1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
|
//=- ARMScheduleM85.td - ARM Cortex-M85 Scheduling Definitions -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for the ARM Cortex-M85 processor.
//
// All timing is referred to EX2. Thus, operands which are needed at EX1 are
// stated to have a ReadAdvance of -1. The FP/MVE pipe actually begins at EX3
// but is described as if it were in EX2 to avoid having unnaturally long latencies
// with delayed inputs on every instruction. Instead, whenever an FP instruction
// must access a GP register or a non-FP instruction (which includes loads/stores)
// must access an FP register, the operand timing is adjusted:
// FP accessing GPR: read one cycle later, write one cycle later
// NOTE: absolute spec timing already includes this if
// referenced to EX2
// non-FP accessing FPR: read one cycle earlier, write one cycle earlier
//===----------------------------------------------------------------------===//
def CortexM85Model : SchedMachineModel {
let IssueWidth = 2; // Dual issue for most instructions.
let MicroOpBufferSize = 0; // M85 is in-order.
let LoadLatency = 2; // Best case for load-use case.
let MispredictPenalty = 4; // Mispredict cost for forward branches is 7,
// but 4 works better
let CompleteModel = 0;
}
let SchedModel = CortexM85Model in {
//===--------------------------------------------------------------------===//
// CortexM85 has two ALU, two LOAD, two STORE, a MAC, a BRANCH and two VFP
// pipes (with three units). There are three shifters available: one per
// stage.
def M85UnitLoadL : ProcResource<1> { let BufferSize = 0; }
def M85UnitLoadH : ProcResource<1> { let BufferSize = 0; }
def M85UnitLoad : ProcResGroup<[M85UnitLoadL,M85UnitLoadH]> { let BufferSize = 0; }
def M85UnitStoreL : ProcResource<1> { let BufferSize = 0; }
def M85UnitStoreH : ProcResource<1> { let BufferSize = 0; }
def M85UnitStore : ProcResGroup<[M85UnitStoreL,M85UnitStoreH]> { let BufferSize = 0; }
def M85UnitALU : ProcResource<2> { let BufferSize = 0; }
def M85UnitShift1 : ProcResource<1> { let BufferSize = 0; }
def M85UnitShift2 : ProcResource<1> { let BufferSize = 0; }
def M85UnitMAC : ProcResource<1> { let BufferSize = 0; }
def M85UnitBranch : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPAL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPAH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPA : ProcResGroup<[M85UnitVFPAL,M85UnitVFPAH]> { let BufferSize = 0; }
def M85UnitVFPBL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPBH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPB : ProcResGroup<[M85UnitVFPBL,M85UnitVFPBH]> { let BufferSize = 0; }
def M85UnitVFPCL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPCH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVFPC : ProcResGroup<[M85UnitVFPCL,M85UnitVFPCH]> { let BufferSize = 0; }
def M85UnitVFPD : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPortL : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPortH : ProcResource<1> { let BufferSize = 0; }
def M85UnitVPort : ProcResGroup<[M85UnitVPortL,M85UnitVPortH]> { let BufferSize = 0; }
def M85UnitSIMD : ProcResource<1> { let BufferSize = 0; }
def M85UnitLShift : ProcResource<1> { let BufferSize = 0; }
def M85UnitDiv : ProcResource<1> { let BufferSize = 0; }
def M85UnitSlot0 : ProcResource<1> { let BufferSize = 0; }
//===---------------------------------------------------------------------===//
// Subtarget-specific SchedWrite types with map ProcResources and set latency.
def : WriteRes<WriteALU, [M85UnitALU]> { let Latency = 1; }
// Basic ALU with shifts.
let Latency = 1 in {
def : WriteRes<WriteALUsi, [M85UnitALU, M85UnitShift1]>;
def : WriteRes<WriteALUsr, [M85UnitALU, M85UnitShift1]>;
def : WriteRes<WriteALUSsr, [M85UnitALU, M85UnitShift1]>;
}
// Compares.
def : WriteRes<WriteCMP, [M85UnitALU]> { let Latency = 1; }
def : WriteRes<WriteCMPsi, [M85UnitALU, M85UnitShift1]> { let Latency = 2; }
def : WriteRes<WriteCMPsr, [M85UnitALU, M85UnitShift1]> { let Latency = 2; }
// Multiplies.
let Latency = 2 in {
def : WriteRes<WriteMUL16, [M85UnitMAC]>;
def : WriteRes<WriteMUL32, [M85UnitMAC]>;
def : WriteRes<WriteMUL64Lo, [M85UnitMAC]>;
def : WriteRes<WriteMUL64Hi, []> { let NumMicroOps = 0; }
}
// Multiply-accumulates.
let Latency = 2 in {
def : WriteRes<WriteMAC16, [M85UnitMAC]>;
def : WriteRes<WriteMAC32, [M85UnitMAC]>;
def : WriteRes<WriteMAC64Lo, [M85UnitMAC]>;
def : WriteRes<WriteMAC64Hi, []> { let NumMicroOps = 0; }
}
// Divisions.
def : WriteRes<WriteDIV, [M85UnitDiv]> {
let Latency = 7;
}
// Loads/Stores.
def : WriteRes<WriteLd, [M85UnitLoad]> { let Latency = 1; }
def : WriteRes<WritePreLd, [M85UnitLoad]> { let Latency = 2; }
def : WriteRes<WriteST, [M85UnitStore]> { let Latency = 2; }
def M85WriteLdWide : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH]> { let Latency = 1; }
def M85WriteStWide : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH]> { let Latency = 2; }
// Branches.
