1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
|
//===-- RISCVISelLowering.h - RISC-V DAG Lowering Interface -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that RISC-V uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_RISCV_RISCVISELLOWERING_H
#define LLVM_LIB_TARGET_RISCV_RISCVISELLOWERING_H
#include "RISCV.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include <optional>
namespace llvm {
class InstructionCost;
class RISCVSubtarget;
struct RISCVRegisterInfo;
class RVVArgDispatcher;
namespace RISCVISD {
// clang-format off
enum NodeType : unsigned {
FIRST_NUMBER = ISD::BUILTIN_OP_END,
RET_GLUE,
SRET_GLUE,
MRET_GLUE,
CALL,
/// Select with condition operator - This selects between a true value and
/// a false value (ops #3 and #4) based on the boolean result of comparing
/// the lhs and rhs (ops #0 and #1) of a conditional expression with the
/// condition code in op #2, a XLenVT constant from the ISD::CondCode enum.
/// The lhs and rhs are XLenVT integers. The true and false values can be
/// integer or floating point.
SELECT_CC,
BR_CC,
BuildPairF64,
SplitF64,
TAIL,
// Add the Lo 12 bits from an address. Selected to ADDI.
ADD_LO,
// Get the Hi 20 bits from an address. Selected to LUI.
HI,
// Represents an AUIPC+ADDI pair. Selected to PseudoLLA.
LLA,
// Selected as PseudoAddTPRel. Used to emit a TP-relative relocation.
ADD_TPREL,
// Multiply high for signedxunsigned.
MULHSU,
// Represents (ADD (SHL a, b), c) with the arguments appearing in the order
// a, b, c. 'b' must be a constant. Maps to sh1add/sh2add/sh3add with zba
// or addsl with XTheadBa.
SHL_ADD,
// RV64I shifts, directly matching the semantics of the named RISC-V
// instructions.
SLLW,
SRAW,
SRLW,
// 32-bit operations from RV64M that can't be simply matched with a pattern
// at instruction selection time. These have undefined behavior for division
// by 0 or overflow (divw) like their target independent counterparts.
DIVW,
DIVUW,
REMUW,
// RV64IB rotates, directly matching the semantics of the named RISC-V
// instructions.
ROLW,
RORW,
// RV64IZbb bit counting instructions directly matching the semantics of the
// named RISC-V instructions.
CLZW,
CTZW,
// RV64IZbb absolute value for i32. Expanded to (max (negw X), X) during isel.
ABSW,
// FPR<->GPR transfer operations when the FPR is smaller than XLEN, needed as
// XLEN is the only legal integer width.
//
// FMV_H_X matches the semantics of the FMV.H.X.
// FMV_X_ANYEXTH is similar to FMV.X.H but has an any-extended result.
// FMV_X_SIGNEXTH is similar to FMV.X.H and has a sign-extended result.
// FMV_W_X_RV64 matches the semantics of the FMV.W.X.
// FMV_X_ANYEXTW_RV64 is similar to FMV.X.W but has an any-extended result.
//
// This is a more convenient semantic for producing dagcombines that remove
// unnecessary GPR->FPR->GPR moves.
FMV_H_X,
FMV_X_ANYEXTH,
FMV_X_SIGNEXTH,
FMV_W_X_RV64,
FMV_X_ANYEXTW_RV64,
// FP to XLen int conversions. Corresponds to fcvt.l(u).s/d/h on RV64 and
// fcvt.w(u).s/d/h on RV32. Unlike FP_TO_S/UINT these saturate out of
// range inputs. These are used for FP_TO_S/UINT_SAT lowering. Rounding mode
// is passed as a TargetConstant operand using the RISCVFPRndMode enum.
FCVT_X,
FCVT_XU,
// FP to 32 bit int conversions for RV64. These are used to keep track of the
// result being sign extended to 64 bit. These saturate out of range inputs.
// Used for FP_TO_S/UINT and FP_TO_S/UINT_SAT lowering. Rounding mode
// is passed as a TargetConstant operand using the RISCVFPRndMode enum.
FCVT_W_RV64,
FCVT_WU_RV64,
FP_ROUND_BF16,
FP_EXTEND_BF16,
// Rounds an FP value to its corresponding integer in the same FP format.
// First operand is the value to round, the second operand is the largest
// integer that can be represented exactly in the FP format. This will be
// expanded into multiple instructions and basic blocks with a custom
// inserter.
