1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
// LoongArchFloat32InstrInfo.td - Single-Precision Float instr --*- tablegen -*-
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the baisc single-precision floating-point instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LoongArch specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_LoongArchMOVGR2FR_W_LA64
: SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
def SDT_LoongArchMOVFR2GR_S_LA64
: SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
def SDT_LoongArchFTINT : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>;
def loongarch_movgr2fr_w_la64
: SDNode<"LoongArchISD::MOVGR2FR_W_LA64", SDT_LoongArchMOVGR2FR_W_LA64>;
def loongarch_movfr2gr_s_la64
: SDNode<"LoongArchISD::MOVFR2GR_S_LA64", SDT_LoongArchMOVFR2GR_S_LA64>;
def loongarch_ftint : SDNode<"LoongArchISD::FTINT", SDT_LoongArchFTINT>;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasBasicF] in {
// Arithmetic Operation Instructions
def FADD_S : FP_ALU_3R<0x01008000>;
def FSUB_S : FP_ALU_3R<0x01028000>;
def FMUL_S : FP_ALU_3R<0x01048000>;
def FDIV_S : FP_ALU_3R<0x01068000>;
def FMADD_S : FP_ALU_4R<0x08100000>;
def FMSUB_S : FP_ALU_4R<0x08500000>;
def FNMADD_S : FP_ALU_4R<0x08900000>;
def FNMSUB_S : FP_ALU_4R<0x08d00000>;
def FMAX_S : FP_ALU_3R<0x01088000>;
def FMIN_S : FP_ALU_3R<0x010a8000>;
def FMAXA_S : FP_ALU_3R<0x010c8000>;
def FMINA_S : FP_ALU_3R<0x010e8000>;
def FABS_S : FP_ALU_2R<0x01140400>;
def FNEG_S : FP_ALU_2R<0x01141400>;
def FSQRT_S : FP_ALU_2R<0x01144400>;
def FRECIP_S : FP_ALU_2R<0x01145400>;
def FRSQRT_S : FP_ALU_2R<0x01146400>;
def FRECIPE_S : FP_ALU_2R<0x01147400>;
def FRSQRTE_S : FP_ALU_2R<0x01148400>;
def FSCALEB_S : FP_ALU_3R<0x01108000>;
def FLOGB_S : FP_ALU_2R<0x01142400>;
def FCOPYSIGN_S : FP_ALU_3R<0x01128000>;
def FCLASS_S : FP_ALU_2R<0x01143400>;
// Comparison Instructions
def FCMP_CAF_S : FP_CMP<0x0c100000>;
def FCMP_CUN_S : FP_CMP<0x0c140000>;
def FCMP_CEQ_S : FP_CMP<0x0c120000>;
def FCMP_CUEQ_S : FP_CMP<0x0c160000>;
def FCMP_CLT_S : FP_CMP<0x0c110000>;
def FCMP_CULT_S : FP_CMP<0x0c150000>;
def FCMP_CLE_S : FP_CMP<0x0c130000>;
def FCMP_CULE_S : FP_CMP<0x0c170000>;
def FCMP_CNE_S : FP_CMP<0x0c180000>;
def FCMP_COR_S : FP_CMP<0x0c1a0000>;
def FCMP_CUNE_S : FP_CMP<0x0c1c0000>;
def FCMP_SAF_S : FP_CMP<0x0c108000>;
def FCMP_SUN_S : FP_CMP<0x0c148000>;
def FCMP_SEQ_S : FP_CMP<0x0c128000>;
def FCMP_SUEQ_S : FP_CMP<0x0c168000>;
def FCMP_SLT_S : FP_CMP<0x0c118000>;
def FCMP_SULT_S : FP_CMP<0x0c158000>;
def FCMP_SLE_S : FP_CMP<0x0c138000>;
def FCMP_SULE_S : FP_CMP<0x0c178000>;
def FCMP_SNE_S : FP_CMP<0x0c188000>;
def FCMP_SOR_S : FP_CMP<0x0c1a8000>;
def FCMP_SUNE_S : FP_CMP<0x0c1c8000>;
// Conversion Instructions
def FFINT_S_W : FP_CONV<0x011d1000>;
def FTINT_W_S : FP_CONV<0x011b0400>;
def FTINTRM_W_S : FP_CONV<0x011a0400>;
def FTINTRP_W_S : FP_CONV<0x011a4400>;
def FTINTRZ_W_S : FP_CONV<0x011a8400>;
def FTINTRNE_W_S : FP_CONV<0x011ac400>;
def FRINT_S : FP_CONV<0x011e4400>;
// Move Instructions
def FSEL_xS : FP_SEL<0x0d000000>;
def FMOV_S : FP_MOV<0x01149400>;
