1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
//===-- RISCVLegalizerInfo.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for RISC-V.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "RISCVLegalizerInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutor.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace LegalityPredicates;
using namespace LegalizeMutations;
// Is this type supported by scalar FP arithmetic operations given the current
// subtarget.
static LegalityPredicate typeIsScalarFPArith(unsigned TypeIdx,
const RISCVSubtarget &ST) {
return [=, &ST](const LegalityQuery &Query) {
return Query.Types[TypeIdx].isScalar() &&
((ST.hasStdExtZfh() && Query.Types[TypeIdx].getSizeInBits() == 16) ||
(ST.hasStdExtF() && Query.Types[TypeIdx].getSizeInBits() == 32) ||
(ST.hasStdExtD() && Query.Types[TypeIdx].getSizeInBits() == 64));
};
}
static LegalityPredicate
typeIsLegalIntOrFPVec(unsigned TypeIdx,
std::initializer_list<LLT> IntOrFPVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getScalarSizeInBits() != 64 ||
ST.hasVInstructionsI64()) &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64);
};
return all(typeInSet(TypeIdx, IntOrFPVecTys), P);
}
static LegalityPredicate
typeIsLegalBoolVec(unsigned TypeIdx, std::initializer_list<LLT> BoolVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64);
};
return all(typeInSet(TypeIdx, BoolVecTys), P);
}
RISCVLegalizerInfo::RISCVLegalizerInfo(const RISCVSubtarget &ST)
: STI(ST), XLen(STI.getXLen()), sXLen(LLT::scalar(XLen)) {
const LLT sDoubleXLen = LLT::scalar(2 * XLen);
const LLT p0 = LLT::pointer(0, XLen);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT nxv1s1 = LLT::scalable_vector(1, s1);
const LLT nxv2s1 = LLT::scalable_vector(2, s1);
const LLT nxv4s1 = LLT::scalable_vector(4, s1);
const LLT nxv8s1 = LLT::scalable_vector(8, s1);
const LLT nxv16s1 = LLT::scalable_vector(16, s1);
const LLT nxv32s1 = LLT::scalable_vector(32, s1);
const LLT nxv64s1 = LLT::scalable_vector(64, s1);
const LLT nxv1s8 = LLT::scalable_vector(1, s8);
const LLT nxv2s8 = LLT::scalable_vector(2, s8);
const LLT nxv4s8 = LLT::scalable_vector(4, s8);
const LLT nxv8s8 = LLT::scalable_vector(8, s8);
const LLT nxv16s8 = LLT::scalable_vector(16, s8);
const LLT nxv32s8 = LLT::scalable_vector(32, s8);
const LLT nxv64s8 = LLT::scalable_vector(64, s8);
const LLT nxv1s16 = LLT::scalable_vector(1, s16);
const LLT nxv2s16 = LLT::scalable_vector(2, s16);
const LLT nxv4s16 = LLT::scalable_vector(4, s16);
const LLT nxv8s16 = LLT::scalable_vector(8, s16);
const LLT nxv16s16 = LLT::scalable_vector(16, s16);
const LLT nxv32s16 = LLT::scalable_vector(32, s16);
const LLT nxv1s32 = LLT::scalable_vector(1, s32);
const LLT nxv2s32 = LLT::scalable_vector(2, s32);
const LLT nxv4s32 = LLT::scalable_vector(4, s32);
const LLT nxv8s32 = LLT::scalable_vector(8, s32);
const LLT nxv16s32 = LLT::scalable_vector(16, s32);
const LLT nxv1s64 = LLT::scalable_vector(1, s64);
const LLT nxv2s64 = LLT::scalable_vector(2, s64);
const LLT nxv4s64 = LLT::scalable_vector(4, s64);
const LLT nxv8s64 = LLT::scalable_vector(8, s64);
using namespace TargetOpcode;
auto BoolVecTys = {nxv1s1, nxv2s1, nxv4s1, nxv8s1, nxv16s1, nxv32s1, nxv64s1};
auto IntOrFPVecTys = {nxv1s8, nxv2s8, nxv4s8, nxv8s8, nxv16s8, nxv32s8,
nxv64s8, nxv1s16, nxv2s16, nxv4s16, nxv8s16, nxv16s16,
nxv32s16, nxv1s32, nxv2s32, nxv4s32, nxv8s32, nxv16s32,
nxv1s64, nxv2s64, nxv4s64, nxv8s64};
getActionDefinitionsBuilder({G_ADD, G_SUB, G_AND, G_OR, G_XOR})
.legalFor({s32, sXLen})
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder(
{G_UADDE, G_UADDO, G_USUBE, G_USUBO}).lower();
getActionDefinitionsBuilder({G_SADDO, G_SSUBO}).minScalar(0, sXLen).lower();
// TODO: Use Vector Single-Width Saturating Instructions for vector types.
