1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
//===----- RISCVCodeGenPrepare.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a RISC-V specific version of CodeGenPrepare.
// It munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-codegenprepare"
#define PASS_NAME "RISC-V CodeGenPrepare"
namespace {
class RISCVCodeGenPrepare : public FunctionPass,
public InstVisitor<RISCVCodeGenPrepare, bool> {
const DataLayout *DL;
const DominatorTree *DT;
const RISCVSubtarget *ST;
public:
static char ID;
RISCVCodeGenPrepare() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return PASS_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetPassConfig>();
}
bool visitInstruction(Instruction &I) { return false; }
bool visitAnd(BinaryOperator &BO);
bool visitIntrinsicInst(IntrinsicInst &I);
bool expandVPStrideLoad(IntrinsicInst &I);
};
} // end anonymous namespace
// Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set,
// but bits 63:32 are zero. If we know that bit 31 of X is 0, we can fill
// the upper 32 bits with ones.
bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) {
if (!ST->is64Bit())
return false;
if (!BO.getType()->isIntegerTy(64))
return false;
using namespace PatternMatch;
// Left hand side should be a zext nneg.
Value *LHSSrc;
if (!match(BO.getOperand(0), m_NNegZExt(m_Value(LHSSrc))))
return false;
if (!LHSSrc->getType()->isIntegerTy(32))
return false;
// Right hand side should be a constant.
Value *RHS = BO.getOperand(1);
auto *CI = dyn_cast<ConstantInt>(RHS);
if (!CI)
return false;
uint64_t C = CI->getZExtValue();
// Look for constants that fit in 32 bits but not simm12, and can be made
// into simm12 by sign extending bit 31. This will allow use of ANDI.
// TODO: Is worth making simm32?
if (!isUInt<32>(C) || isInt<12>(C) || !isInt<12>(SignExtend64<32>(C)))
return false;
// Sign extend the constant and replace the And operand.
C = SignExtend64<32>(C);
BO.setOperand(1, ConstantInt::get(RHS->getType(), C));
return true;
}
// LLVM vector reduction intrinsics return a scalar result, but on RISC-V vector
// reduction instructions write the result in the first element of a vector
// register. So when a reduction in a loop uses a scalar phi, we end up with
// unnecessary scalar moves:
//
// loop:
// vfmv.s.f v10, fa0
// vfredosum.vs v8, v8, v10
// vfmv.f.s fa0, v8
//
// This mainly affects ordered fadd reductions, since other types of reduction
// typically use element-wise vectorisation in the loop body. This tries to
// vectorize any scalar phis that feed into a fadd reduction:
//
// loop:
// %phi = phi <float> [ ..., %entry ], [ %acc, %loop ]
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %phi,
// <vscale x 2 x float> %vec)
//
// ->
//
// loop:
// %phi = phi <vscale x 2 x float> [ ..., %entry ], [ %acc.vec, %loop ]
// %phi.scalar = extractelement <vscale x 2 x float> %phi, i64 0
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %x,
// <vscale x 2 x float> %vec)
// %acc.vec = insertelement <vscale x 2 x float> poison, float %acc.next, i64 0
//
// Which eliminates the scalar -> vector -> scalar crossing during instruction
// selection.
bool RISCVCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
if (expandVPStrideLoad(I))
return true;
if (I.getIntrinsicID() != Intrinsic::vector_reduce_fadd)
return false;
auto *PHI = dyn_cast<PHINode>(I.getOperand(0));
if (!PHI || !PHI->hasOneUse() ||
!llvm::is_contained(PHI->incoming_values(), &I))
return false;
Type *VecTy = I.getOperand(1)->getType();
IRBuilder<> Builder(PHI);
auto *VecPHI = Builder.CreatePHI(VecTy, PHI->getNumIncomingValues());
for (auto *BB : PHI->blocks()) {
Builder.SetInsertPoint(BB->getTerminator());
Value *InsertElt = Builder.CreateInsertElement(
VecTy, PHI->getIncomingValueForBlock(BB), (uint64_t)0);
VecPHI->addIncoming(InsertElt, BB);
}
Builder.SetInsertPoint(&I);
I.setOperand(0, Builder.CreateExtractElement(VecPHI, (uint64_t)0));
PHI->eraseFromParent();
return true;
}
// Always expand zero strided loads so we match more .vx splat patterns, even if
// we have +optimized-zero-stride-loads. RISCVDAGToDAGISel::Select will convert
// it back to a strided load if it's optimized.
bool RISCVCodeGenPrepare::expandVPStrideLoad(IntrinsicInst &II) {
Value *BasePtr, *VL;
using namespace PatternMatch;
if (!match(&II, m_Intrinsic<Intrinsic::experimental_vp_strided_load>(
m_Value(BasePtr), m_Zero(), m_AllOnes(), m_Value(VL))))
return false;
// If SEW>XLEN then a splat will get lowered as a zero strided load anyway, so
// avoid expanding here.
if (II.getType()->getScalarSizeInBits() > ST->getXLen())
return false;
if (!isKnownNonZero(VL, {*DL, DT, nullptr, &II}))
return false;
auto *VTy = cast<VectorType>(II.getType());
IRBuilder<> Builder(&II);
Type *STy = VTy->getElementType();
Value *Val = Builder.CreateLoad(STy, BasePtr);
Value *Res = Builder.CreateIntrinsic(Intrinsic::experimental_vp_splat, {VTy},
{Val, II.getOperand(2), VL});
II.replaceAllUsesWith(Res);
II.eraseFromParent();
return true;
}
bool RISCVCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<RISCVTargetMachine>();
ST = &TM.getSubtarget<RISCVSubtarget>(F);
DL = &F.getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool MadeChange = false;
for (auto &BB : F)
for (Instruction &I : llvm::make_early_inc_range(BB))
MadeChange |= visit(I);
return MadeChange;
}
INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
char RISCVCodeGenPrepare::ID = 0;
FunctionPass *llvm::createRISCVCodeGenPreparePass() {
return new RISCVCodeGenPrepare();
}
|