1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
//===-- RISCVInsertWriteVXRM.cpp - Insert Write of RISC-V VXRM CSR --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass inserts writes to the VXRM CSR as needed by vector instructions.
// Each instruction that uses VXRM carries an operand that contains its required
// VXRM value. This pass tries to optimize placement to avoid redundant writes
// to VXRM.
//
// This is done using 2 dataflow algorithms. The first is a forward data flow
// to calculate where a VXRM value is available. The second is a backwards
// dataflow to determine where a VXRM value is anticipated.
//
// Finally, we use the results of these two dataflows to insert VXRM writes
// where a value is anticipated, but not available.
//
// FIXME: This pass does not split critical edges, so there can still be some
// redundancy.
//
// FIXME: If we are willing to have writes that aren't always needed, we could
// reduce the number of VXRM writes in some cases.
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include <queue>
using namespace llvm;
#define DEBUG_TYPE "riscv-insert-write-vxrm"
#define RISCV_INSERT_WRITE_VXRM_NAME "RISC-V Insert Write VXRM Pass"
namespace {
class VXRMInfo {
uint8_t VXRMImm = 0;
enum : uint8_t {
Uninitialized,
Static,
Unknown,
} State = Uninitialized;
public:
VXRMInfo() {}
static VXRMInfo getUnknown() {
VXRMInfo Info;
Info.setUnknown();
return Info;
}
bool isValid() const { return State != Uninitialized; }
void setUnknown() { State = Unknown; }
bool isUnknown() const { return State == Unknown; }
bool isStatic() const { return State == Static; }
void setVXRMImm(unsigned Imm) {
assert(Imm <= 3 && "Unexpected VXRM value");
VXRMImm = Imm;
State = Static;
}
unsigned getVXRMImm() const {
assert(isStatic() && VXRMImm <= 3 && "Unexpected state");
return VXRMImm;
}
bool operator==(const VXRMInfo &Other) const {
// Uninitialized is only equal to another Uninitialized.
if (State != Other.State)
return false;
if (isStatic())
return VXRMImm == Other.VXRMImm;
assert((isValid() || isUnknown()) && "Unexpected state");
return true;
}
bool operator!=(const VXRMInfo &Other) const { return !(*this == Other); }
// Calculate the VXRMInfo visible to a block assuming this and Other are
// both predecessors.
VXRMInfo intersect(const VXRMInfo &Other) const {
// If the new value isn't valid, ignore it.
if (!Other.isValid())
return *this;
// If this value isn't valid, this must be the first predecessor, use it.
if (!isValid())
return Other;
// If either is unknown, the result is unknown.
if (isUnknown() || Other.isUnknown())
return VXRMInfo::getUnknown();
// If we have an exact match, return this.
if (*this == Other)
return *this;
// Otherwise the result is unknown.
return VXRMInfo::getUnknown();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Support for debugging, callable in GDB: V->dump()
LLVM_DUMP_METHOD void dump() const {
print(dbgs());
dbgs() << "\n";
}
void print(raw_ostream &OS) const {
OS << '{';
if (!isValid())
OS << "Uninitialized";
else if (isUnknown())
OS << "Unknown";
else
OS << getVXRMImm();
OS << '}';
}
#endif
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_ATTRIBUTE_USED
inline raw_ostream &operator<<(raw_ostream &OS, const VXRMInfo &V) {
V.print(OS);
return OS;
}
#endif
struct BlockData {
// Indicates if the block uses VXRM. Uninitialized means no use.
VXRMInfo VXRMUse;
// Indicates the VXRM output from the block. Unitialized means transparent.
VXRMInfo VXRMOut;
// Keeps track of the available VXRM value at the start of the basic bloc.
VXRMInfo AvailableIn;
// Keeps track of the available VXRM value at the end of the basic block.
VXRMInfo AvailableOut;
// Keeps track of what VXRM is anticipated at the start of the basic block.
VXRMInfo AnticipatedIn;
// Keeps track of what VXRM is anticipated at the end of the basic block.
VXRMInfo AnticipatedOut;
// Keeps track of whether the block is already in the queue.