getActionDefinitionsBuilder({G_UADDSAT, G_SADDSAT, G_USUBSAT, G_SSUBSAT})
.lower();
auto &ShiftActions = getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL});
if (ST.is64Bit())
ShiftActions.customFor({{s32, s32}});
ShiftActions.legalFor({{s32, s32}, {s32, sXLen}, {sXLen, sXLen}})
.widenScalarToNextPow2(0)
.clampScalar(1, s32, sXLen)
.clampScalar(0, s32, sXLen)
.minScalarSameAs(1, 0)
.widenScalarToNextPow2(1);
auto &ExtActions =
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)));
if (ST.is64Bit()) {
ExtActions.legalFor({{sXLen, s32}});
getActionDefinitionsBuilder(G_SEXT_INREG)
.customFor({sXLen})
.maxScalar(0, sXLen)
.lower();
} else {
getActionDefinitionsBuilder(G_SEXT_INREG).maxScalar(0, sXLen).lower();
}
ExtActions.customIf(typeIsLegalBoolVec(1, BoolVecTys, ST))
.maxScalar(0, sXLen);
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
auto &MergeUnmergeActions = getActionDefinitionsBuilder(Op);
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
if (XLen == 32 && ST.hasStdExtD()) {
MergeUnmergeActions.legalIf(
all(typeIs(BigTyIdx, s64), typeIs(LitTyIdx, s32)));
}
MergeUnmergeActions.widenScalarToNextPow2(LitTyIdx, XLen)
.widenScalarToNextPow2(BigTyIdx, XLen)
.clampScalar(LitTyIdx, sXLen, sXLen)
.clampScalar(BigTyIdx, sXLen, sXLen);
}
getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
auto &RotateActions = getActionDefinitionsBuilder({G_ROTL, G_ROTR});
if (ST.hasStdExtZbb() || ST.hasStdExtZbkb()) {
RotateActions.legalFor({{s32, sXLen}, {sXLen, sXLen}});
// Widen s32 rotate amount to s64 so SDAG patterns will match.