def MOVGR2FR_W : FP_MOV<0x0114a400, FPR32, GPR>;
def MOVFR2GR_S : FP_MOV<0x0114b400, GPR, FPR32>;
let hasSideEffects = 1 in {
def MOVGR2FCSR : FP_MOV<0x0114c000, FCSR, GPR>;
def MOVFCSR2GR : FP_MOV<0x0114c800, GPR, FCSR>;
} // hasSideEffects = 1
def MOVFR2CF_xS : FP_MOV<0x0114d000, CFR, FPR32>;
def MOVCF2FR_xS : FP_MOV<0x0114d400, FPR32, CFR>;
def MOVGR2CF : FP_MOV<0x0114d800, CFR, GPR>;
def MOVCF2GR : FP_MOV<0x0114dc00, GPR, CFR>;
// Branch Instructions
def BCEQZ : FP_BRANCH<0x48000000>;
def BCNEZ : FP_BRANCH<0x48000100>;
// Common Memory Access Instructions
def FLD_S : FP_LOAD_2RI12<0x2b000000>;
def FST_S : FP_STORE_2RI12<0x2b400000>;
def FLDX_S : FP_LOAD_3R<0x38300000>;
def FSTX_S : FP_STORE_3R<0x38380000>;
// Bound Check Memory Access Instructions
def FLDGT_S : FP_LOAD_3R<0x38740000>;
def FLDLE_S : FP_LOAD_3R<0x38750000>;
def FSTGT_S : FP_STORE_3R<0x38760000>;
def FSTLE_S : FP_STORE_3R<0x38770000>;
// Pseudo instructions for spill/reload CFRs.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
def PseudoST_CFR : Pseudo<(outs),
(ins CFR:$ccd, GPR:$rj, grlenimm:$imm)>;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
def PseudoLD_CFR : Pseudo<(outs CFR:$ccd),
(ins GPR:$rj, grlenimm:$imm)>;
// SET_CFR_{FALSE,TRUE}
// These instructions are defined in order to avoid expensive check error if
// regular instruction patterns are used.
// fcmp.caf.s $dst, $fa0, $fa0
def SET_CFR_FALSE : SET_CFR<0x0c100000, "fcmp.caf.s">;
// fcmp.cueq.s $dst, $fa0, $fa0
def SET_CFR_TRUE : SET_CFR<0x0c160000, "fcmp.cueq.s">;
// Pseudo instruction for copying CFRs.
def PseudoCopyCFR : Pseudo<(outs CFR:$dst), (ins CFR:$src)> {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Size = 12;
}
} // Predicates = [HasBasicF]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
/// Generic pattern classes
class PatFpr<SDPatternOperator OpNode, LAInst Inst, RegisterClass RegTy>
: Pat<(OpNode RegTy:$fj), (Inst $fj)>;
class PatFprFpr<SDPatternOperator OpNode, LAInst Inst, RegisterClass RegTy>
: Pat<(OpNode RegTy:$fj, RegTy:$fk), (Inst $fj, $fk)>;
let Predicates = [HasBasicF] in {
/// Float arithmetic operations
def : PatFprFpr<fadd, FADD_S, FPR32>;
def : PatFprFpr<fsub, FSUB_S, FPR32>;
def : PatFprFpr<fmul, FMUL_S, FPR32>;
def : PatFprFpr<fdiv, FDIV_S, FPR32>;
def : PatFprFpr<fcopysign, FCOPYSIGN_S, FPR32>;
def : PatFprFpr<fmaxnum_ieee, FMAX_S, FPR32>;
def : PatFprFpr<fminnum_ieee, FMIN_S, FPR32>;
def : PatFpr<fneg, FNEG_S, FPR32>;
def : PatFpr<fabs, FABS_S, FPR32>;
def : PatFpr<fsqrt, FSQRT_S, FPR32>;
def : Pat<(fdiv fpimm1, (fsqrt FPR32:$fj)), (FRSQRT_S FPR32:$fj)>;
def : Pat<(fcanonicalize FPR32:$fj), (FMAX_S $fj, $fj)>;
def : Pat<(is_fpclass FPR32:$fj, (i32 timm:$mask)),
(SLTU R0, (ANDI (MOVFR2GR_S (FCLASS_S FPR32:$fj)),
(to_fclass_mask timm:$mask)))>;
/// Setcc
// Match non-signaling comparison
class PatFPSetcc<CondCode cc, LAInst CmpInst, RegisterClass RegTy>
: Pat<(any_fsetcc RegTy:$fj, RegTy:$fk, cc),
(CmpInst RegTy:$fj, RegTy:$fk)>;
// SETOGT/SETOGE/SETUGT/SETUGE/SETGE/SETNE/SETGT will expand into
// SETOLT/SETOLE/SETULT/SETULE/SETLE/SETEQ/SETLT.