def : WriteRes<WriteBr, [M85UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrL, [M85UnitBranch]> { let Latency = 2; }
def : WriteRes<WriteBrTbl, [M85UnitBranch]> { let Latency = 2; }
// Noop.
def : WriteRes<WriteNoop, []> { let Latency = 0; let NumMicroOps = 0; }
//===---------------------------------------------------------------------===//
// Sched definitions for floating-point instructions
//
// Floating point conversions.
def : WriteRes<WriteFPCVT, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 2;
}
def : WriteRes<WriteFPMOV, [M85UnitVPort, M85UnitSlot0]> { let Latency = 1; }
def M85WriteFPMOV64 : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> { let Latency = 1; }
// ALU operations (32/64-bit). These go down the FP pipeline.
def : WriteRes<WriteFPALU32, [M85UnitVFPA, M85UnitVPort, M85UnitSlot0]> {
let Latency = 2;
}
def : WriteRes<WriteFPALU64, [M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 6;
}
// Multiplication
def : WriteRes<WriteFPMUL32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 3;
}
def : WriteRes<WriteFPMUL64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 8;
}
// Multiply-accumulate. FPMAC goes down the FP Pipeline.
def : WriteRes<WriteFPMAC32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 5;
}
def : WriteRes<WriteFPMAC64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 14;
}
// Division. Effective scheduling latency is 3, though real latency is larger
def : WriteRes<WriteFPDIV32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 14;
}
def : WriteRes<WriteFPDIV64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 29;
}
// Square-root. Effective scheduling latency is 3, though real latency is larger
def : WriteRes<WriteFPSQRT32, [M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 14;
}
def : WriteRes<WriteFPSQRT64, [M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let Latency = 29;
}
let NumMicroOps = 0 in {
def M85SingleIssue : SchedWriteRes<[]> { let SingleIssue = 1; }
def M85Slot0Only : SchedWriteRes<[M85UnitSlot0]> { }
}
// What pipeline stage operands need to be ready for depending on
// where they come from.
def : ReadAdvance<ReadALUsr, 0>;
def : ReadAdvance<ReadMUL, 0>;
def : ReadAdvance<ReadMAC, 1>;
def : ReadAdvance<ReadALU, 0>;
def : ReadAdvance<ReadFPMUL, 0>;
def : ReadAdvance<ReadFPMAC, 3>;
def M85Read_ISSm1 : SchedReadAdvance<-2>; // operands needed at ISS
def M85Read_ISS : SchedReadAdvance<-1>; // operands needed at EX1
def M85Read_EX1 : SchedReadAdvance<0>; // operands needed at EX2
def M85Read_EX2 : SchedReadAdvance<1>; // operands needed at EX3
def M85Read_EX3 : SchedReadAdvance<2>; // operands needed at EX4
def M85Read_EX4 : SchedReadAdvance<3>; // operands needed at EX5
def M85Write1 : SchedWriteRes<[]> {
let Latency = 1;
let NumMicroOps = 0;
}
def M85Write2 : SchedWriteRes<[]> {
let Latency = 2;
let NumMicroOps = 0;
}
def M85WriteShift2 : SchedWriteRes<[M85UnitALU, M85UnitShift2]> {}
// Non general purpose instructions may not be dual issued. These
// use both issue units.
def M85NonGeneralPurpose : SchedWriteRes<[]> {
// Assume that these will go down the main ALU pipeline.
// In reality, many look likely to stall the whole pipeline.
let Latency = 3;
let SingleIssue = 1;
}
// List the non general purpose instructions.
def : InstRW<[M85NonGeneralPurpose],
(instregex "t2MRS", "tSVC", "tBKPT", "t2MSR", "t2DMB", "t2DSB",
"t2ISB", "t2HVC", "t2SMC", "t2UDF", "ERET", "tHINT",
"t2HINT", "t2CLREX", "t2CLRM", "BUNDLE")>;
//===---------------------------------------------------------------------===//
// Sched definitions for load/store
//
// Mark whether the loads/stores must be single-issue
// Address operands are needed earlier
// Data operands are needed later
let NumMicroOps = 0 in {
def M85BaseUpdate : SchedWriteRes<[]> {
// Update is bypassable out of EX1
let Latency = 0;
}
def M85MVERBaseUpdate : SchedWriteRes<[]> { let Latency = 1; }
// Q register base update is available in EX3 to bypass into EX2/ISS.
// Latency=2 matches what we want for ISS, Latency=1 for EX2. Going
// with 2, as base update into another load/store is most likely. Could
// change later in an override.
def M85MVEQBaseUpdate : SchedWriteRes<[]> { let Latency = 2; }
def M85LoadLatency1 : SchedWriteRes<[]> { let Latency = 1; }
}
def M85SlowLoad : SchedWriteRes<[M85UnitLoad]> { let Latency = 2; }
// Byte and half-word loads should have greater latency than other loads.