if (ST.is64Bit())
RotateActions.widenScalarIf(all(typeIs(0, s32), typeIs(1, s32)),
changeTo(1, sXLen));
}
RotateActions.lower();
getActionDefinitionsBuilder(G_BITREVERSE).maxScalar(0, sXLen).lower();
getActionDefinitionsBuilder(G_BITCAST).legalIf(
all(LegalityPredicates::any(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalBoolVec(0, BoolVecTys, ST)),
LegalityPredicates::any(typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST))));
auto &BSWAPActions = getActionDefinitionsBuilder(G_BSWAP);
if (ST.hasStdExtZbb() || ST.hasStdExtZbkb())
BSWAPActions.legalFor({sXLen}).clampScalar(0, sXLen, sXLen);
else
BSWAPActions.maxScalar(0, sXLen).lower();
auto &CountZerosActions = getActionDefinitionsBuilder({G_CTLZ, G_CTTZ});
auto &CountZerosUndefActions =
getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF});
if (ST.hasStdExtZbb()) {
CountZerosActions.legalFor({{s32, s32}, {sXLen, sXLen}})
.clampScalar(0, s32, sXLen)
.widenScalarToNextPow2(0)
.scalarSameSizeAs(1, 0);
} else {
CountZerosActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
CountZerosUndefActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0);
}
CountZerosUndefActions.lower();
auto &CTPOPActions = getActionDefinitionsBuilder(G_CTPOP);
if (ST.hasStdExtZbb()) {
CTPOPActions.legalFor({{s32, s32}, {sXLen, sXLen}})
.clampScalar(0, s32, sXLen)
.widenScalarToNextPow2(0)
.scalarSameSizeAs(1, 0);
} else {
CTPOPActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
}
auto &ConstantActions = getActionDefinitionsBuilder(G_CONSTANT);
ConstantActions.legalFor({s32, p0});
if (ST.is64Bit())
ConstantActions.customFor({s64});
ConstantActions.widenScalarToNextPow2(0).clampScalar(0, s32, sXLen);
// TODO: transform illegal vector types into legal vector type
getActionDefinitionsBuilder(
{G_IMPLICIT_DEF, G_CONSTANT_FOLD_BARRIER, G_FREEZE})
.legalFor({s32, sXLen, p0})
.legalIf(typeIsLegalBoolVec(0, BoolVecTys, ST))
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder(G_ICMP)
.legalFor({{sXLen, sXLen}, {sXLen, p0}})
.legalIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)))
.widenScalarOrEltToNextPow2OrMinSize(1, 8)
.clampScalar(1, sXLen, sXLen)
.clampScalar(0, sXLen, sXLen);
auto &SelectActions =
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s32, sXLen}, {p0, sXLen}})
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST)));
if (XLen == 64 || ST.hasStdExtD())
SelectActions.legalFor({{s64, sXLen}});
SelectActions.widenScalarToNextPow2(0)
.clampScalar(0, s32, (XLen == 64 || ST.hasStdExtD()) ? s64 : s32)
.clampScalar(1, sXLen, sXLen);
auto &LoadStoreActions =
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.legalForTypesWithMemDesc({{s32, p0, s8, 8},
{s32, p0, s16, 16},
{s32, p0, s32, 32},
{p0, p0, sXLen, XLen}});
auto &ExtLoadActions =
getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
.legalForTypesWithMemDesc({{s32, p0, s8, 8}, {s32, p0, s16, 16}});
if (XLen == 64) {
LoadStoreActions.legalForTypesWithMemDesc({{s64, p0, s8, 8},
{s64, p0, s16, 16},
{s64, p0, s32, 32},
{s64, p0, s64, 64}});
ExtLoadActions.legalForTypesWithMemDesc(
{{s64, p0, s8, 8}, {s64, p0, s16, 16}, {s64, p0, s32, 32}});
} else if (ST.hasStdExtD()) {
LoadStoreActions.legalForTypesWithMemDesc({{s64, p0, s64, 64}});
}
LoadStoreActions.clampScalar(0, s32, sXLen).lower();
ExtLoadActions.widenScalarToNextPow2(0).clampScalar(0, s32, sXLen).lower();
getActionDefinitionsBuilder({G_PTR_ADD, G_PTRMASK}).legalFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalFor({{sXLen, p0}})
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder(G_INTTOPTR)
.legalFor({{p0, sXLen}})
.clampScalar(1, sXLen, sXLen);
getActionDefinitionsBuilder(G_BRCOND).legalFor({sXLen}).minScalar(0, sXLen);
getActionDefinitionsBuilder(G_BRJT).legalFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
getActionDefinitionsBuilder(G_PHI)
.legalFor({p0, sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE, G_CONSTANT_POOL})
.legalFor({p0});
if (ST.hasStdExtZmmul()) {
getActionDefinitionsBuilder(G_MUL)
.legalFor({s32, sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
// clang-format off
getActionDefinitionsBuilder({G_SMULH, G_UMULH})
.legalFor({sXLen})
.lower();
// clang-format on
getActionDefinitionsBuilder({G_SMULO, G_UMULO}).minScalar(0, sXLen).lower();
} else {
getActionDefinitionsBuilder(G_MUL)
.libcallFor({sXLen, sDoubleXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sDoubleXLen);
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).lowerFor({sXLen});
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
.minScalar(0, sXLen)
// Widen sXLen to sDoubleXLen so we can use a single libcall to get
// the low bits for the mul result and high bits to do the overflow
// check.