FROUND,
FCLASS,
// Floating point fmax and fmin matching the RISC-V instruction semantics.
FMAX, FMIN,
// A read of the 64-bit counter CSR on a 32-bit target (returns (Lo, Hi)).
// It takes a chain operand and another two target constant operands (the
// CSR numbers of the low and high parts of the counter).
READ_COUNTER_WIDE,
// brev8, orc.b, zip, and unzip from Zbb and Zbkb. All operands are i32 or
// XLenVT.
BREV8,
ORC_B,
ZIP,
UNZIP,
// Scalar cryptography
CLMUL, CLMULH, CLMULR,
SHA256SIG0, SHA256SIG1, SHA256SUM0, SHA256SUM1,
SM4KS, SM4ED,
SM3P0, SM3P1,
// May-Be-Operations
MOPR, MOPRR,
// Vector Extension
FIRST_VL_VECTOR_OP,
// VMV_V_V_VL matches the semantics of vmv.v.v but includes an extra operand
// for the VL value to be used for the operation. The first operand is
// passthru operand.
VMV_V_V_VL = FIRST_VL_VECTOR_OP,
// VMV_V_X_VL matches the semantics of vmv.v.x but includes an extra operand
// for the VL value to be used for the operation. The first operand is
// passthru operand.
VMV_V_X_VL,
// VFMV_V_F_VL matches the semantics of vfmv.v.f but includes an extra operand
// for the VL value to be used for the operation. The first operand is
// passthru operand.
VFMV_V_F_VL,
// VMV_X_S matches the semantics of vmv.x.s. The result is always XLenVT sign
// extended from the vector element size.
VMV_X_S,
// VMV_S_X_VL matches the semantics of vmv.s.x. It carries a VL operand.
VMV_S_X_VL,
// VFMV_S_F_VL matches the semantics of vfmv.s.f. It carries a VL operand.
VFMV_S_F_VL,
// Splats an 64-bit value that has been split into two i32 parts. This is
// expanded late to two scalar stores and a stride 0 vector load.
// The first operand is passthru operand.
SPLAT_VECTOR_SPLIT_I64_VL,
// Truncates a RVV integer vector by one power-of-two. Carries both an extra
// mask and VL operand.
TRUNCATE_VECTOR_VL,
// Matches the semantics of vslideup/vslidedown. The first operand is the
// pass-thru operand, the second is the source vector, the third is the XLenVT
// index (either constant or non-constant), the fourth is the mask, the fifth
// is the VL and the sixth is the policy.
VSLIDEUP_VL,
VSLIDEDOWN_VL,
// Matches the semantics of vslide1up/slide1down. The first operand is
// passthru operand, the second is source vector, third is the XLenVT scalar
// value. The fourth and fifth operands are the mask and VL operands.
VSLIDE1UP_VL,
VSLIDE1DOWN_VL,
// Matches the semantics of vfslide1up/vfslide1down. The first operand is
// passthru operand, the second is source vector, third is a scalar value
// whose type matches the element type of the vectors. The fourth and fifth
// operands are the mask and VL operands.
VFSLIDE1UP_VL,
VFSLIDE1DOWN_VL,
// Matches the semantics of the vid.v instruction, with a mask and VL
// operand.
VID_VL,
// Matches the semantics of the vfcnvt.rod function (Convert double-width
// float to single-width float, rounding towards odd). Takes a double-width
// float vector and produces a single-width float vector. Also has a mask and
// VL operand.
VFNCVT_ROD_VL,
// These nodes match the semantics of the corresponding RVV vector reduction
// instructions. They produce a vector result which is the reduction
// performed over the second vector operand plus the first element of the
// third vector operand. The first operand is the pass-thru operand. The
// second operand is an unconstrained vector type, and the result, first, and
// third operand's types are expected to be the corresponding full-width
// LMUL=1 type for the second operand:
// nxv8i8 = vecreduce_add nxv8i8, nxv32i8, nxv8i8
// nxv2i32 = vecreduce_add nxv2i32, nxv8i32, nxv2i32
// The different in types does introduce extra vsetvli instructions but
// similarly it reduces the number of registers consumed per reduction.
// Also has a mask and VL operand.
