1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
//===- NVPTXUtilities.cpp - Utility Functions -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions
//
//===----------------------------------------------------------------------===//
#include "NVPTXUtilities.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Mutex.h"
#include <algorithm>
#include <cstring>
#include <map>
#include <mutex>
#include <optional>
#include <string>
#include <vector>
namespace llvm {
namespace {
typedef std::map<std::string, std::vector<unsigned> > key_val_pair_t;
typedef std::map<const GlobalValue *, key_val_pair_t> global_val_annot_t;
struct AnnotationCache {
sys::Mutex Lock;
std::map<const Module *, global_val_annot_t> Cache;
};
AnnotationCache &getAnnotationCache() {
static AnnotationCache AC;
return AC;
}
} // anonymous namespace
void clearAnnotationCache(const Module *Mod) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
AC.Cache.erase(Mod);
}
static void readIntVecFromMDNode(const MDNode *MetadataNode,
std::vector<unsigned> &Vec) {
for (unsigned i = 0, e = MetadataNode->getNumOperands(); i != e; ++i) {
ConstantInt *Val =
mdconst::extract<ConstantInt>(MetadataNode->getOperand(i));
Vec.push_back(Val->getZExtValue());
}
}
static void cacheAnnotationFromMD(const MDNode *MetadataNode,
key_val_pair_t &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
assert(MetadataNode && "Invalid mdnode for annotation");
assert((MetadataNode->getNumOperands() % 2) == 1 &&
"Invalid number of operands");
// start index = 1, to skip the global variable key
// increment = 2, to skip the value for each property-value pairs
for (unsigned i = 1, e = MetadataNode->getNumOperands(); i != e; i += 2) {
// property
const MDString *prop = dyn_cast<MDString>(MetadataNode->getOperand(i));
assert(prop && "Annotation property not a string");
std::string Key = prop->getString().str();
// value
if (ConstantInt *Val = mdconst::dyn_extract<ConstantInt>(
MetadataNode->getOperand(i + 1))) {
retval[Key].push_back(Val->getZExtValue());
} else if (MDNode *VecMd =
dyn_cast<MDNode>(MetadataNode->getOperand(i + 1))) {
// note: only "grid_constant" annotations support vector MDNodes.
// assert: there can only exist one unique key value pair of
// the form (string key, MDNode node). Operands of such a node
// shall always be unsigned ints.
if (retval.find(Key) == retval.end()) {
readIntVecFromMDNode(VecMd, retval[Key]);
continue;
}
} else {
llvm_unreachable("Value operand not a constant int or an mdnode");
}
}
}
static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
NamedMDNode *NMD = m->getNamedMetadata("nvvm.annotations");
if (!NMD)
return;
key_val_pair_t tmp;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *elem = NMD->getOperand(i);
GlobalValue *entity =
mdconst::dyn_extract_or_null<GlobalValue>(elem->getOperand(0));
// entity may be null due to DCE
if (!entity)
continue;
if (entity != gv)
continue;
// accumulate annotations for entity in tmp
cacheAnnotationFromMD(elem, tmp);
}
if (tmp.empty()) // no annotations for this gv
return;
if (AC.Cache.find(m) != AC.Cache.end())
AC.Cache[m][gv] = std::move(tmp);
else {
global_val_annot_t tmp1;
tmp1[gv] = std::move(tmp);
AC.Cache[m] = std::move(tmp1);
}
}
bool findOneNVVMAnnotation(const GlobalValue *gv, const std::string &prop,
unsigned &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
if (AC.Cache.find(m) == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (AC.Cache[m].find(gv) == AC.Cache[m].end())
cacheAnnotationFromMD(m, gv);
if (AC.Cache[m][gv].find(prop) == AC.Cache[m][gv].end())
return false;
retval = AC.Cache[m][gv][prop][0];
return true;
}
static std::optional<unsigned>
findOneNVVMAnnotation(const GlobalValue &GV, const std::string &PropName) {
unsigned RetVal;
if (findOneNVVMAnnotation(&GV, PropName, RetVal))
return RetVal;
return std::nullopt;
}