.widenScalarIf(typeIs(0, sXLen),
LegalizeMutations::changeTo(0, sDoubleXLen))
.lower();
}
if (ST.hasStdExtM()) {
getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
.legalFor({s32, sXLen})
.libcallFor({sDoubleXLen})
.clampScalar(0, s32, sDoubleXLen)
.widenScalarToNextPow2(0);
} else {
getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
.libcallFor({sXLen, sDoubleXLen})
.clampScalar(0, sXLen, sDoubleXLen)
.widenScalarToNextPow2(0);
}
// TODO: Use libcall for sDoubleXLen.
getActionDefinitionsBuilder({G_UDIVREM, G_SDIVREM}).lower();
auto &AbsActions = getActionDefinitionsBuilder(G_ABS);
if (ST.hasStdExtZbb())
AbsActions.customFor({s32, sXLen}).minScalar(0, sXLen);
AbsActions.lower();
auto &MinMaxActions =
getActionDefinitionsBuilder({G_UMAX, G_UMIN, G_SMAX, G_SMIN});
if (ST.hasStdExtZbb())
MinMaxActions.legalFor({sXLen}).minScalar(0, sXLen);
MinMaxActions.lower();
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
// FP Operations
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FNEG,
G_FABS, G_FSQRT, G_FMAXNUM, G_FMINNUM})
.legalIf(typeIsScalarFPArith(0, ST));
getActionDefinitionsBuilder(G_FREM)
.libcallFor({s32, s64})
.minScalar(0, s32)
.scalarize(0);
getActionDefinitionsBuilder(G_FCOPYSIGN)
.legalIf(all(typeIsScalarFPArith(0, ST), typeIsScalarFPArith(1, ST)));
// FIXME: Use Zfhmin.
getActionDefinitionsBuilder(G_FPTRUNC).legalIf(
[=, &ST](const LegalityQuery &Query) -> bool {
return (ST.hasStdExtD() && typeIs(0, s32)(Query) &&
typeIs(1, s64)(Query)) ||
(ST.hasStdExtZfh() && typeIs(0, s16)(Query) &&
typeIs(1, s32)(Query)) ||
(ST.hasStdExtZfh() && ST.hasStdExtD() && typeIs(0, s16)(Query) &&
typeIs(1, s64)(Query));
});
getActionDefinitionsBuilder(G_FPEXT).legalIf(
[=, &ST](const LegalityQuery &Query) -> bool {
return (ST.hasStdExtD() && typeIs(0, s64)(Query) &&
typeIs(1, s32)(Query)) ||
(ST.hasStdExtZfh() && typeIs(0, s32)(Query) &&
typeIs(1, s16)(Query)) ||
(ST.hasStdExtZfh() && ST.hasStdExtD() && typeIs(0, s64)(Query) &&
typeIs(1, s16)(Query));
});
getActionDefinitionsBuilder(G_FCMP)
.legalIf(all(typeIs(0, sXLen), typeIsScalarFPArith(1, ST)))
.clampScalar(0, sXLen, sXLen);
// TODO: Support vector version of G_IS_FPCLASS.
getActionDefinitionsBuilder(G_IS_FPCLASS)
.customIf(all(typeIs(0, s1), typeIsScalarFPArith(1, ST)));
getActionDefinitionsBuilder(G_FCONSTANT)
.legalIf(typeIsScalarFPArith(0, ST))
.lowerFor({s32, s64});
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalIf(all(typeInSet(0, {s32, sXLen}), typeIsScalarFPArith(1, ST)))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen)
.libcall();
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalIf(all(typeIsScalarFPArith(0, ST), typeInSet(1, {s32, sXLen})))
.widenScalarToNextPow2(1)
.clampScalar(1, s32, sXLen);
// FIXME: We can do custom inline expansion like SelectionDAG.