def : PatFPSetcc<SETOEQ, FCMP_CEQ_S, FPR32>;
def : PatFPSetcc<SETEQ, FCMP_CEQ_S, FPR32>;
def : PatFPSetcc<SETOLT, FCMP_CLT_S, FPR32>;
def : PatFPSetcc<SETOLE, FCMP_CLE_S, FPR32>;
def : PatFPSetcc<SETLE, FCMP_CLE_S, FPR32>;
def : PatFPSetcc<SETONE, FCMP_CNE_S, FPR32>;
def : PatFPSetcc<SETO, FCMP_COR_S, FPR32>;
def : PatFPSetcc<SETUEQ, FCMP_CUEQ_S, FPR32>;
def : PatFPSetcc<SETULT, FCMP_CULT_S, FPR32>;
def : PatFPSetcc<SETULE, FCMP_CULE_S, FPR32>;
def : PatFPSetcc<SETUNE, FCMP_CUNE_S, FPR32>;
def : PatFPSetcc<SETUO, FCMP_CUN_S, FPR32>;
def : PatFPSetcc<SETLT, FCMP_CLT_S, FPR32>;
multiclass PatFPBrcond<CondCode cc, LAInst CmpInst, RegisterClass RegTy> {
def : Pat<(brcond (xor (GRLenVT (setcc RegTy:$fj, RegTy:$fk, cc)), -1),
bb:$imm21),
(BCEQZ (CmpInst RegTy:$fj, RegTy:$fk), bb:$imm21)>;
def : Pat<(brcond (GRLenVT (setcc RegTy:$fj, RegTy:$fk, cc)), bb:$imm21),
(BCNEZ (CmpInst RegTy:$fj, RegTy:$fk), bb:$imm21)>;
}
defm : PatFPBrcond<SETOEQ, FCMP_CEQ_S, FPR32>;
defm : PatFPBrcond<SETOLT, FCMP_CLT_S, FPR32>;
defm : PatFPBrcond<SETOLE, FCMP_CLE_S, FPR32>;
defm : PatFPBrcond<SETONE, FCMP_CNE_S, FPR32>;
defm : PatFPBrcond<SETO, FCMP_COR_S, FPR32>;
defm : PatFPBrcond<SETUEQ, FCMP_CUEQ_S, FPR32>;
defm : PatFPBrcond<SETULT, FCMP_CULT_S, FPR32>;
defm : PatFPBrcond<SETULE, FCMP_CULE_S, FPR32>;
defm : PatFPBrcond<SETUNE, FCMP_CUNE_S, FPR32>;
defm : PatFPBrcond<SETUO, FCMP_CUN_S, FPR32>;
defm : PatFPBrcond<SETLT, FCMP_CLT_S, FPR32>;
// Match signaling comparison
class PatStrictFsetccs<CondCode cc, LAInst CmpInst, RegisterClass RegTy>
: Pat<(strict_fsetccs RegTy:$fj, RegTy:$fk, cc),
(CmpInst RegTy:$fj, RegTy:$fk)>;
def : PatStrictFsetccs<SETOEQ, FCMP_SEQ_S, FPR32>;
def : PatStrictFsetccs<SETOLT, FCMP_SLT_S, FPR32>;
def : PatStrictFsetccs<SETOLE, FCMP_SLE_S, FPR32>;
def : PatStrictFsetccs<SETONE, FCMP_SNE_S, FPR32>;
def : PatStrictFsetccs<SETO, FCMP_SOR_S, FPR32>;
def : PatStrictFsetccs<SETUEQ, FCMP_SUEQ_S, FPR32>;
def : PatStrictFsetccs<SETULT, FCMP_SULT_S, FPR32>;
def : PatStrictFsetccs<SETULE, FCMP_SULE_S, FPR32>;
def : PatStrictFsetccs<SETUNE, FCMP_SUNE_S, FPR32>;
def : PatStrictFsetccs<SETUO, FCMP_SUN_S, FPR32>;
def : PatStrictFsetccs<SETLT, FCMP_SLT_S, FPR32>;
/// Select
def : Pat<(select CFR:$cc, FPR32:$fk, FPR32:$fj),
(FSEL_xS FPR32:$fj, FPR32:$fk, CFR:$cc)>;
/// Selectcc
class PatFPSelectcc<CondCode cc, LAInst CmpInst, LAInst SelInst,
RegisterClass RegTy>
: Pat<(select (GRLenVT (setcc RegTy:$a, RegTy:$b, cc)), RegTy:$t, RegTy:$f),
(SelInst RegTy:$f, RegTy:$t, (CmpInst RegTy:$a, RegTy:$b))>;
def : PatFPSelectcc<SETOEQ, FCMP_CEQ_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETOLT, FCMP_CLT_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETOLE, FCMP_CLE_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETONE, FCMP_CNE_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETO, FCMP_COR_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETUEQ, FCMP_CUEQ_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETULT, FCMP_CULT_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETULE, FCMP_CULE_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETUNE, FCMP_CUNE_S, FSEL_xS, FPR32>;