VECREDUCE_ADD_VL,
VECREDUCE_UMAX_VL,
VECREDUCE_SMAX_VL,
VECREDUCE_UMIN_VL,
VECREDUCE_SMIN_VL,
VECREDUCE_AND_VL,
VECREDUCE_OR_VL,
VECREDUCE_XOR_VL,
VECREDUCE_FADD_VL,
VECREDUCE_SEQ_FADD_VL,
VECREDUCE_FMIN_VL,
VECREDUCE_FMAX_VL,
// Vector binary ops with a merge as a third operand, a mask as a fourth
// operand, and VL as a fifth operand.
ADD_VL,
AND_VL,
MUL_VL,
OR_VL,
SDIV_VL,
SHL_VL,
SREM_VL,
SRA_VL,
SRL_VL,
ROTL_VL,
ROTR_VL,
SUB_VL,
UDIV_VL,
UREM_VL,
XOR_VL,
SMIN_VL,
SMAX_VL,
UMIN_VL,
UMAX_VL,
BITREVERSE_VL,
BSWAP_VL,
CTLZ_VL,
CTTZ_VL,
CTPOP_VL,
SADDSAT_VL,
UADDSAT_VL,
SSUBSAT_VL,
USUBSAT_VL,
// Averaging adds of signed integers.
AVGFLOORS_VL,
// Averaging adds of unsigned integers.
AVGFLOORU_VL,
// Rounding averaging adds of signed integers.
AVGCEILS_VL,
// Rounding averaging adds of unsigned integers.
AVGCEILU_VL,
// Operands are (source, shift, merge, mask, roundmode, vl)
VNCLIPU_VL,
VNCLIP_VL,
MULHS_VL,
MULHU_VL,
FADD_VL,
FSUB_VL,
FMUL_VL,
FDIV_VL,
VFMIN_VL,
VFMAX_VL,
// Vector unary ops with a mask as a second operand and VL as a third operand.
FNEG_VL,
FABS_VL,
FSQRT_VL,
FCLASS_VL,
FCOPYSIGN_VL, // Has a merge operand
VFCVT_RTZ_X_F_VL,
VFCVT_RTZ_XU_F_VL,
VFCVT_X_F_VL,
VFCVT_XU_F_VL,
VFROUND_NOEXCEPT_VL,
VFCVT_RM_X_F_VL, // Has a rounding mode operand.
VFCVT_RM_XU_F_VL, // Has a rounding mode operand.
SINT_TO_FP_VL,
UINT_TO_FP_VL,
VFCVT_RM_F_X_VL, // Has a rounding mode operand.
VFCVT_RM_F_XU_VL, // Has a rounding mode operand.
FP_ROUND_VL,
FP_EXTEND_VL,
// Vector FMA ops with a mask as a fourth operand and VL as a fifth operand.
VFMADD_VL,
VFNMADD_VL,
VFMSUB_VL,
VFNMSUB_VL,
// Vector widening FMA ops with a mask as a fourth operand and VL as a fifth
// operand.
VFWMADD_VL,
VFWNMADD_VL,
VFWMSUB_VL,
VFWNMSUB_VL,
// Widening instructions with a merge value a third operand, a mask as a
// fourth operand, and VL as a fifth operand.
VWMUL_VL,
VWMULU_VL,
VWMULSU_VL,
VWADD_VL,
VWADDU_VL,
VWSUB_VL,
VWSUBU_VL,
VWADD_W_VL,
VWADDU_W_VL,
VWSUB_W_VL,
VWSUBU_W_VL,
VWSLL_VL,
VFWMUL_VL,
VFWADD_VL,
VFWSUB_VL,
VFWADD_W_VL,
VFWSUB_W_VL,
// Widening ternary operations with a mask as the fourth operand and VL as the
// fifth operand.
VWMACC_VL,
VWMACCU_VL,
VWMACCSU_VL,
// Narrowing logical shift right.
// Operands are (source, shift, passthru, mask, vl)
VNSRL_VL,
// Vector compare producing a mask. Fourth operand is input mask. Fifth
// operand is VL.
SETCC_VL,
// General vmerge node with mask, true, false, passthru, and vl operands.
// Tail agnostic vselect can be implemented by setting passthru to undef.
VMERGE_VL,
// Mask binary operators.
VMAND_VL,
VMOR_VL,
VMXOR_VL,
// Set mask vector to all zeros or ones.