// So should load exclusive?
def : InstRW<[M85SlowLoad],
(instregex "t2LDR(B|H|SB|SH)pc")>;
def : InstRW<[M85SlowLoad, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)T", "t2LDR(B|H|SB|SH)i",
"tLDRspi", "tLDR(B|H)i")>;
def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)s")>;
def : InstRW<[M85SlowLoad, M85Read_ISS, M85Read_ISS],
(instregex "tLDR(B|H)r", "tLDR(SB|SH)")>;
def : InstRW<[M85SlowLoad, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDR(B|H|SB|SH)_(POST|PRE)")>;
// Exclusive/acquire/release loads/stores cannot be dual-issued
def : InstRW<[WriteLd, M85SingleIssue, M85Read_ISS],
(instregex "t2LDREX$", "t2LDA(EX)?$")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85SingleIssue, M85Read_ISS],
(instregex "t2LDAEXD$")>;
def : InstRW<[M85SlowLoad, M85SingleIssue, M85Read_ISS],
(instregex "t2LDREX(B|H)", "t2LDA(EX)?(B|H)$")>;
def : InstRW<[WriteST, M85SingleIssue, M85Read_EX2, M85Read_ISS],
(instregex "t2STREX(B|H)?$", "t2STL(EX)?(B|H)?$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STLEXD$")>;
// Load/store multiples end issue groups.
def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)LDM(DB|IA)$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)STM(DB|IA)$")>;
def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)LDM(DB|IA)_UPD$", "tPOP")>;
def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue, M85Read_ISS],
(instregex "(t|t2)STM(DB|IA)_UPD$", "tPUSH")>;
// Load/store doubles
def : InstRW<[M85BaseUpdate, M85WriteStWide,
M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STRD_(PRE|POST)")>;
def : InstRW<[M85WriteStWide, M85Read_EX2, M85Read_EX2, M85Read_ISS],
(instregex "t2STRDi")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDRD_(PRE|POST)")>;
def : InstRW<[M85WriteLdWide, M85LoadLatency1, M85Read_ISS],
(instregex "t2LDRDi")>;
// Word load / preload
def : InstRW<[WriteLd],
(instregex "t2LDRpc", "t2PL[DI]pci", "tLDRpci")>;
def : InstRW<[WriteLd, M85Read_ISS],
(instregex "t2LDR(i|T)", "t2PL[DI](W)?i", "tLDRi")>;
def : InstRW<[WriteLd, M85Read_ISS, M85Read_ISS],
(instregex "t2LDRs", "t2PL[DI](w)?s", "tLDRr")>;
def : InstRW<[WriteLd, M85BaseUpdate, M85Read_ISS],
(instregex "t2LDR_(POST|PRE)")>;
// Stores
def : InstRW<[M85BaseUpdate, WriteST, M85Read_EX2, M85Read_ISS],
(instregex "t2STR(B|H)?_(POST|PRE)")>;
def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS, M85Read_ISS],
(instregex "t2STR(B|H)?s$", "tSTR(B|H)?r$")>;
def : InstRW<[WriteST, M85Read_EX2, M85Read_ISS],
(instregex "t2STR(B|H)?(i|T)", "tSTR(B|H)?i$", "tSTRspi")>;
// TBB/TBH - single-issue only
def M85TableLoad : SchedWriteRes<[M85UnitLoad]> { let SingleIssue = 1; }
def : InstRW<[M85TableLoad, M85Read_ISS, M85Read_ISS],
(instregex "t2TB")>;
// VFP/MVE loads and stores
// Note: timing for VLDR/VSTR special has not been broken out
// Note 2: see notes at top of file for the reason load latency is 1 and
// store data is in EX3.
def M85LoadSP : SchedWriteRes<[M85UnitLoad, M85UnitVPort]>;
def M85LoadDP : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]>;
def M85LoadSys : SchedWriteRes<[M85UnitLoad, M85UnitVPort,
M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]> {
let Latency = 4;
}
def M85StoreSP : SchedWriteRes<[M85UnitStore, M85UnitVPort]>;
def M85StoreDP : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH,
M85UnitVPortL, M85UnitVPortH]>;
def M85StoreSys : SchedWriteRes<[M85UnitStore, M85UnitVPort,
M85UnitVFPA, M85UnitVFPB, M85UnitVFPC, M85UnitVFPD]>;
let ReleaseAtCycles = [2,2,1,1], EndGroup = 1 in {
def M85LoadMVE : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]>;
def M85LoadMVELate : SchedWriteRes<[M85UnitLoadL, M85UnitLoadH,
M85UnitVPortL, M85UnitVPortH]> {
let Latency = 4; // 3 cycles later
}
def M85StoreMVE : SchedWriteRes<[M85UnitStoreL, M85UnitStoreH,
M85UnitVPortL, M85UnitVPortH]>;
}
def : InstRW<[M85LoadSP, M85Read_ISS], (instregex "VLDR(S|H)$")>;
def : InstRW<[M85LoadSys, M85Read_ISS], (instregex "VLDR_")>;
def : InstRW<[M85LoadDP, M85Read_ISS], (instregex "VLDRD$")>;
def : InstRW<[M85StoreSP, M85Read_EX3, M85Read_ISS], (instregex "VSTR(S|H)$")>;
def : InstRW<[M85StoreSys, M85Read_EX1, M85Read_ISS], (instregex "VSTR_")>;
def : InstRW<[M85StoreDP, M85Read_EX3, M85Read_ISS], (instregex "VSTRD$")>;
def : InstRW<[M85LoadMVELate, M85Read_ISS],
(instregex "MVE_VLD[24]._[0-9]+$")>;
def : InstRW<[M85LoadMVELate, M85MVERBaseUpdate, M85Read_ISS],
(instregex "MVE_VLD[24].*wb")>;
def : InstRW<[M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(8|16|32|64)$")>;
def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS, M85Read_ISS],
(instregex "MVE_VLDR.*(_rq|_rq|_rq_u)$")>;
def : InstRW<[M85LoadMVE, M85SingleIssue, M85Read_ISS],
(instregex "MVE_VLDR.*_qi$")>;
def : InstRW<[M85MVERBaseUpdate, M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(_post|[^i]_pre)$")>;
def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85LoadMVE, M85Read_ISS],
(instregex "MVE_VLDR.*(qi_pre)$")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VST[24]._[0-9]+$")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85MVERBaseUpdate, M85Read_ISS],
(instregex "MVE_VST[24].*wb")>;
def : InstRW<[M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(8|16|32|64)$")>;
def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS, M85Read_ISS],
(instregex "MVE_VSTR.*(_rq|_rq|_rq_u)$")>;
def : InstRW<[M85StoreMVE, M85SingleIssue, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*_qi$")>;
def : InstRW<[M85MVERBaseUpdate, M85StoreMVE, M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(_post|[^i]_pre)$")>;
def : InstRW<[M85MVEQBaseUpdate, M85SingleIssue, M85StoreMVE,
M85Read_EX3, M85Read_ISS],
(instregex "MVE_VSTR.*(qi_pre)$")>;
// Load/store multiples end issue groups.