bool InQueue;
BlockData() = default;
};
class RISCVInsertWriteVXRM : public MachineFunctionPass {
const TargetInstrInfo *TII;
std::vector<BlockData> BlockInfo;
std::queue<const MachineBasicBlock *> WorkList;
public:
static char ID;
RISCVInsertWriteVXRM() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override {
return RISCV_INSERT_WRITE_VXRM_NAME;
}
private:
bool computeVXRMChanges(const MachineBasicBlock &MBB);
void computeAvailable(const MachineBasicBlock &MBB);
void computeAnticipated(const MachineBasicBlock &MBB);
void emitWriteVXRM(MachineBasicBlock &MBB);
};
} // end anonymous namespace
char RISCVInsertWriteVXRM::ID = 0;
INITIALIZE_PASS(RISCVInsertWriteVXRM, DEBUG_TYPE, RISCV_INSERT_WRITE_VXRM_NAME,
false, false)
static bool ignoresVXRM(const MachineInstr &MI) {
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
default:
return false;
case RISCV::VNCLIP_WI:
case RISCV::VNCLIPU_WI:
return MI.getOperand(3).getImm() == 0;
}
}
bool RISCVInsertWriteVXRM::computeVXRMChanges(const MachineBasicBlock &MBB) {
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
bool NeedVXRMWrite = false;
for (const MachineInstr &MI : MBB) {
int VXRMIdx = RISCVII::getVXRMOpNum(MI.getDesc());
if (VXRMIdx >= 0 && !ignoresVXRM(MI)) {
unsigned NewVXRMImm = MI.getOperand(VXRMIdx).getImm();
if (!BBInfo.VXRMUse.isValid())
BBInfo.VXRMUse.setVXRMImm(NewVXRMImm);
BBInfo.VXRMOut.setVXRMImm(NewVXRMImm);
NeedVXRMWrite = true;
continue;
}
if (MI.isCall() || MI.isInlineAsm() ||
MI.modifiesRegister(RISCV::VXRM, /*TRI=*/nullptr)) {
if (!BBInfo.VXRMUse.isValid())
BBInfo.VXRMUse.setUnknown();
BBInfo.VXRMOut.setUnknown();
}
}
return NeedVXRMWrite;
}
void RISCVInsertWriteVXRM::computeAvailable(const MachineBasicBlock &MBB) {
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
BBInfo.InQueue = false;
VXRMInfo Available;
if (MBB.pred_empty()) {
Available.setUnknown();
} else {
for (const MachineBasicBlock *P : MBB.predecessors())
Available = Available.intersect(BlockInfo[P->getNumber()].AvailableOut);
}
// If we don't have any valid available info, wait until we do.
if (!Available.isValid())
return;
if (Available != BBInfo.AvailableIn) {
BBInfo.AvailableIn = Available;
LLVM_DEBUG(dbgs() << "AvailableIn state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.AvailableIn << "\n");
}
if (BBInfo.VXRMOut.isValid())
Available = BBInfo.VXRMOut;
if (Available == BBInfo.AvailableOut)
return;
BBInfo.AvailableOut = Available;
LLVM_DEBUG(dbgs() << "AvailableOut state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.AvailableOut << "\n");
// Add the successors to the work list so that we can propagate.
for (MachineBasicBlock *S : MBB.successors()) {
if (!BlockInfo[S->getNumber()].InQueue) {
BlockInfo[S->getNumber()].InQueue = true;
WorkList.push(S);
}
}
}
void RISCVInsertWriteVXRM::computeAnticipated(const MachineBasicBlock &MBB) {
BlockData &BBInfo = BlockInfo[MBB.getNumber()];
BBInfo.InQueue = false;
VXRMInfo Anticipated;
if (MBB.succ_empty()) {
Anticipated.setUnknown();
} else {
for (const MachineBasicBlock *S : MBB.successors())
Anticipated =
Anticipated.intersect(BlockInfo[S->getNumber()].AnticipatedIn);
}
// If we don't have any valid anticipated info, wait until we do.
if (!Anticipated.isValid())
return;
if (Anticipated != BBInfo.AnticipatedOut) {
BBInfo.AnticipatedOut = Anticipated;
LLVM_DEBUG(dbgs() << "AnticipatedOut state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.AnticipatedOut << "\n");
}
// If this block reads VXRM, copy it.
if (BBInfo.VXRMUse.isValid())
Anticipated = BBInfo.VXRMUse;
if (Anticipated == BBInfo.AnticipatedIn)
return;
BBInfo.AnticipatedIn = Anticipated;
LLVM_DEBUG(dbgs() << "AnticipatedIn state of " << printMBBReference(MBB)
<< " changed to " << BBInfo.AnticipatedIn << "\n");
// Add the predecessors to the work list so that we can propagate.
for (MachineBasicBlock *P : MBB.predecessors()) {
if (!BlockInfo[P->getNumber()].InQueue) {
BlockInfo[P->getNumber()].InQueue = true;
WorkList.push(P);
}
}
}
void RISCVInsertWriteVXRM::emitWriteVXRM(MachineBasicBlock &MBB) {
const BlockData &BBInfo = BlockInfo[MBB.getNumber()];
VXRMInfo Info = BBInfo.AvailableIn;
// Flag to indicates we need to insert a VXRM write. We want to delay it as
// late as possible in this block.
bool PendingInsert = false;
// Insert VXRM write if anticipated and not available.
if (BBInfo.AnticipatedIn.isStatic()) {
// If this is the entry block and the value is anticipated, insert.
if (MBB.isEntryBlock()) {
PendingInsert = true;
} else {
// Search for any predecessors that wouldn't satisfy our requirement and
// insert a write VXRM if needed.