VMCLR_VL,
VMSET_VL,
// Matches the semantics of vrgather.vx and vrgather.vv with extra operands
// for passthru and VL. Operands are (src, index, mask, passthru, vl).
VRGATHER_VX_VL,
VRGATHER_VV_VL,
VRGATHEREI16_VV_VL,
// Vector sign/zero extend with additional mask & VL operands.
VSEXT_VL,
VZEXT_VL,
// vcpop.m with additional mask and VL operands.
VCPOP_VL,
// vfirst.m with additional mask and VL operands.
VFIRST_VL,
LAST_VL_VECTOR_OP = VFIRST_VL,
// Read VLENB CSR
READ_VLENB,
// Reads value of CSR.
// The first operand is a chain pointer. The second specifies address of the
// required CSR. Two results are produced, the read value and the new chain
// pointer.
READ_CSR,
// Write value to CSR.
// The first operand is a chain pointer, the second specifies address of the
// required CSR and the third is the value to write. The result is the new
// chain pointer.
WRITE_CSR,
// Read and write value of CSR.
// The first operand is a chain pointer, the second specifies address of the
// required CSR and the third is the value to write. Two results are produced,
// the value read before the modification and the new chain pointer.
SWAP_CSR,
// Branchless select operations, matching the semantics of the instructions
// defined in Zicond or XVentanaCondOps.
CZERO_EQZ, // vt.maskc for XVentanaCondOps.
CZERO_NEZ, // vt.maskcn for XVentanaCondOps.
/// Software guarded BRIND node. Operand 0 is the chain operand and
/// operand 1 is the target address.
SW_GUARDED_BRIND,
// FP to 32 bit int conversions for RV64. These are used to keep track of the
// result being sign extended to 64 bit. These saturate out of range inputs.
STRICT_FCVT_W_RV64 = ISD::FIRST_TARGET_STRICTFP_OPCODE,
STRICT_FCVT_WU_RV64,
STRICT_FADD_VL,
STRICT_FSUB_VL,
STRICT_FMUL_VL,
STRICT_FDIV_VL,
STRICT_FSQRT_VL,
STRICT_VFMADD_VL,
STRICT_VFNMADD_VL,
STRICT_VFMSUB_VL,
STRICT_VFNMSUB_VL,
STRICT_FP_ROUND_VL,
STRICT_FP_EXTEND_VL,
STRICT_VFNCVT_ROD_VL,
STRICT_SINT_TO_FP_VL,
STRICT_UINT_TO_FP_VL,
STRICT_VFCVT_RM_X_F_VL,
STRICT_VFCVT_RTZ_X_F_VL,
STRICT_VFCVT_RTZ_XU_F_VL,
STRICT_FSETCC_VL,
STRICT_FSETCCS_VL,
STRICT_VFROUND_NOEXCEPT_VL,
LAST_RISCV_STRICTFP_OPCODE = STRICT_VFROUND_NOEXCEPT_VL,
SF_VC_XV_SE,
SF_VC_IV_SE,
SF_VC_VV_SE,
SF_VC_FV_SE,
SF_VC_XVV_SE,
SF_VC_IVV_SE,
SF_VC_VVV_SE,
SF_VC_FVV_SE,
SF_VC_XVW_SE,
SF_VC_IVW_SE,
SF_VC_VVW_SE,
SF_VC_FVW_SE,
SF_VC_V_X_SE,
SF_VC_V_I_SE,
SF_VC_V_XV_SE,
SF_VC_V_IV_SE,
SF_VC_V_VV_SE,
SF_VC_V_FV_SE,
SF_VC_V_XVV_SE,
SF_VC_V_IVV_SE,
SF_VC_V_VVV_SE,
SF_VC_V_FVV_SE,
SF_VC_V_XVW_SE,
SF_VC_V_IVW_SE,
SF_VC_V_VVW_SE,
SF_VC_V_FVW_SE,
// WARNING: Do not add anything in the end unless you want the node to
// have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
// opcodes will be thought as target memory ops!