def : InstRW<[M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)$")>;
def : InstRW<[M85WriteStWide, M85SingleIssue, M85Read_ISS, M85Read_EX3],
(instregex "VSTM(S|D|Q)(DB|IA)$")>;
def : InstRW<[M85BaseUpdate, M85WriteLdWide, M85SingleIssue, M85Read_ISS],
(instregex "VLDM(S|D|Q)(DB|IA)_UPD$", "VLLDM")>;
def : InstRW<[M85BaseUpdate, M85WriteStWide, M85SingleIssue,
M85Read_ISS, M85Read_EX3],
(instregex "VSTM(S|D|Q)(DB|IA)_UPD$", "VLSTM")>;
//===---------------------------------------------------------------------===//
// Sched definitions for ALU
//
// Non-small shifted ALU operands are read a cycle early; small LSLs
// aren't, as they don't require the shifter.
def M85NonsmallShiftWrite : SchedWriteRes<[M85UnitALU,M85UnitShift1]> {
let Latency = 1;
}
def M85WriteALUsi : SchedWriteVariant<[
SchedVar<NoSchedPred, [M85NonsmallShiftWrite]>
]>;
def M85Ex1ReadNoFastBypass : SchedReadAdvance<-1,
[WriteLd, M85WriteLdWide, M85LoadLatency1]>;
def M85ReadALUsi : SchedReadVariant<[
SchedVar<NoSchedPred, [M85Read_ISS]>
]>;
def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi],
(instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|"
"SUBS|CMP|CMNz|TEQ|TST)rs$")>;
def : InstRW<[M85WriteALUsi, M85ReadALUsi],
(instregex "t2MVNs")>;
// CortexM85 treats LSL #0 as needing a shifter. In practice the throughput
// seems to reliably be 2 when run on a cyclemodel, so we don't require a
// shift resource.
def : InstRW<[M85WriteALUsi, M85Read_EX1, M85ReadALUsi],
(instregex "t2(ADC|ADDS|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|"
"SUBS|CMP|CMNz|TEQ|TST)rr$")>;
def : InstRW<[M85WriteALUsi, M85ReadALUsi],
(instregex "t2MVNr")>;
// Shift instructions: most pure shifts (i.e. MOV w/ shift) will use whichever
// shifter is free, thus it is possible to dual-issue them freely with anything
// else. As a result, they are not modeled as needing a shifter.
// RRX is odd because it must use the EX2 shifter, so it cannot dual-issue with
// itself.
//
// Note that pure shifts which use the EX1 shifter would need their operands
// a cycle earlier. However, they are only forced to use the EX1 shifter
// when issuing against an RRX instructions, which should be rare.
def : InstRW<[M85WriteShift2],
(instregex "t2RRX$")>;
def : InstRW<[WriteALU],
(instregex "(t|t2)(LSL|LSR|ASR|ROR|SBFX|UBFX)", "t2MOVsr(a|l)")>;
// Instructions that use the shifter, but have normal timing
def : InstRW<[WriteALUsi,M85Slot0Only], (instregex "t2(BFC|BFI)$")>;
// Stack pointer add/sub happens in EX1 with checks in EX2
def M85WritesToSPPred : MCSchedPredicate<CheckRegOperand<0, SP>>;
def M85ReadForSP : SchedReadVariant<[
SchedVar<M85WritesToSPPred, [M85Read_ISS]>,
SchedVar<NoSchedPred, [M85Read_EX1]>
]>;
def M85ReadForSPShift : SchedReadVariant<[
SchedVar<M85WritesToSPPred, [M85Read_ISS]>,
SchedVar<NoSchedPred, [M85Read_ISS]>
]>;
def : InstRW<[WriteALU, M85Read_ISS],
(instregex "tADDspi", "tSUBspi")>;
def : InstRW<[WriteALU, M85ReadForSP],
(instregex "t2(ADD|SUB)ri", "t2MOVr", "tMOVr")>;
def : InstRW<[WriteALU, M85ReadForSP, M85ReadForSP],
(instregex "tADDrSP", "tADDspr", "tADDhirr")>;
def : InstRW<[M85WriteALUsi, M85ReadForSP, M85ReadForSPShift],
(instregex "t2(ADD|SUB)rs")>;
def : InstRW<[WriteALU, M85Slot0Only], (instregex "t2CLZ")>;
// MAC operations that don't have SchedRW set
def : InstRW<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC], (instregex "t2SML[AS]D")>;
// Divides are special because they stall for their latency, and so look like
// two cycles as far as scheduling opportunities go. By putting M85Write2
// first, we make the operand latency 2, but keep the instruction latency 7.
