCall = [&](const Function *F) -> bool {
assert(!F->isDeclaration());
for (const CallGraphNode::CallRecord &R : *CG[F]) {
if (!R.second->getFunction())
return true;
}
return false;
};
// Work out which variables are reachable through function calls
FunctionVariableMap TransitiveMapFunction = DirectMapFunction;
// If the function makes any unknown call, assume the worst case that it can
// access all variables accessed by functions whose address escaped
for (Function &F : M.functions()) {
if (!F.isDeclaration() && FunctionMakesUnknownCall(&F)) {
if (!isKernelLDS(&F)) {
set_union(TransitiveMapFunction[&F],
VariablesReachableThroughFunctionPointer);
}
}
}
// Direct implementation of collecting all variables reachable from each
// function
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || isKernelLDS(&Func))
continue;
DenseSet<Function *> seen; // catches cycles
SmallVector<Function *, 4> wip = {&Func};
while (!wip.empty()) {
Function *F = wip.pop_back_val();
// Can accelerate this by referring to transitive map for functions that
// have already been computed, with more care than this
set_union(TransitiveMapFunction[&Func], DirectMapFunction[F]);
for (const CallGraphNode::CallRecord &R : *CG[F]) {
Function *Ith = R.second->getFunction();
if (Ith) {
if (!seen.contains(Ith)) {
seen.insert(Ith);
wip.push_back(Ith);
}
}
}
}
}
// DirectMapKernel lists which variables are used by the kernel
// find the variables which are used through a function call
FunctionVariableMap IndirectMapKernel;
for (Function &Func : M.functions()) {
if (Func.isDeclaration() || !isKernelLDS(&Func))
continue;
for (const CallGraphNode::CallRecord &R : *CG[&Func]) {
Function *Ith = R.second->getFunction();
if (Ith) {
set_union(IndirectMapKernel[&Func], TransitiveMapFunction[Ith]);
} else {
set_union(IndirectMapKernel[&Func],
VariablesReachableThroughFunctionPointer);
}
}
}
// Verify that we fall into one of 2 cases:
// - All variables are either absolute
// or direct mapped dynamic LDS that is not lowered.
// this is a re-run of the pass
// so we don't have anything to do.
// - No variables are absolute.
std::optional<bool> HasAbsoluteGVs;
for (auto &Map : {DirectMapKernel, IndirectMapKernel}) {
for (auto &[Fn, GVs] : Map) {
for (auto *GV : GVs) {
bool IsAbsolute = GV->isAbsoluteSymbolRef();
bool IsDirectMapDynLDSGV = AMDGPU::isDynamicLDS(*GV) && DirectMapKernel.contains(Fn);
if (IsDirectMapDynLDSGV)
continue;
if (HasAbsoluteGVs.has_value()) {
if (*HasAbsoluteGVs != IsAbsolute) {
report_fatal_error(
"Module cannot mix absolute and non-absolute LDS GVs");
}
} else
HasAbsoluteGVs = IsAbsolute;
}
}
}
// If we only had absolute GVs, we have nothing to do, return an empty
// result.
if (HasAbsoluteGVs && *HasAbsoluteGVs)
return {FunctionVariableMap(), FunctionVariableMap()};
return {std::move(DirectMapKernel), std::move(IndirectMapKernel)};
}
void removeFnAttrFromReachable(CallGraph &CG, Function *KernelRoot,
ArrayRef<StringRef> FnAttrs) {
for (StringRef Attr : FnAttrs)
KernelRoot->removeFnAttr(Attr);
SmallVector<Function *> WorkList = {CG[KernelRoot]->getFunction()};
SmallPtrSet<Function *, 8> Visited;
bool SeenUnknownCall = false;
while (!WorkList.empty()) {
Function *F = WorkList.pop_back_val();
for (auto &CallRecord : *CG[F]) {
if (!CallRecord.second)
continue;
Function *Callee = CallRecord.second->getFunction();
if (!Callee) {
if (!SeenUnknownCall) {
SeenUnknownCall = true;
// If we see any indirect calls, assume nothing about potential
// targets.