TH_LWD = ISD::FIRST_TARGET_MEMORY_OPCODE,
TH_LWUD,
TH_LDD,
TH_SWD,
TH_SDD,
};
// clang-format on
} // namespace RISCVISD
class RISCVTargetLowering : public TargetLowering {
const RISCVSubtarget &Subtarget;
public:
explicit RISCVTargetLowering(const TargetMachine &TM,
const RISCVSubtarget &STI);
const RISCVSubtarget &getSubtarget() const { return Subtarget; }
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I = nullptr) const override;
bool isLegalICmpImmediate(int64_t Imm) const override;
bool isLegalAddImmediate(int64_t Imm) const override;
bool isTruncateFree(Type *SrcTy, Type *DstTy) const override;
bool isTruncateFree(EVT SrcVT, EVT DstVT) const override;
bool isTruncateFree(SDValue Val, EVT VT2) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override;
bool signExtendConstant(const ConstantInt *CI) const override;
bool isCheapToSpeculateCttz(Type *Ty) const override;
bool isCheapToSpeculateCtlz(Type *Ty) const override;
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
bool hasAndNotCompare(SDValue Y) const override;
bool hasBitTest(SDValue X, SDValue Y) const override;
bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const override;
/// Return true if the (vector) instruction I will be lowered to an instruction
/// with a scalar splat operand for the given Operand number.
bool canSplatOperand(Instruction *I, int Operand) const;
/// Return true if a vector instruction will lower to a target instruction
/// able to splat the given operand.
bool canSplatOperand(unsigned Opcode, int Operand) const;
bool shouldSinkOperands(Instruction *I,
SmallVectorImpl<Use *> &Ops) const override;
bool shouldScalarizeBinop(SDValue VecOp) const override;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
std::pair<int, bool> getLegalZfaFPImm(const APFloat &Imm, EVT VT) const;
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const override;
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const override;
bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
bool preferScalarizeSplat(SDNode *N) const override;
bool softPromoteHalfType() const override { return true; }
/// Return the register type for a given MVT, ensuring vectors are treated
/// as a series of gpr sized integers.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
EVT VT) const override;
/// Return the number of registers for a given MVT, ensuring vectors are
/// treated as a series of gpr sized integers.
unsigned getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const override;
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context,
CallingConv::ID CC, EVT VT,
EVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT) const override;
bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
EVT VT) const override;
/// Return true if the given shuffle mask can be codegen'd directly, or if it
/// should be stack expanded.
bool isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const override;
bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
// If the pair to store is a mixture of float and int values, we will
// save two bitwise instructions and one float-to-int instruction and
// increase one store instruction. There is potentially a more
// significant benefit because it avoids the float->int domain switch
// for input value. So It is more likely a win.
if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
(LTy.isInteger() && HTy.isFloatingPoint()))
return true;
// If the pair only contains int values, we will save two bitwise
// instructions and increase one store instruction (costing one more
// store buffer). Since the benefit is more blurred we leave such a pair
// out until we get testcase to prove it is a win.
return false;
}
bool
shouldExpandBuildVectorWithShuffles(EVT VT,
unsigned DefinedValues) const override;
bool shouldExpandCttzElements(EVT VT) const override;
/// Return the cost of LMUL for linear operations.
InstructionCost getLMULCost(MVT VT) const;
InstructionCost getVRGatherVVCost(MVT VT) const;
InstructionCost getVRGatherVICost(MVT VT) const;
InstructionCost getVSlideVXCost(MVT VT) const;
InstructionCost getVSlideVICost(MVT VT) const;
// Provide custom lowering hooks for some operations.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const override;
void computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const override;
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const override;
bool canCreateUndefOrPoisonForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
bool PoisonOnly, bool ConsiderFlags,
unsigned Depth) const override;
const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
// This method returns the name of a target specific DAG node.
const char *getTargetNodeName(unsigned Opcode) const override;
MachineMemOperand::Flags
getTargetMMOFlags(const Instruction &I) const override;
MachineMemOperand::Flags
getTargetMMOFlags(const MemSDNode &Node) const override;
bool
areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX,
const MemSDNode &NodeY) const override;
ConstraintType getConstraintType(StringRef Constraint) const override;
InlineAsm::ConstraintCode
getInlineAsmMemConstraint(StringRef ConstraintCode) const override;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const override;
void AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const override;
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const override;
bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
bool MathUsed) const override {
if (VT == MVT::i8 || VT == MVT::i16)
return false;
return TargetLowering::shouldFormOverflowOp(Opcode, VT, MathUsed);
}
bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem,
unsigned AddrSpace) const override {
// If we can replace 4 or more scalar stores, there will be a reduction
// in instructions even after we add a vector constant load.