// Divide operands are read early.
def : InstRW<[M85Write2, WriteDIV, M85Read_ISS, M85Read_ISS, WriteALU],
(instregex "t2(S|U)DIV")>;
// DSP extension operations
def M85WriteSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> {
let Latency = 1;
}
def M85WriteSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU, M85UnitSlot0]> {
let Latency = 2;
}
def M85WriteShSIMD0 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 0; // Finishes at EX1
}
def M85WriteShSIMD1 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 1;
}
def M85WriteShSIMD2 : SchedWriteRes<[M85UnitSIMD, M85UnitALU,
M85UnitShift1, M85UnitSlot0]> {
let Latency = 2;
}
def : InstRW<[M85WriteShSIMD2, M85Read_ISS],
(instregex "t2(S|U)SAT")>;
def : InstRW<[M85WriteSIMD1, ReadALU],
(instregex "(t|t2)(S|U)XT(B|H)")>;
def : InstRW<[M85WriteSIMD1, ReadALU, ReadALU],
(instregex "t2(S|SH|U|UH)(ADD16|ADD8|ASX|SAX|SUB16|SUB8)",
"t2SEL")>;
def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU],
(instregex "t2(Q|UQ)(ADD|ASX|SAX|SUB)", "t2USAD8")>;
def : InstRW<[M85WriteShSIMD2, M85Read_ISS, M85Read_ISS],
(instregex "t2QD(ADD|SUB)")>;
def : InstRW<[M85WriteShSIMD0, M85Read_ISS],
(instregex "t2(RBIT|REV)", "tREV")>;
def : InstRW<[M85WriteShSIMD1, ReadALU, M85Read_ISS],
(instregex "t2PKH(BT|TB)", "t2(S|U)XTA")>;
def : InstRW<[M85WriteSIMD2, ReadALU, ReadALU, M85Read_EX2],
(instregex "t2USADA8")>;
// MSR/MRS
def : InstRW<[M85NonGeneralPurpose], (instregex "MSR", "MRS")>;
// 64-bit shift operations in EX3
def M85WriteLShift : SchedWriteRes<[M85UnitLShift, M85UnitALU]> {
let Latency = 2;
}
def M85WriteLat2 : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; }
def : InstRW<[M85WriteLShift, M85WriteLat2, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(ASRLi|LSLLi|LSRL|SQSHLL|SRSHRL|UQSHLL|URSHRL)$")>;
def : InstRW<[M85WriteLShift, M85WriteLat2,
M85Read_EX2, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(ASRLr|LSLLr|SQRSHRL|UQRSHLL)$")>;
def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2],
(instregex "MVE_(SQRSHR|UQRSHL)$")>;
def : InstRW<[M85WriteLShift, M85Read_EX2],
(instregex "MVE_(SQSHL|SRSHR|UQSHL|URSHR)$")>;
// Loop control/branch future instructions
def M85LE : SchedWriteRes<[]> { let NumMicroOps = 0; let Latency = -2; }
def : InstRW<[WriteALU], (instregex "t2BF(_|Lr|i|Li|r)")>;
def : InstRW<[WriteALU], (instregex "MVE_LCTP")>;
def : InstRW<[WriteALU],
(instregex "t2DLS", "t2WLS", "MVE_DLSTP", "MVE_WLSTP")>;
def : InstRW<[M85LE], (instregex "t2LE$")>;
def : InstRW<[M85LE, M85Read_ISSm1],
(instregex "t2LEUpdate", "MVE_LETP")>; // LE is executed at ISS
// Conditional selects
def : InstRW<[M85WriteLShift, M85Read_EX2, M85Read_EX2, M85Read_EX2],
(instregex "t2(CSEL|CSINC|CSINV|CSNEG)")>;
//===---------------------------------------------------------------------===//
// Sched definitions for FP and MVE operations
let NumMicroOps = 0 in {
def M85OverrideVFPLat5 : SchedWriteRes<[]> { let Latency = 5; }
def M85OverrideVFPLat4 : SchedWriteRes<[]> { let Latency = 4; }
def M85OverrideVFPLat3 : SchedWriteRes<[]> { let Latency = 3; }
def M85OverrideVFPLat2 : SchedWriteRes<[]> { let Latency = 2; }
}
let Latency = 1 in {
def M85GroupALat1S : SchedWriteRes<[M85UnitVFPA, M85UnitVPort, M85UnitSlot0]>;
def M85GroupBLat1S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>;
def M85GroupCLat1S : SchedWriteRes<[M85UnitVFPC, M85UnitVPort, M85UnitSlot0]>;
def M85GroupALat1D : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupBLat1D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupCLat1D : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupABLat1S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>;
}
let Latency = 2 in {
def M85GroupBLat2S : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]>;
def M85GroupBLat2D : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GroupABLat2S : SchedWriteRes<[M85UnitVPort, M85UnitSlot0]>;
def M85GroupABLat2D : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
}
// Instructions which are missing default schedules
def : InstRW<[M85GroupALat1S], (instregex "V(FP_VMAXNM|FP_VMINNM)(H|S)$")>;
def : InstRW<[M85GroupALat1D], (instregex "V(FP_VMAXNM|FP_VMINNM)D$")>;
def : InstRW<[M85GroupCLat1S], (instregex "VCMPE?Z?(H|S)$")>;