// TODO: This could be refined to possible LDS global users.
for (auto &ExternalCallRecord : *CG.getExternalCallingNode()) {
Function *PotentialCallee =
ExternalCallRecord.second->getFunction();
assert(PotentialCallee);
if (!isKernelLDS(PotentialCallee)) {
for (StringRef Attr : FnAttrs)
PotentialCallee->removeFnAttr(Attr);
}
}
}
} else {
for (StringRef Attr : FnAttrs)
Callee->removeFnAttr(Attr);
if (Visited.insert(Callee).second)
WorkList.push_back(Callee);
}
}
}
}
bool isReallyAClobber(const Value *Ptr, MemoryDef *Def, AAResults *AA) {
Instruction *DefInst = Def->getMemoryInst();
if (isa<FenceInst>(DefInst))
return false;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::amdgcn_s_barrier:
case Intrinsic::amdgcn_s_barrier_signal:
case Intrinsic::amdgcn_s_barrier_signal_var:
case Intrinsic::amdgcn_s_barrier_signal_isfirst:
case Intrinsic::amdgcn_s_barrier_signal_isfirst_var:
case Intrinsic::amdgcn_s_barrier_init:
case Intrinsic::amdgcn_s_barrier_join:
case Intrinsic::amdgcn_s_barrier_wait:
case Intrinsic::amdgcn_s_barrier_leave:
case Intrinsic::amdgcn_s_get_barrier_state:
case Intrinsic::amdgcn_s_wakeup_barrier:
case Intrinsic::amdgcn_wave_barrier:
case Intrinsic::amdgcn_sched_barrier:
case Intrinsic::amdgcn_sched_group_barrier:
return false;
default:
break;
}
}
// Ignore atomics not aliasing with the original load, any atomic is a
// universal MemoryDef from MSSA's point of view too, just like a fence.
const auto checkNoAlias = [AA, Ptr](auto I) -> bool {
return I && AA->isNoAlias(I->getPointerOperand(), Ptr);
};
if (checkNoAlias(dyn_cast<AtomicCmpXchgInst>(DefInst)) ||
checkNoAlias(dyn_cast<AtomicRMWInst>(DefInst)))
return false;
return true;
}
bool isClobberedInFunction(const LoadInst *Load, MemorySSA *MSSA,
AAResults *AA) {
MemorySSAWalker *Walker = MSSA->getWalker();
SmallVector<MemoryAccess *> WorkList{Walker->getClobberingMemoryAccess(Load)};
SmallSet<MemoryAccess *, 8> Visited;
MemoryLocation Loc(MemoryLocation::get(Load));
LLVM_DEBUG(dbgs() << "Checking clobbering of: " << *Load << '\n');
// Start with a nearest dominating clobbering access, it will be either
// live on entry (nothing to do, load is not clobbered), MemoryDef, or
// MemoryPhi if several MemoryDefs can define this memory state. In that
// case add all Defs to WorkList and continue going up and checking all
// the definitions of this memory location until the root. When all the
// defs are exhausted and came to the entry state we have no clobber.
// Along the scan ignore barriers and fences which are considered clobbers
// by the MemorySSA, but not really writing anything into the memory.
while (!WorkList.empty()) {
MemoryAccess *MA = WorkList.pop_back_val();
if (!Visited.insert(MA).second)
continue;
if (MSSA->isLiveOnEntryDef(MA))
continue;
if (MemoryDef *Def = dyn_cast<MemoryDef>(MA)) {
LLVM_DEBUG(dbgs() << " Def: " << *Def->getMemoryInst() << '\n');
if (isReallyAClobber(Load->getPointerOperand(), Def, AA)) {
LLVM_DEBUG(dbgs() << " -> load is clobbered\n");
return true;
}
WorkList.push_back(
Walker->getClobberingMemoryAccess(Def->getDefiningAccess(), Loc));
continue;
}
const MemoryPhi *Phi = cast<MemoryPhi>(MA);
for (const auto &Use : Phi->incoming_values())
WorkList.push_back(cast<MemoryAccess>(&Use));
}
LLVM_DEBUG(dbgs() << " -> no clobber\n");
return false;
}
} // end namespace llvm::AMDGPU
|