def : PatFPSelectcc<SETUO, FCMP_CUN_S, FSEL_xS, FPR32>;
/// Loads
defm : LdPat<load, FLD_S, f32>;
def : RegRegLdPat<load, FLDX_S, f32>;
/// Stores
defm : StPat<store, FST_S, FPR32, f32>;
def : RegRegStPat<store, FSTX_S, FPR32, f32>;
/// Floating point constants
def : Pat<(f32 fpimm0), (MOVGR2FR_W R0)>;
def : Pat<(f32 fpimm0neg), (FNEG_S (MOVGR2FR_W R0))>;
def : Pat<(f32 fpimm1), (FFINT_S_W (MOVGR2FR_W (ADDI_W R0, 1)))>;
// FP Conversion
def : Pat<(loongarch_ftint FPR32:$src), (FTINTRZ_W_S FPR32:$src)>;
// FP reciprocal operation
def : Pat<(fdiv fpimm1, FPR32:$src), (FRECIP_S $src)>;
let Predicates = [HasFrecipe] in {
// FP approximate reciprocal operation
def : Pat<(int_loongarch_frecipe_s FPR32:$src), (FRECIPE_S FPR32:$src)>;
def : Pat<(int_loongarch_frsqrte_s FPR32:$src), (FRSQRTE_S FPR32:$src)>;
}
// fmadd.s: fj * fk + fa
def : Pat<(fma FPR32:$fj, FPR32:$fk, FPR32:$fa), (FMADD_S $fj, $fk, $fa)>;
// fmsub.s: fj * fk - fa
def : Pat<(fma FPR32:$fj, FPR32:$fk, (fneg FPR32:$fa)),
(FMSUB_S FPR32:$fj, FPR32:$fk, FPR32:$fa)>;
// fnmadd.s: -(fj * fk + fa)
def : Pat<(fneg (fma FPR32:$fj, FPR32:$fk, FPR32:$fa)),
(FNMADD_S FPR32:$fj, FPR32:$fk, FPR32:$fa)>;
// fnmadd.s: -fj * fk - fa (the nsz flag on the FMA)
def : Pat<(fma_nsz (fneg FPR32:$fj), FPR32:$fk, (fneg FPR32:$fa)),
(FNMADD_S FPR32:$fj, FPR32:$fk, FPR32:$fa)>;
// fnmsub.s: -(fj * fk - fa)
def : Pat<(fneg (fma FPR32:$fj, FPR32:$fk, (fneg FPR32:$fa))),
(FNMSUB_S FPR32:$fj, FPR32:$fk, FPR32:$fa)>;
// fnmsub.s: -fj * fk + fa (the nsz flag on the FMA)
def : Pat<(fma_nsz (fneg FPR32:$fj), FPR32:$fk, FPR32:$fa),
(FNMSUB_S FPR32:$fj, FPR32:$fk, FPR32:$fa)>;
} // Predicates = [HasBasicF]
let Predicates = [HasBasicF, IsLA64] in {
// GPR -> FPR
def : Pat<(loongarch_movgr2fr_w_la64 GPR:$src), (MOVGR2FR_W GPR:$src)>;
// FPR -> GPR
def : Pat<(loongarch_movfr2gr_s_la64 FPR32:$src),
(MOVFR2GR_S FPR32:$src)>;
// int -> f32
def : Pat<(f32 (sint_to_fp (i64 (sexti32 (i64 GPR:$src))))),
(FFINT_S_W (MOVGR2FR_W GPR:$src))>;
// uint -> f32
def : Pat<(f32 (uint_to_fp (i64 (sexti32 (i64 GPR:$src))))),
(FFINT_S_W (MOVGR2FR_W GPR:$src))>;
} // Predicates = [HasBasicF, IsLA64]
// FP Rounding
let Predicates = [HasBasicF, IsLA64] in {
def : PatFpr<frint, FRINT_S, FPR32>;
} // Predicates = [HasBasicF, IsLA64]
let Predicates = [HasBasicF, IsLA32] in {
// GPR -> FPR
def : Pat<(bitconvert (i32 GPR:$src)), (MOVGR2FR_W GPR:$src)>;
// FPR -> GPR
def : Pat<(i32 (bitconvert FPR32:$src)), (MOVFR2GR_S FPR32:$src)>;
// int -> f32
def : Pat<(f32 (sint_to_fp (i32 GPR:$src))), (FFINT_S_W (MOVGR2FR_W GPR:$src))>;
} // Predicates = [HasBasicF, IsLA32]
|