def : InstRW<[M85GroupCLat1D], (instregex "VCMPE?Z?D$")>;
def : InstRW<[M85GroupBLat2S],
(instregex "VCVT(A|M|N|P|R|X|Z)(S|U)(H|S)",
"VRINT(A|M|N|P|R|X|Z)(H|S)")>;
def : InstRW<[M85GroupBLat2D],
(instregex "VCVT(B|T)(DH|HD)", "VCVT(A|M|N|P|R|X|Z)(S|U)D",
"V.*TOD", "VTO.*D", "VCVTDS", "VCVTSD",
"VRINT(A|M|N|P|R|X|Z)D")>;
def : InstRW<[M85GroupABLat1S], (instregex "VINSH")>;
def : InstRW<[M85GroupBLat1S], (instregex "V(ABS|NEG)(H|S)$")>;
def : InstRW<[M85GroupBLat1D], (instregex "V(ABS|NEG)D$")>;
// VMRS/VMSR
let SingleIssue = 1 in {
def M85VMRSEarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 2;}
def M85VMRSLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 4; }
def M85VMSREarly : SchedWriteRes<[M85UnitVPort]> { let Latency = 1; }
def M85VMSRLate : SchedWriteRes<[M85UnitVPort]> { let Latency = 3; }
}
def M85FPSCRFlagPred : MCSchedPredicate<
CheckAll<[CheckIsRegOperand<0>,
CheckRegOperand<0, PC>]>>;
def M85VMRSFPSCR : SchedWriteVariant<[
SchedVar<M85FPSCRFlagPred, [M85VMRSEarly]>,
SchedVar<NoSchedPred, [M85VMRSLate]>
]>;
def : InstRW<[M85VMSREarly, M85Read_EX2],
(instregex "VMSR$", "VMSR_FPSCR_NZCVQC", "VMSR_P0", "VMSR_VPR")>;
def : InstRW<[M85VMRSEarly], (instregex "VMRS_P0", "VMRS_VPR", "FMSTAT")>;
def : InstRW<[M85VMRSLate], (instregex "VMRS_FPSCR_NZCVQC")>;
def : InstRW<[M85VMRSFPSCR], (instregex "VMRS$")>;
// Not matching properly
//def : InstRW<[M85VMSRLate, M85Read_EX2], (instregex "VMSR_FPCTX(NS|S)")>;
//def : InstRW<[M85VMRSLate], (instregex "VMRS_FPCTX(NS|S)")>;
// VSEL cannot bypass in its implied $cpsr operand; model as earlier read
def : InstRW<[M85GroupBLat1S, ReadALU, ReadALU, M85Read_ISS],
(instregex "VSEL.*(S|H)$")>;
def : InstRW<[M85GroupBLat1D, ReadALU, ReadALU, M85Read_ISS],
(instregex "VSEL.*D$")>;
// VMOV
def : InstRW<[WriteFPMOV],
(instregex "VMOV(H|S)$", "FCONST(H|S)")>;
def : InstRW<[WriteFPMOV, M85Read_EX2],
(instregex "VMOVHR$", "VMOVSR$")>;
def : InstRW<[M85GroupABLat2S],
(instregex "VMOVRH$", "VMOVRS$")>;
def : InstRW<[M85WriteFPMOV64],
(instregex "VMOVD$")>;
def : InstRW<[M85WriteFPMOV64],
(instregex "FCONSTD")>;
def : InstRW<[M85WriteFPMOV64, M85Read_EX2, M85Read_EX2],
(instregex "VMOVDRR")>;
def : InstRW<[M85WriteFPMOV64, M85Write1, M85Read_EX2, M85Read_EX2],
(instregex "VMOVSRR")>;
def : InstRW<[M85GroupABLat2D, M85Write2],
(instregex "VMOV(RRD|RRS)")>;
// These shouldn't even exist, but Cortex-m55 defines them, so here they are.
def : InstRW<[WriteFPMOV, M85Read_EX2],
(instregex "VGETLNi32$")>;
def : InstRW<[M85GroupABLat2S],
(instregex "VSETLNi32")>;
// Larger-latency overrides
def M85FPDIV16 : SchedWriteRes<[M85UnitVFPB, M85UnitVPort, M85UnitSlot0]> {
let Latency = 8;
}
def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VDIVH")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPDIV32], (instregex "VDIVS")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPDIV64], (instregex "VDIVD")>;
def : InstRW<[M85OverrideVFPLat2, M85FPDIV16], (instregex "VSQRTH")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT32], (instregex "VSQRTS")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPSQRT64], (instregex "VSQRTD")>;
def : InstRW<[M85OverrideVFPLat3, WriteFPMUL64], (instregex "V(MUL|NMUL)D")>;
def : InstRW<[M85OverrideVFPLat2, WriteFPALU64], (instregex "V(ADD|SUB)D")>;
// Multiply-accumulate. Chained SP timing is correct; rest need overrides
// Double-precision chained MAC should also be seen as having latency of 5,
// as stalls stall everything.
def : InstRW<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL],
(instregex "VN?ML(A|S)H")>;
def : InstRW<[M85OverrideVFPLat5, WriteFPMAC64,
ReadFPMUL, ReadFPMUL, ReadFPMUL],
(instregex "VN?ML(A|S)D$")>;
// Single-precision fused MACs look like latency 4 with advance of 2.
def M85ReadFPMAC2 : SchedReadAdvance<2>;
def : InstRW<[M85OverrideVFPLat4, WriteFPMAC32,
M85ReadFPMAC2, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)(H|S)$")>;
// Double-precision fused MAC looks like latency 4.
def : InstRW<[M85OverrideVFPLat4, WriteFPMAC64,
ReadFPMUL, ReadFPMUL, ReadFPMUL],
(instregex "VF(N)?M(A|S)D$")>;
// MVE beatwise instructions
// NOTE: Q-register timing for the 2nd beat is off by a cycle and needs
// DAG overrides to correctly set latencies.