return NumElem >= 4;
}
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
return VT.isScalarInteger();
}
bool convertSelectOfConstantsToMath(EVT VT) const override { return true; }
bool isCtpopFast(EVT VT) const override;
unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const override;
bool preferZeroCompareBranch() const override { return true; }
bool shouldInsertFencesForAtomic(const Instruction *I) const override {
return isa<LoadInst>(I) || isa<StoreInst>(I);
}
Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const override;
ISD::NodeType getExtendForAtomicOps() const override {
return ISD::SIGN_EXTEND;
}
ISD::NodeType getExtendForAtomicCmpSwapArg() const override;
bool shouldTransformSignedTruncationCheck(EVT XVT,
unsigned KeptBits) const override;
TargetLowering::ShiftLegalizationStrategy
preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N,
unsigned ExpansionFactor) const override {
if (DAG.getMachineFunction().getFunction().hasMinSize())
return ShiftLegalizationStrategy::LowerToLibcall;
return TargetLowering::preferredShiftLegalizationStrategy(DAG, N,
ExpansionFactor);
}
bool isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const override;
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
Register
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
Register
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
bool shouldExtendTypeInLibCall(EVT Type) const override;
bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const override;
/// Returns the register with the specified architectural or ABI name. This
/// method is necessary to lower the llvm.read_register.* and
/// llvm.write_register.* intrinsics. Allocatable registers must be reserved
/// with the clang -ffixed-xX flag for access to be allowed.
Register getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const override;
// Lower incoming arguments, copy physregs into vregs
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
SelectionDAG &DAG) const override;
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
bool shouldConsiderGEPOffsetSplit() const override { return true; }
bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
SDValue C) const override;
bool isMulAddWithConstProfitable(SDValue AddNode,
SDValue ConstNode) const override;
TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI,
Value *AlignedAddr, Value *Incr,
Value *Mask, Value *ShiftAmt,
AtomicOrdering Ord) const override;
TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override;
Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder,
AtomicCmpXchgInst *CI,
Value *AlignedAddr, Value *CmpVal,
Value *NewVal, Value *Mask,
AtomicOrdering Ord) const override;
/// Returns true if the target allows unaligned memory accesses of the
/// specified type.
bool allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
unsigned *Fast = nullptr) const override;
EVT getOptimalMemOpType(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
bool splitValueIntoRegisterParts(
SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
const override;
SDValue joinRegisterPartsIntoValue(
SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts,
unsigned NumParts, MVT PartVT, EVT ValueVT,
std::optional<CallingConv::ID> CC) const override;
// Return the value of VLMax for the given vector type (i.e. SEW and LMUL)
SDValue computeVLMax(MVT VecVT, const SDLoc &DL, SelectionDAG &DAG) const;
static RISCVII::VLMUL getLMUL(MVT VT);
inline static unsigned computeVLMAX(unsigned VectorBits, unsigned EltSize,
unsigned MinSize) {
// Original equation:
// VLMAX = (VectorBits / EltSize) * LMUL
// where LMUL = MinSize / RISCV::RVVBitsPerBlock
// The following equations have been reordered to prevent loss of precision
// when calculating fractional LMUL.
return ((VectorBits / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
}
// Return inclusive (low, high) bounds on the value of VLMAX for the
// given scalable container type given known bounds on VLEN.
static std::pair<unsigned, unsigned>
computeVLMAXBounds(MVT ContainerVT, const RISCVSubtarget &Subtarget);
static unsigned getRegClassIDForLMUL(RISCVII::VLMUL LMul);
static unsigned getSubregIndexByMVT(MVT VT, unsigned Index);
static unsigned getRegClassIDForVecVT(MVT VT);
static std::pair<unsigned, unsigned>
decomposeSubvectorInsertExtractToSubRegs(MVT VecVT, MVT SubVecVT,
unsigned InsertExtractIdx,
const RISCVRegisterInfo *TRI);
MVT getContainerForFixedLengthVector(MVT VT) const;
bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const override;
bool isLegalElementTypeForRVV(EVT ScalarTy) const;
bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override;
unsigned getJumpTableEncoding() const override;
const MCExpr *LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid,
MCContext &Ctx) const override;
bool isVScaleKnownToBeAPowerOfTwo() const override;
bool getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM, SelectionDAG &DAG) const;
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
SDValue &Offset, ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
bool isLegalScaleForGatherScatter(uint64_t Scale,
uint64_t ElemSize) const override {
// Scaled addressing not supported on indexed load/stores
return Scale == 1;
}
/// If the target has a standard location for the stack protector cookie,
/// returns the address of that location. Otherwise, returns nullptr.