bool findAllNVVMAnnotation(const GlobalValue *gv, const std::string &prop,
std::vector<unsigned> &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
if (AC.Cache.find(m) == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (AC.Cache[m].find(gv) == AC.Cache[m].end())
cacheAnnotationFromMD(m, gv);
if (AC.Cache[m][gv].find(prop) == AC.Cache[m][gv].end())
return false;
retval = AC.Cache[m][gv][prop];
return true;
}
bool isTexture(const Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned Annot;
if (findOneNVVMAnnotation(gv, "texture", Annot)) {
assert((Annot == 1) && "Unexpected annotation on a texture symbol");
return true;
}
}
return false;
}
bool isSurface(const Value &val) {
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned Annot;
if (findOneNVVMAnnotation(gv, "surface", Annot)) {
assert((Annot == 1) && "Unexpected annotation on a surface symbol");
return true;
}
}
return false;
}
static bool argHasNVVMAnnotation(const Value &Val,
const std::string &Annotation,
const bool StartArgIndexAtOne = false) {
if (const Argument *Arg = dyn_cast<Argument>(&Val)) {
const Function *Func = Arg->getParent();
std::vector<unsigned> Annot;
if (findAllNVVMAnnotation(Func, Annotation, Annot)) {
const unsigned BaseOffset = StartArgIndexAtOne ? 1 : 0;
if (is_contained(Annot, BaseOffset + Arg->getArgNo())) {
return true;
}
}
}
return false;
}
bool isParamGridConstant(const Value &V) {
if (const Argument *Arg = dyn_cast<Argument>(&V)) {
// "grid_constant" counts argument indices starting from 1
if (Arg->hasByValAttr() &&
argHasNVVMAnnotation(*Arg, "grid_constant",
/*StartArgIndexAtOne*/ true)) {
assert(isKernelFunction(*Arg->getParent()) &&
"only kernel arguments can be grid_constant");
return true;
}
}
return false;
}
bool isSampler(const Value &val) {
const char *AnnotationName = "sampler";
if (const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned Annot;
if (findOneNVVMAnnotation(gv, AnnotationName, Annot)) {
assert((Annot == 1) && "Unexpected annotation on a sampler symbol");
return true;
}
}
return argHasNVVMAnnotation(val, AnnotationName);
}
bool isImageReadOnly(const Value &val) {
return argHasNVVMAnnotation(val, "rdoimage");
}
bool isImageWriteOnly(const Value &val) {
return argHasNVVMAnnotation(val, "wroimage");
}
bool isImageReadWrite(const Value &val) {
return argHasNVVMAnnotation(val, "rdwrimage");
}
bool isImage(const Value &val) {
return isImageReadOnly(val) || isImageWriteOnly(val) || isImageReadWrite(val);
}
bool isManaged(const Value &val) {
if(const GlobalValue *gv = dyn_cast<GlobalValue>(&val)) {
unsigned Annot;
if (findOneNVVMAnnotation(gv, "managed", Annot)) {
assert((Annot == 1) && "Unexpected annotation on a managed symbol");
return true;
}
}
return false;
}
std::string getTextureName(const Value &val) {
assert(val.hasName() && "Found texture variable with no name");
return std::string(val.getName());
}
std::string getSurfaceName(const Value &val) {
assert(val.hasName() && "Found surface variable with no name");
return std::string(val.getName());
}
std::string getSamplerName(const Value &val) {
assert(val.hasName() && "Found sampler variable with no name");
return std::string(val.getName());
}
std::optional<unsigned> getMaxNTIDx(const Function &F) {
return findOneNVVMAnnotation(F, "maxntidx");
}
std::optional<unsigned> getMaxNTIDy(const Function &F) {
return findOneNVVMAnnotation(F, "maxntidy");
}
std::optional<unsigned> getMaxNTIDz(const Function &F) {
return findOneNVVMAnnotation(F, "maxntidz");
}
std::optional<unsigned> getMaxNTID(const Function &F) {
// Note: The semantics here are a bit strange. The PTX ISA states the
// following (11.4.2. Performance-Tuning Directives: .maxntid):
//
// Note that this directive guarantees that the total number of threads does
// not exceed the maximum, but does not guarantee that the limit in any
// particular dimension is not exceeded.