// NOTE2: MVE integer MAC->MAC accumulate latencies are set as if the
// accumulate value arrives from an unmatching MAC instruction;
// matching ones are handled via DAG mutation. These are marked as
// "limited accumulate bypass"
let Latency = 4, EndGroup = 1 in {
def M85GrpALat2MveR : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat2MveR : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat2MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat2MveR : SchedWriteRes<[]> { let NumMicroOps = 0; }
def M85GrpBLat4Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
}
let Latency = 3, EndGroup = 1 in {
def M85GrpBLat3Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpBLat1MveR : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat1MveR : SchedWriteRes<[]> { let NumMicroOps = 0; }
}
let Latency = 2, EndGroup = 1 in {
def M85GrpALat2Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat2Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat2Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85Lat2Mve : SchedWriteRes<[]> { let NumMicroOps = 0; }
}
let Latency = 1, EndGroup = 1 in {
def M85GrpALat1Mve : SchedWriteRes<[M85UnitVFPAL, M85UnitVFPAH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpABLat1Mve : SchedWriteRes<[M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]>;
def M85GrpBLat1Mve : SchedWriteRes<[M85UnitVFPBL, M85UnitVFPBH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpCLat1Mve : SchedWriteRes<[M85UnitVFPCL, M85UnitVFPCH, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,2,1,1,1];
}
def M85GrpDLat1Mve : SchedWriteRes<[M85UnitVFPD, M85UnitVPortL, M85UnitVPortH, M85UnitSlot0]> {
let ReleaseAtCycles = [2,1,1,1];
}
}
def : InstRW<[M85GrpABLat1Mve, M85Read_EX1, M85Read_EX2, M85Read_EX2],
(instregex "MVE_VMOV_q_rr")>;
def : InstRW<[M85GrpABLat1Mve, M85Read_EX2],
(instregex "MVE_VMOV_to_lane_(8|16|32)")>;
def : InstRW<[M85GrpABLat1Mve],
(instregex "MVE_VAND$",
"MVE_VBIC$", "MVE_VBICimm",
"MVE_VCLSs(8|16|32)",
"MVE_VCLZs(8|16|32)",
"MVE_VEOR",
"MVE_VMOVimmf32", "MVE_VMOVimmi(8|16|32|64)",
"MVE_VMVN$", "MVE_VMVNimmi(16|32)",
"MVE_VORN$",
"MVE_VORR$", "MVE_VORRimm", "MQPRCopy",
"MVE_VPSEL",
"MVE_VREV(16|32|64)_(8|16|32)"
)>;
def : InstRW<[M85GrpABLat2MveR, M85Lat2MveR],
(instregex "MVE_VMOV_rr_q")>;
def : InstRW<[M85GrpABLat2MveR],
(instregex "MVE_VMOV_from_lane_(32|u8|s8|u16|s16)")>;
def : InstRW<[M85GrpALat1Mve, M85Lat1MveR,
M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VADC$")>;
def : InstRW<[M85GrpALat1Mve, M85Lat1MveR],
(instregex "MVE_VADCI")>;
def : InstRW<[M85GrpALat1Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VADD_qr_i(8|16|32)",
"MVE_VBRSR(16|32|8)",
"MVE_VHADD_qr_[su](8|16|32)",
"MVE_VHSUB_qr_[su](8|16|32)",
"MVE_VQADD_qr_[su](8|16|32)",
"MVE_VQSUB_qr_[su](8|16|32)",
"MVE_VSHL_qr[su](8|16|32)",
"MVE_VSUB_qr_i(8|16|32)"
)>;
def : InstRW<[M85GrpALat1Mve],
(instregex "MVE_VABD(s|u)(8|16|32)",
"MVE_VABS(s|u)(8|16|32)",
"MVE_V(MAX|MIN)A?[us](8|16|32)",
"MVE_VADDi(8|16|32)",
"MVE_VCADDi(8|16|32)",
"MVE_VHCADDs(8|16|32)",
"MVE_VHSUB[su](8|16|32)",
"MVE_VMOVL[su](8|16)[tb]h",
"MVE_VMOVNi(16|32)[tb]h",
"MVE_VMULL[BT]?[p](8|16|32)(bh|th)?",
"MVE_VNEGs(8|16|32)",
"MVE_VQABSs(8|16|32)",
"MVE_VQADD[su](8|16|32)",
"MVE_VQNEGs(8|16|32)",
"MVE_VQSUB[su](8|16|32)",
"MVE_VR?HADD[su](8|16|32)",
"MVE_VSBC$", "MVE_VSBCI",
"MVE_VSHL_by_vec[su](8|16|32)",
"MVE_VSHL_immi(8|16|32)",
"MVE_VSHLL_imm[su](8|16)[bt]h",
"MVE_VSHLL_lw[su](8|16)[bt]h",
"MVE_VSHRNi(16|32)[bt]h",
"MVE_VSHR_imm[su](8|16|32)",
"MVE_VSLIimm[su]?(8|16|32)",
"MVE_VSRIimm[su]?(8|16|32)",
"MVE_VSUBi(8|16|32)"
)>;
def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2, M85Read_EX2],
(instregex "MVE_V(D|I)WDUPu(8|16|32)")>;
def : InstRW<[M85GrpALat2Mve, M85Lat2MveR, M85Read_EX2],
(instregex "MVE_V(D|I)DUPu(8|16|32)")>;
def : InstRW<[M85GrpALat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_V(Q|R|QR)SHL_qr[su](8|16|32)",
"MVE_VADD_qr_f(16|32)",