Value *getIRStackGuard(IRBuilderBase &IRB) const override;
/// Returns whether or not generating a interleaved load/store intrinsic for
/// this type will be legal.
bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
Align Alignment, unsigned AddrSpace,
const DataLayout &) const;
/// Return true if a stride load store of the given result type and
/// alignment is legal.
bool isLegalStridedLoadStore(EVT DataType, Align Alignment) const;
unsigned getMaxSupportedInterleaveFactor() const override { return 8; }
bool fallBackToDAGISel(const Instruction &Inst) const override;
bool lowerInterleavedLoad(LoadInst *LI,
ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices,
unsigned Factor) const override;
bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
unsigned Factor) const override;
bool lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *II,
LoadInst *LI) const override;
bool lowerInterleaveIntrinsicToStore(IntrinsicInst *II,
StoreInst *SI) const override;
bool supportKCFIBundles() const override { return true; }
SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr,
int JTI, SelectionDAG &DAG) const override;
MachineInstr *EmitKCFICheck(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator &MBBI,
const TargetInstrInfo *TII) const override;
/// RISCVCCAssignFn - This target-specific function extends the default
/// CCValAssign with additional information used to lower RISC-V calling
/// conventions.
typedef bool RISCVCCAssignFn(const DataLayout &DL, RISCVABI::ABI,
unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State,
bool IsFixed, bool IsRet, Type *OrigTy,
const RISCVTargetLowering &TLI,
RVVArgDispatcher &RVVDispatcher);
private:
void analyzeInputArgs(MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
RISCVCCAssignFn Fn) const;
void analyzeOutputArgs(MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::OutputArg> &Outs,
bool IsRet, CallLoweringInfo *CLI,
RISCVCCAssignFn Fn) const;
template <class NodeTy>
SDValue getAddr(NodeTy *N, SelectionDAG &DAG, bool IsLocal = true,
bool IsExternWeak = false) const;
SDValue getStaticTLSAddr(GlobalAddressSDNode *N, SelectionDAG &DAG,
bool UseGOT) const;
SDValue getDynamicTLSAddr(GlobalAddressSDNode *N, SelectionDAG &DAG) const;
SDValue getTLSDescAddr(GlobalAddressSDNode *N, SelectionDAG &DAG) const;
SDValue lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, bool IsSRA) const;
SDValue lowerSPLAT_VECTOR_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVectorMaskSplat(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
int64_t ExtTrueVal) const;
SDValue lowerVectorMaskTruncLike(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVectorTruncLike(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVectorFPExtendOrRoundLike(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVectorMaskVecReduction(SDValue Op, SelectionDAG &DAG,
bool IsVP) const;
SDValue lowerFPVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVECTOR_DEINTERLEAVE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVECTOR_INTERLEAVE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSTEP_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVECTOR_REVERSE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVECTOR_SPLICE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerABS(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerMaskedLoad(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerMaskedStore(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorFCOPYSIGNToRVV(SDValue Op,
SelectionDAG &DAG) const;
SDValue lowerMaskedGather(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerMaskedScatter(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorLoadToRVV(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorStoreToRVV(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorSetccToRVV(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorSelectToRVV(SDValue Op,
SelectionDAG &DAG) const;
SDValue lowerToScalableOp(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPOp(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerLogicVPOp(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPExtMaskOp(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPSetCCMaskOp(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPSplatExperimental(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPSpliceExperimental(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPReverseExperimental(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPStridedLoad(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPStridedStore(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVPCttzElements(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorExtendToRVV(SDValue Op, SelectionDAG &DAG,
unsigned ExtendOpc) const;
SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerStrictFPExtendOrRoundLike(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVectorStrictFSetcc(SDValue Op, SelectionDAG &DAG) const;
SDValue expandUnalignedRVVLoad(SDValue Op, SelectionDAG &DAG) const;
SDValue expandUnalignedRVVStore(SDValue Op, SelectionDAG &DAG) const;
bool isEligibleForTailCallOptimization(
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
const SmallVector<CCValAssign, 16> &ArgLocs) const;
/// Generate error diagnostics if any register used by CC has been marked
/// reserved.
void validateCCReservedRegs(
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
MachineFunction &MF) const;
bool useRVVForFixedLengthVectorVT(MVT VT) const;
MVT getVPExplicitVectorLengthTy() const override;
bool shouldExpandGetVectorLength(EVT TripCountVT, unsigned VF,
bool IsScalable) const override;
/// RVV code generation for fixed length vectors does not lower all
/// BUILD_VECTORs. This makes BUILD_VECTOR legalisation a source of stores to
/// merge. However, merging them creates a BUILD_VECTOR that is just as
/// illegal as the original, thus leading to an infinite legalisation loop.