// FIXME: Legal with Zfa.
getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR})
.libcallFor({s32, s64});
getActionDefinitionsBuilder(G_VASTART).customFor({p0});
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
getActionDefinitionsBuilder(G_VAARG)
// TODO: Implement narrowScalar and widenScalar for G_VAARG for types
// outside the [s32, sXLen] range.
.clampScalar(0, s32, sXLen)
.lowerForCartesianProduct({s32, sXLen, p0}, {p0});
getActionDefinitionsBuilder(G_VSCALE)
.clampScalar(0, sXLen, sXLen)
.customFor({sXLen});
auto &SplatActions =
getActionDefinitionsBuilder(G_SPLAT_VECTOR)
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIs(1, sXLen)))
.customIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST), typeIs(1, s1)));
// Handle case of s64 element vectors on RV32. If the subtarget does not have
// f64, then try to lower it to G_SPLAT_VECTOR_SPLIT_64_VL. If the subtarget
// does have f64, then we don't know whether the type is an f64 or an i64,
// so mark the G_SPLAT_VECTOR as legal and decide later what to do with it,
// depending on how the instructions it consumes are legalized. They are not
// legalized yet since legalization is in reverse postorder, so we cannot
// make the decision at this moment.
if (XLen == 32) {
if (ST.hasVInstructionsF64() && ST.hasStdExtD())
SplatActions.legalIf(all(
typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
else if (ST.hasVInstructionsI64())
SplatActions.customIf(all(
typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
}
SplatActions.clampScalar(1, sXLen, sXLen);
getLegacyLegalizerInfo().computeTables();
}
bool RISCVLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
Intrinsic::ID IntrinsicID = cast<GIntrinsic>(MI).getIntrinsicID();
switch (IntrinsicID) {
default:
return false;
case Intrinsic::vacopy: {
// vacopy arguments must be legal because of the intrinsic signature.
// No need to check here.
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
MachineFunction &MF = *MI.getMF();
const DataLayout &DL = MIRBuilder.getDataLayout();
LLVMContext &Ctx = MF.getFunction().getContext();
Register DstLst = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(DstLst);
// Load the source va_list
Align Alignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx));
MachineMemOperand *LoadMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, Alignment);
auto Tmp = MIRBuilder.buildLoad(PtrTy, MI.getOperand(2), *LoadMMO);
// Store the result in the destination va_list
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, Alignment);
MIRBuilder.buildStore(Tmp, DstLst, *StoreMMO);
MI.eraseFromParent();
return true;
}
}
}
bool RISCVLegalizerInfo::legalizeShlAshrLshr(
MachineInstr &MI, MachineIRBuilder &MIRBuilder,
GISelChangeObserver &Observer) const {
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
MI.getOpcode() == TargetOpcode::G_LSHR ||
MI.getOpcode() == TargetOpcode::G_SHL);
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
// If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
// imported patterns can select it later. Either way, it will be legal.
Register AmtReg = MI.getOperand(2).getReg();
auto VRegAndVal = getIConstantVRegValWithLookThrough(AmtReg, MRI);
if (!VRegAndVal)
return true;
// Check the shift amount is in range for an immediate form.
uint64_t Amount = VRegAndVal->Value.getZExtValue();
if (Amount > 31)
return true; // This will have to remain a register variant.
auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(ExtCst.getReg(0));
Observer.changedInstr(MI);
return true;
}
bool RISCVLegalizerInfo::legalizeVAStart(MachineInstr &MI,
MachineIRBuilder &MIRBuilder) const {
// Stores the address of the VarArgsFrameIndex slot into the memory location
assert(MI.getOpcode() == TargetOpcode::G_VASTART);
MachineFunction *MF = MI.getParent()->getParent();
RISCVMachineFunctionInfo *FuncInfo = MF->getInfo<RISCVMachineFunctionInfo>();
int FI = FuncInfo->getVarArgsFrameIndex();
LLT AddrTy = MIRBuilder.getMRI()->getType(MI.getOperand(0).getReg());
auto FINAddr = MIRBuilder.buildFrameIndex(AddrTy, FI);
assert(MI.hasOneMemOperand());
MIRBuilder.buildStore(FINAddr, MI.getOperand(0).getReg(),
*MI.memoperands()[0]);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::shouldBeInConstantPool(APInt APImm,
bool ShouldOptForSize) const {
assert(APImm.getBitWidth() == 32 || APImm.getBitWidth() == 64);
int64_t Imm = APImm.getSExtValue();
// All simm32 constants should be handled by isel.
// NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
// this check redundant, but small immediates are common so this check
// should have better compile time.
if (isInt<32>(Imm))
return false;
// We only need to cost the immediate, if constant pool lowering is enabled.
if (!STI.useConstantPoolForLargeInts())
return false;
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Imm, STI);
if (Seq.size() <= STI.getMaxBuildIntsCost())
return false;
// Optimizations below are disabled for opt size. If we're optimizing for
// size, use a constant pool.
if (ShouldOptForSize)
return true;
//
// Special case. See if we can build the constant as (ADD (SLLI X, C), X) do
// that if it will avoid a constant pool.
// It will require an extra temporary register though.
// If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where
// low and high 32 bits are the same and bit 31 and 63 are set.
unsigned ShiftAmt, AddOpc;
RISCVMatInt::InstSeq SeqLo =
RISCVMatInt::generateTwoRegInstSeq(Imm, STI, ShiftAmt, AddOpc);
return !(!SeqLo.empty() && (SeqLo.size() + 2) <= STI.getMaxBuildIntsCost());
}
bool RISCVLegalizerInfo::legalizeVScale(MachineInstr &MI,
MachineIRBuilder &MIB) const {
const LLT XLenTy(STI.getXLenVT());
Register Dst = MI.getOperand(0).getReg();
// We define our scalable vector types for lmul=1 to use a 64 bit known
// minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
// vscale as VLENB / 8.
static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
if (STI.getRealMinVLen() < RISCV::RVVBitsPerBlock)
// Support for VLEN==32 is incomplete.
return false;
// We assume VLENB is a multiple of 8. We manually choose the best shift
// here because SimplifyDemandedBits isn't always able to simplify it.
uint64_t Val = MI.getOperand(1).getCImm()->getZExtValue();
if (isPowerOf2_64(Val)) {
uint64_t Log2 = Log2_64(Val);
if (Log2 < 3) {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildLShr(Dst, VLENB, MIB.buildConstant(XLenTy, 3 - Log2));
} else if (Log2 > 3) {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildShl(Dst, VLENB, MIB.buildConstant(XLenTy, Log2 - 3));
} else {
MIB.buildInstr(RISCV::G_READ_VLENB, {Dst}, {});
}
} else if ((Val % 8) == 0) {
// If the multiplier is a multiple of 8, scale it down to avoid needing
// to shift the VLENB value.
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildMul(Dst, VLENB, MIB.buildConstant(XLenTy, Val / 8));
} else {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
auto VScale = MIB.buildLShr(XLenTy, VLENB, MIB.buildConstant(XLenTy, 3));
MIB.buildMul(Dst, VScale, MIB.buildConstant(XLenTy, Val));
}
MI.eraseFromParent();
return true;
}
// Custom-lower extensions from mask vectors by using a vselect either with 1
// for zero/any-extension or -1 for sign-extension:
// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
// Note that any-extension is lowered identically to zero-extension.