// NOTE: If one predecessor is able to provide the requirement, but
// another isn't, it means we have a critical edge. The better placement
// would be to split the critical edge.
for (MachineBasicBlock *P : MBB.predecessors()) {
const BlockData &PInfo = BlockInfo[P->getNumber()];
// If it's available out of the predecessor, then we're ok.
if (PInfo.AvailableOut.isStatic() &&
PInfo.AvailableOut.getVXRMImm() ==
BBInfo.AnticipatedIn.getVXRMImm())
continue;
// If the predecessor anticipates this value for all its succesors,
// then a write to VXRM would have already occured before this block is
// executed.
if (PInfo.AnticipatedOut.isStatic() &&
PInfo.AnticipatedOut.getVXRMImm() ==
BBInfo.AnticipatedIn.getVXRMImm())
continue;
PendingInsert = true;
break;
}
}
Info = BBInfo.AnticipatedIn;
}
for (MachineInstr &MI : MBB) {
int VXRMIdx = RISCVII::getVXRMOpNum(MI.getDesc());
if (VXRMIdx >= 0 && !ignoresVXRM(MI)) {
unsigned NewVXRMImm = MI.getOperand(VXRMIdx).getImm();
if (PendingInsert || !Info.isStatic() ||
Info.getVXRMImm() != NewVXRMImm) {
assert((!PendingInsert ||
(Info.isStatic() && Info.getVXRMImm() == NewVXRMImm)) &&
"Pending VXRM insertion mismatch");
LLVM_DEBUG(dbgs() << "Inserting before "; MI.print(dbgs()));
BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(RISCV::WriteVXRMImm))
.addImm(NewVXRMImm);
PendingInsert = false;
}
MI.addOperand(MachineOperand::CreateReg(RISCV::VXRM, /*IsDef*/ false,
/*IsImp*/ true));
Info.setVXRMImm(NewVXRMImm);
continue;
}
if (MI.isCall() || MI.isInlineAsm() ||
MI.modifiesRegister(RISCV::VXRM, /*TRI=*/nullptr))
Info.setUnknown();
}
// If all our successors anticipate a value, do the insert.
// NOTE: It's possible that not all predecessors of our successor provide the
// correct value. This can occur on critical edges. If we don't split the
// critical edge we'll also have a write vxrm in the succesor that is
// redundant with this one.
if (PendingInsert ||
(BBInfo.AnticipatedOut.isStatic() &&
(!Info.isStatic() ||
Info.getVXRMImm() != BBInfo.AnticipatedOut.getVXRMImm()))) {
assert((!PendingInsert ||
(Info.isStatic() && BBInfo.AnticipatedOut.isStatic() &&
Info.getVXRMImm() == BBInfo.AnticipatedOut.getVXRMImm())) &&
"Pending VXRM insertion mismatch");
LLVM_DEBUG(dbgs() << "Inserting at end of " << printMBBReference(MBB)
<< " changing to " << BBInfo.AnticipatedOut << "\n");
BuildMI(MBB, MBB.getFirstTerminator(), DebugLoc(),
TII->get(RISCV::WriteVXRMImm))
.addImm(BBInfo.AnticipatedOut.getVXRMImm());
}
}
bool RISCVInsertWriteVXRM::runOnMachineFunction(MachineFunction &MF) {
// Skip if the vector extension is not enabled.
const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
if (!ST.hasVInstructions())
return false;
TII = ST.getInstrInfo();
assert(BlockInfo.empty() && "Expect empty block infos");
BlockInfo.resize(MF.getNumBlockIDs());
// Phase 1 - collect block information.
bool NeedVXRMChange = false;
for (const MachineBasicBlock &MBB : MF)
NeedVXRMChange |= computeVXRMChanges(MBB);
if (!NeedVXRMChange) {
BlockInfo.clear();
return false;
}
// Phase 2 - Compute available VXRM using a forward walk.
for (const MachineBasicBlock &MBB : MF) {
WorkList.push(&MBB);
BlockInfo[MBB.getNumber()].InQueue = true;
}
while (!WorkList.empty()) {
const MachineBasicBlock &MBB = *WorkList.front();
WorkList.pop();
computeAvailable(MBB);
}
// Phase 3 - Compute anticipated VXRM using a backwards walk.
for (const MachineBasicBlock &MBB : llvm::reverse(MF)) {
WorkList.push(&MBB);
BlockInfo[MBB.getNumber()].InQueue = true;
}
while (!WorkList.empty()) {
const MachineBasicBlock &MBB = *WorkList.front();
WorkList.pop();
computeAnticipated(MBB);
}
// Phase 4 - Emit VXRM writes at the earliest place possible.
for (MachineBasicBlock &MBB : MF)
emitWriteVXRM(MBB);
BlockInfo.clear();
return true;
}
FunctionPass *llvm::createRISCVInsertWriteVXRMPass() {
return new RISCVInsertWriteVXRM();
}
|