"MVE_VSUB_qr_f(16|32)"
)>;
def : InstRW<[M85GrpALat1Mve, M85Read_EX2],
(instregex "MVE_VDUP(8|16|32)")>;
def : InstRW<[M85GrpBLat1Mve],
(instregex "MVE_VABSf(16|32)",
"MVE_V(MAX|MIN)NMA?f(16|32)",
"MVE_VNEGf(16|32)"
)>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3],
(instregex "MVE_VADDLV[us]32acc")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR],
(instregex "MVE_VADDLV[us]32no_acc")>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX3],
(instregex "MVE_VADDV[us](8|16|32)acc"
)>;
def : InstRW<[M85GrpALat2MveR, M85Read_EX3],
(instregex "MVE_V(MAX|MIN)A?V[us](8|16|32)",
"MVE_VABAV(s|u)(8|16|32)"
)>;
def : InstRW<[M85GrpALat2MveR],
(instregex "MVE_VADDV[us](8|16|32)no_acc")>;
def : InstRW<[M85GrpALat2Mve],
(instregex "MVE_V(Q|R|QR)SHL_by_vec[su](8|16|32)",
"MVE_VABDf(16|32)",
"MVE_VADDf(16|32)",
"MVE_VCADDf(16|32)",
"MVE_VQMOVU?N[su](8|16|32)[tb]h",
"MVE_VQR?SHL(U_)?imm[su](8|16|32)",
"MVE_VQR?SHRN[bt]h[su](16|32)",
"MVE_VQR?SHRUNs(16|32)[bt]h",
"MVE_VRSHR_imm[su](8|16|32)",
"MVE_VRSHRNi(16|32)[bt]h",
"MVE_VSUBf(16|32)"
)>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX2],
(instregex "MVE_V(MAX|MIN)NMA?Vf(16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VMUL_qr_i(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VQDMULL_qr_s(16|32)[tb]h")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VQR?DMULH_qr_s(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX3],
// limited accumulate bypass
(instregex "MVE_VMLAS?_qr_i(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
// limited accumulate bypass
(instregex "MVE_VQR?DMLAS?H_qrs(8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve],
// limited accumulate bypass
(instregex "MVE_VQR?DML[AS]DHX?s(8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR, M85Read_EX3, M85Read_EX3],
(instregex "MVE_VR?ML[AS]LDAVH?ax?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Lat2MveR],
(instregex "MVE_VR?ML[AS]LDAVH?x?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR, M85Read_EX3],
(instregex "MVE_VML[AS]DAVax?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2MveR],
(instregex "MVE_VML[AS]DAVx?[su](8|16|32)")>;
def : InstRW<[M85GrpBLat2Mve],
(instregex "MVE_VCVTf16(u|s)16", "MVE_VCVTf32(u|s)32",
"MVE_VCVT(u|s)16f16", "MVE_VCVT(u|s)32f32",
"MVE_VCVTf16f32", "MVE_VCVTf32f16",
"MVE_VMULL[BT]?[su](8|16|32)(bh|th)?",
"MVE_VMUL(t1)*i(8|16|32)",
"MVE_VQDMULLs(16|32)[tb]h",
"MVE_VQR?DMULHi(8|16|32)",
"MVE_VR?MULH[su](8|16|32)",
"MVE_VRINTf(16|32)"
)>;
def : InstRW<[M85GrpBLat3Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VMUL_qr_f(16|32)")>;
def : InstRW<[M85GrpBLat3Mve],
(instregex "MVE_VCMULf(16|32)",
"MVE_VMULf(16|32)"
)>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VFMA_qr_Sf(16|32)", // VFMAS
"MVE_VFMA_qr_f(16|32)" // VFMA
)>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3],
(instregex "MVE_VCMLAf(16|32)")>;
def : InstRW<[M85GrpBLat4Mve, M85Read_EX3],
(instregex "MVE_VFM(A|S)f(16|32)")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VPTv(4|8)f(16|32)r")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VPTv(4|8|16)(i|s|u)(8|16|32)r")>;
def : InstRW<[M85GrpCLat1Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VCMP[isu](8|16|32)r$", "MVE_VCMPf(16|32)r$")>;
def : InstRW<[M85GrpDLat1Mve, M85Read_EX2],
(instregex "MVE_VCTP(8|16|32|64)")>;
def : InstRW<[M85GrpCLat1Mve],
(instregex "MVE_VCMPf(16|32)$", "MVE_VCMP[isu](8|16|32)$",
"MVE_VPTv(4|8)f(16|32)$",
"MVE_VPTv(4|8|16)(i|s|u)(8|16|32)$"
)>;
def : InstRW<[M85GrpDLat1Mve],
(instregex "MVE_VPNOT",
"MVE_VPST"
)>;
def : InstRW<[M85Lat2MveR, M85GrpALat2Mve, M85Read_EX1, M85Read_EX2],
(instregex "MVE_VSHLC")>;
// VFP instructions
def : WriteRes<WriteVLD1, []>;
def : WriteRes<WriteVLD2, []>;
def : WriteRes<WriteVLD3, []>;
def : WriteRes<WriteVLD4, []>;
def : WriteRes<WriteVST1, []>;
def : WriteRes<WriteVST2, []>;
def : WriteRes<WriteVST3, []>;
def : WriteRes<WriteVST4, []>;
} // SchedModel = CortexCortexM85Model
|