bool RISCVLegalizerInfo::legalizeExt(MachineInstr &MI,
MachineIRBuilder &MIB) const {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_SEXT ||
Opc == TargetOpcode::G_ANYEXT);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
int64_t ExtTrueVal = Opc == TargetOpcode::G_SEXT ? -1 : 1;
LLT DstEltTy = DstTy.getElementType();
auto SplatZero = MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, 0));
auto SplatTrue =
MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, ExtTrueVal));
MIB.buildSelect(Dst, Src, SplatTrue, SplatZero);
MI.eraseFromParent();
return true;
}
/// Return the type of the mask type suitable for masking the provided
/// vector type. This is simply an i1 element type vector of the same
/// (possibly scalable) length.
static LLT getMaskTypeFor(LLT VecTy) {
assert(VecTy.isVector());
ElementCount EC = VecTy.getElementCount();
return LLT::vector(EC, LLT::scalar(1));
}
/// Creates an all ones mask suitable for masking a vector of type VecTy with
/// vector length VL.
static MachineInstrBuilder buildAllOnesMask(LLT VecTy, const SrcOp &VL,
MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
LLT MaskTy = getMaskTypeFor(VecTy);
return MIB.buildInstr(RISCV::G_VMSET_VL, {MaskTy}, {VL});
}
/// Gets the two common "VL" operands: an all-ones mask and the vector length.
/// VecTy is a scalable vector type.
static std::pair<MachineInstrBuilder, Register>
buildDefaultVLOps(const DstOp &Dst, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
LLT VecTy = Dst.getLLTTy(MRI);
assert(VecTy.isScalableVector() && "Expecting scalable container type");
Register VL(RISCV::X0);
MachineInstrBuilder Mask = buildAllOnesMask(VecTy, VL, MIB, MRI);
return {Mask, VL};
}
static MachineInstrBuilder
buildSplatPartsS64WithVL(const DstOp &Dst, const SrcOp &Passthru, Register Lo,
Register Hi, Register VL, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
// TODO: If the Hi bits of the splat are undefined, then it's fine to just
// splat Lo even if it might be sign extended. I don't think we have
// introduced a case where we're build a s64 where the upper bits are undef
// yet.
// Fall back to a stack store and stride x0 vector load.
// TODO: need to lower G_SPLAT_VECTOR_SPLIT_I64. This is done in
// preprocessDAG in SDAG.
return MIB.buildInstr(RISCV::G_SPLAT_VECTOR_SPLIT_I64_VL, {Dst},
{Passthru, Lo, Hi, VL});
}
static MachineInstrBuilder
buildSplatSplitS64WithVL(const DstOp &Dst, const SrcOp &Passthru,
const SrcOp &Scalar, Register VL,
MachineIRBuilder &MIB, MachineRegisterInfo &MRI) {
assert(Scalar.getLLTTy(MRI) == LLT::scalar(64) && "Unexpected VecTy!");
auto Unmerge = MIB.buildUnmerge(LLT::scalar(32), Scalar);
return buildSplatPartsS64WithVL(Dst, Passthru, Unmerge.getReg(0),
Unmerge.getReg(1), VL, MIB, MRI);
}
// Lower splats of s1 types to G_ICMP. For each mask vector type, we have a
// legal equivalently-sized i8 type, so we can use that as a go-between.
// Splats of s1 types that have constant value can be legalized as VMSET_VL or
// VMCLR_VL.
bool RISCVLegalizerInfo::legalizeSplatVector(MachineInstr &MI,
MachineIRBuilder &MIB) const {
assert(MI.getOpcode() == TargetOpcode::G_SPLAT_VECTOR);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = MI.getOperand(0).getReg();
Register SplatVal = MI.getOperand(1).getReg();
LLT VecTy = MRI.getType(Dst);
LLT XLenTy(STI.getXLenVT());
// Handle case of s64 element vectors on rv32
if (XLenTy.getSizeInBits() == 32 &&
VecTy.getElementType().getSizeInBits() == 64) {
auto [_, VL] = buildDefaultVLOps(Dst, MIB, MRI);
buildSplatSplitS64WithVL(Dst, MIB.buildUndef(VecTy), SplatVal, VL, MIB,
MRI);
MI.eraseFromParent();
return true;
}
// All-zeros or all-ones splats are handled specially.