std::optional<unsigned> MaxNTIDx = getMaxNTIDx(F);
std::optional<unsigned> MaxNTIDy = getMaxNTIDy(F);
std::optional<unsigned> MaxNTIDz = getMaxNTIDz(F);
if (MaxNTIDx || MaxNTIDy || MaxNTIDz)
return MaxNTIDx.value_or(1) * MaxNTIDy.value_or(1) * MaxNTIDz.value_or(1);
return std::nullopt;
}
bool getMaxClusterRank(const Function &F, unsigned &x) {
return findOneNVVMAnnotation(&F, "maxclusterrank", x);
}
std::optional<unsigned> getReqNTIDx(const Function &F) {
return findOneNVVMAnnotation(F, "reqntidx");
}
std::optional<unsigned> getReqNTIDy(const Function &F) {
return findOneNVVMAnnotation(F, "reqntidy");
}
std::optional<unsigned> getReqNTIDz(const Function &F) {
return findOneNVVMAnnotation(F, "reqntidz");
}
std::optional<unsigned> getReqNTID(const Function &F) {
// Note: The semantics here are a bit strange. See getMaxNTID.
std::optional<unsigned> ReqNTIDx = getReqNTIDx(F);
std::optional<unsigned> ReqNTIDy = getReqNTIDy(F);
std::optional<unsigned> ReqNTIDz = getReqNTIDz(F);
if (ReqNTIDx || ReqNTIDy || ReqNTIDz)
return ReqNTIDx.value_or(1) * ReqNTIDy.value_or(1) * ReqNTIDz.value_or(1);
return std::nullopt;
}
bool getMinCTASm(const Function &F, unsigned &x) {
return findOneNVVMAnnotation(&F, "minctasm", x);
}
bool getMaxNReg(const Function &F, unsigned &x) {
return findOneNVVMAnnotation(&F, "maxnreg", x);
}
bool isKernelFunction(const Function &F) {
unsigned x = 0;
if (!findOneNVVMAnnotation(&F, "kernel", x)) {
// There is no NVVM metadata, check the calling convention
return F.getCallingConv() == CallingConv::PTX_Kernel;
}
return (x == 1);
}
MaybeAlign getAlign(const Function &F, unsigned Index) {
// First check the alignstack metadata
if (MaybeAlign StackAlign =
F.getAttributes().getAttributes(Index).getStackAlignment())
return StackAlign;
// If that is missing, check the legacy nvvm metadata
std::vector<unsigned> Vs;
bool retval = findAllNVVMAnnotation(&F, "align", Vs);
if (!retval)
return std::nullopt;
for (unsigned V : Vs)
if ((V >> 16) == Index)
return Align(V & 0xFFFF);
return std::nullopt;
}
MaybeAlign getAlign(const CallInst &I, unsigned Index) {
// First check the alignstack metadata
if (MaybeAlign StackAlign =
I.getAttributes().getAttributes(Index).getStackAlignment())
return StackAlign;
// If that is missing, check the legacy nvvm metadata
if (MDNode *alignNode = I.getMetadata("callalign")) {
for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
if (const ConstantInt *CI =
mdconst::dyn_extract<ConstantInt>(alignNode->getOperand(i))) {
unsigned V = CI->getZExtValue();
if ((V >> 16) == Index)
return Align(V & 0xFFFF);
if ((V >> 16) > Index)
return std::nullopt;
}
}
}
return std::nullopt;
}
Function *getMaybeBitcastedCallee(const CallBase *CB) {
return dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
}
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM) {
const auto &ST =
*static_cast<const NVPTXTargetMachine &>(TM).getSubtargetImpl();
if (!ST.hasNoReturn())
return false;
assert((isa<Function>(V) || isa<CallInst>(V)) &&
"Expect either a call instruction or a function");
if (const CallInst *CallI = dyn_cast<CallInst>(V))
return CallI->doesNotReturn() &&
CallI->getFunctionType()->getReturnType()->isVoidTy();
const Function *F = cast<Function>(V);
return F->doesNotReturn() &&
F->getFunctionType()->getReturnType()->isVoidTy() &&
!isKernelFunction(*F);
}
bool Isv2x16VT(EVT VT) {
return (VT == MVT::v2f16 || VT == MVT::v2bf16 || VT == MVT::v2i16);
}
} // namespace llvm
|