/// NOTE: Once BUILD_VECTOR can be custom lowered for all legal vector types,
/// this override can be removed.
bool mergeStoresAfterLegalization(EVT VT) const override;
/// Disable normalizing
/// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
/// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y))
/// RISC-V doesn't have flags so it's better to perform the and/or in a GPR.
bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override {
return false;
}
/// For available scheduling models FDIV + two independent FMULs are much
/// faster than two FDIVs.
unsigned combineRepeatedFPDivisors() const override;
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const override;
bool shouldFoldSelectWithSingleBitTest(EVT VT,
const APInt &AndMask) const override;
unsigned getMinimumJumpTableEntries() const override;
SDValue emitFlushICache(SelectionDAG &DAG, SDValue InChain, SDValue Start,
SDValue End, SDValue Flags, SDLoc DL) const;
};
/// As per the spec, the rules for passing vector arguments are as follows:
///
/// 1. For the first vector mask argument, use v0 to pass it.
/// 2. For vector data arguments or rest vector mask arguments, starting from
/// the v8 register, if a vector register group between v8-v23 that has not been
/// allocated can be found and the first register number is a multiple of LMUL,
/// then allocate this vector register group to the argument and mark these
/// registers as allocated. Otherwise, pass it by reference and are replaced in
/// the argument list with the address.
/// 3. For tuple vector data arguments, starting from the v8 register, if
/// NFIELDS consecutive vector register groups between v8-v23 that have not been
/// allocated can be found and the first register number is a multiple of LMUL,
/// then allocate these vector register groups to the argument and mark these
/// registers as allocated. Otherwise, pass it by reference and are replaced in
/// the argument list with the address.
class RVVArgDispatcher {
public:
static constexpr unsigned NumArgVRs = 16;
struct RVVArgInfo {
unsigned NF;
MVT VT;
bool FirstVMask = false;
};
template <typename Arg>
RVVArgDispatcher(const MachineFunction *MF, const RISCVTargetLowering *TLI,
ArrayRef<Arg> ArgList)
: MF(MF), TLI(TLI) {
constructArgInfos(ArgList);
compute();
}
RVVArgDispatcher() = default;
MCPhysReg getNextPhysReg();
private:
SmallVector<RVVArgInfo, 4> RVVArgInfos;
SmallVector<MCPhysReg, 4> AllocatedPhysRegs;
const MachineFunction *MF = nullptr;
const RISCVTargetLowering *TLI = nullptr;
unsigned CurIdx = 0;
template <typename Arg> void constructArgInfos(ArrayRef<Arg> Ret);
void compute();
void allocatePhysReg(unsigned NF = 1, unsigned LMul = 1,
unsigned StartReg = 0);
};
namespace RISCV {
bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
RVVArgDispatcher &RVVDispatcher);
bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
RVVArgDispatcher &RVVDispatcher);
bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State);
ArrayRef<MCPhysReg> getArgGPRs(const RISCVABI::ABI ABI);
} // end namespace RISCV
namespace RISCVVIntrinsicsTable {
struct RISCVVIntrinsicInfo {
unsigned IntrinsicID;
uint8_t ScalarOperand;
uint8_t VLOperand;
bool hasScalarOperand() const {
// 0xF is not valid. See NoScalarOperand in IntrinsicsRISCV.td.
return ScalarOperand != 0xF;
}
bool hasVLOperand() const {
// 0x1F is not valid. See NoVLOperand in IntrinsicsRISCV.td.
return VLOperand != 0x1F;
}
};
using namespace RISCV;
#define GET_RISCVVIntrinsicsTable_DECL
#include "RISCVGenSearchableTables.inc"
#undef GET_RISCVVIntrinsicsTable_DECL
} // end namespace RISCVVIntrinsicsTable
} // end namespace llvm
#endif
|