MachineInstr &SplatValMI = *MRI.getVRegDef(SplatVal);
if (isAllOnesOrAllOnesSplat(SplatValMI, MRI)) {
auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
MIB.buildInstr(RISCV::G_VMSET_VL, {Dst}, {VL});
MI.eraseFromParent();
return true;
}
if (isNullOrNullSplat(SplatValMI, MRI)) {
auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
MIB.buildInstr(RISCV::G_VMCLR_VL, {Dst}, {VL});
MI.eraseFromParent();
return true;
}
// Handle non-constant mask splat (i.e. not sure if it's all zeros or all
// ones) by promoting it to an s8 splat.
LLT InterEltTy = LLT::scalar(8);
LLT InterTy = VecTy.changeElementType(InterEltTy);
auto ZExtSplatVal = MIB.buildZExt(InterEltTy, SplatVal);
auto And =
MIB.buildAnd(InterEltTy, ZExtSplatVal, MIB.buildConstant(InterEltTy, 1));
auto LHS = MIB.buildSplatVector(InterTy, And);
auto ZeroSplat =
MIB.buildSplatVector(InterTy, MIB.buildConstant(InterEltTy, 0));
MIB.buildICmp(CmpInst::Predicate::ICMP_NE, Dst, LHS, ZeroSplat);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeCustom(
LegalizerHelper &Helper, MachineInstr &MI,
LostDebugLocObserver &LocObserver) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
GISelChangeObserver &Observer = Helper.Observer;
MachineFunction &MF = *MI.getParent()->getParent();
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_ABS:
return Helper.lowerAbsToMaxNeg(MI);
// TODO: G_FCONSTANT
case TargetOpcode::G_CONSTANT: {
const Function &F = MF.getFunction();
// TODO: if PSI and BFI are present, add " ||
// llvm::shouldOptForSize(*CurMBB, PSI, BFI)".
bool ShouldOptForSize = F.hasOptSize() || F.hasMinSize();
const ConstantInt *ConstVal = MI.getOperand(1).getCImm();
if (!shouldBeInConstantPool(ConstVal->getValue(), ShouldOptForSize))
return true;
return Helper.lowerConstant(MI);
}
case TargetOpcode::G_SHL:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
return legalizeShlAshrLshr(MI, MIRBuilder, Observer);
case TargetOpcode::G_SEXT_INREG: {
// Source size of 32 is sext.w.
int64_t SizeInBits = MI.getOperand(2).getImm();
if (SizeInBits == 32)
return true;
return Helper.lower(MI, 0, /* Unused hint type */ LLT()) ==
LegalizerHelper::Legalized;
}
case TargetOpcode::G_IS_FPCLASS: {
Register GISFPCLASS = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const MachineOperand &ImmOp = MI.getOperand(2);
MachineIRBuilder MIB(MI);
// Turn LLVM IR's floating point classes to that in RISC-V,
// by simply rotating the 10-bit immediate right by two bits.
APInt GFpClassImm(10, static_cast<uint64_t>(ImmOp.getImm()));
auto FClassMask = MIB.buildConstant(sXLen, GFpClassImm.rotr(2).zext(XLen));
auto ConstZero = MIB.buildConstant(sXLen, 0);
auto GFClass = MIB.buildInstr(RISCV::G_FCLASS, {sXLen}, {Src});
auto And = MIB.buildAnd(sXLen, GFClass, FClassMask);
MIB.buildICmp(CmpInst::ICMP_NE, GISFPCLASS, And, ConstZero);
MI.eraseFromParent();
return true;
}
case TargetOpcode::G_VASTART:
return legalizeVAStart(MI, MIRBuilder);
case TargetOpcode::G_VSCALE:
return legalizeVScale(MI, MIRBuilder);
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ANYEXT:
return legalizeExt(MI, MIRBuilder);
case TargetOpcode::G_SPLAT_VECTOR:
return legalizeSplatVector(MI, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}
|