1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
|
//===-- RISCVInstrInfo.td - Target Description for RISC-V --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
// Target-independent type requirements, but with target-specific formats.
def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
// Target-dependent type requirements.
def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
SDTCisVT<3, OtherVT>,
SDTCisSameAs<0, 4>,
SDTCisSameAs<4, 5>]>;
def SDT_RISCVBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
SDTCisVT<2, OtherVT>,
SDTCisVT<3, OtherVT>]>;
def SDT_RISCVReadCSR : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDT_RISCVWriteCSR : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDT_RISCVSwapCSR : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisInt<2>]>;
def SDT_RISCVReadCounterWide : SDTypeProfile<2, 2, [SDTCisVT<0, i32>,
SDTCisVT<1, i32>,
SDTCisInt<2>,
SDTCisInt<3>]>;
def SDT_RISCVIntUnaryOpW : SDTypeProfile<1, 1, [
SDTCisSameAs<0, 1>, SDTCisVT<0, i64>
]>;
def SDT_RISCVIntBinOpW : SDTypeProfile<1, 2, [
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>
]>;
def SDT_RISCVIntShiftDOpW : SDTypeProfile<1, 3, [
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>, SDTCisVT<3, i64>
]>;
// Target-independent nodes, but with target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// Target-dependent nodes.
def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def riscv_ret_glue : SDNode<"RISCVISD::RET_GLUE", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def riscv_sret_glue : SDNode<"RISCVISD::SRET_GLUE", SDTNone,
[SDNPHasChain, SDNPOptInGlue]>;
def riscv_mret_glue : SDNode<"RISCVISD::MRET_GLUE", SDTNone,
[SDNPHasChain, SDNPOptInGlue]>;
def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC>;
def riscv_brcc : SDNode<"RISCVISD::BR_CC", SDT_RISCVBrCC,
[SDNPHasChain]>;
def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def riscv_sw_guarded_brind : SDNode<"RISCVISD::SW_GUARDED_BRIND",
SDTBrind, [SDNPHasChain]>;
def riscv_sllw : SDNode<"RISCVISD::SLLW", SDT_RISCVIntBinOpW>;
def riscv_sraw : SDNode<"RISCVISD::SRAW", SDT_RISCVIntBinOpW>;
def riscv_srlw : SDNode<"RISCVISD::SRLW", SDT_RISCVIntBinOpW>;
def riscv_read_csr : SDNode<"RISCVISD::READ_CSR", SDT_RISCVReadCSR,
[SDNPHasChain]>;
def riscv_write_csr : SDNode<"RISCVISD::WRITE_CSR", SDT_RISCVWriteCSR,
[SDNPHasChain]>;
def riscv_swap_csr : SDNode<"RISCVISD::SWAP_CSR", SDT_RISCVSwapCSR,
[SDNPHasChain]>;
def riscv_read_counter_wide : SDNode<"RISCVISD::READ_COUNTER_WIDE",
SDT_RISCVReadCounterWide,
[SDNPHasChain, SDNPSideEffect]>;
def riscv_add_lo : SDNode<"RISCVISD::ADD_LO", SDTIntBinOp>;
def riscv_hi : SDNode<"RISCVISD::HI", SDTIntUnaryOp>;
def riscv_lla : SDNode<"RISCVISD::LLA", SDTIntUnaryOp>;
def riscv_add_tprel : SDNode<"RISCVISD::ADD_TPREL",
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>]>>;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
let Name = prefix # "ImmXLen" # suffix;
let RenderMethod = "addImmOperands";
let DiagnosticType = !strconcat("Invalid", Name);
}
class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
let Name = prefix # "Imm" # width # suffix;
let RenderMethod = "addImmOperands";
let DiagnosticType = !strconcat("Invalid", Name);
}
def ImmZeroAsmOperand : AsmOperandClass {
let Name = "ImmZero";
let RenderMethod = "addImmOperands";
let DiagnosticType = !strconcat("Invalid", Name);
}
// A parse method for (${gpr}) or 0(${gpr}), where the 0 is be silently ignored.
def ZeroOffsetMemOpOperand : AsmOperandClass {
let Name = "ZeroOffsetMemOpOperand";
let RenderMethod = "addRegOperands";
let PredicateMethod = "isGPR";
let ParserMethod = "parseZeroOffsetMemOp";
}
class MemOperand<RegisterClass regClass> : RegisterOperand<regClass>{
let OperandType = "OPERAND_MEMORY";
}
def GPRMemZeroOffset : MemOperand<GPR> {
let ParserMatchClass = ZeroOffsetMemOpOperand;
let PrintMethod = "printZeroOffsetMemOp";
}
def GPRMem : MemOperand<GPR>;
def SPMem : MemOperand<SP>;
def GPRCMem : MemOperand<GPRC>;
class SImmAsmOperand<int width, string suffix = "">
: ImmAsmOperand<"S", width, suffix> {
}
class UImmAsmOperand<int width, string suffix = "">
: ImmAsmOperand<"U", width, suffix> {
}
class RISCVOp<ValueType vt = XLenVT> : Operand<vt> {
let OperandNamespace = "RISCVOp";
}
class RISCVUImmOp<int bitsNum> : RISCVOp {
let ParserMatchClass = UImmAsmOperand<bitsNum>;
let DecoderMethod = "decodeUImmOperand<" # bitsNum # ">";
let OperandType = "OPERAND_UIMM" # bitsNum;
}
class RISCVUImmLeafOp<int bitsNum> :
RISCVUImmOp<bitsNum>, ImmLeaf<XLenVT, "return isUInt<" # bitsNum # ">(Imm);">;
class RISCVSImmOp<int bitsNum> : RISCVOp {
let ParserMatchClass = SImmAsmOperand<bitsNum>;
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeSImmOperand<" # bitsNum # ">";
let OperandType = "OPERAND_SIMM" # bitsNum;
}
class RISCVSImmLeafOp<int bitsNum> :
RISCVSImmOp<bitsNum>, ImmLeaf<XLenVT, "return isInt<" # bitsNum # ">(Imm);">;
def FenceArg : AsmOperandClass {
let Name = "FenceArg";
let RenderMethod = "addFenceArgOperands";
let ParserMethod = "parseFenceArg";
}
def fencearg : RISCVOp {
let ParserMatchClass = FenceArg;
let PrintMethod = "printFenceArg";
let DecoderMethod = "decodeUImmOperand<4>";
let OperandType = "OPERAND_UIMM4";
}
def UImmLog2XLenAsmOperand : AsmOperandClass {
let Name = "UImmLog2XLen";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidUImmLog2XLen";
}
def uimmlog2xlen : RISCVOp, ImmLeaf<XLenVT, [{
if (Subtarget->is64Bit())
return isUInt<6>(Imm);
return isUInt<5>(Imm);
}]> {
let ParserMatchClass = UImmLog2XLenAsmOperand;
// TODO: should ensure invalid shamt is rejected when decoding.
let DecoderMethod = "decodeUImmOperand<6>";
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
if (STI.getTargetTriple().isArch64Bit())
return isUInt<6>(Imm);
return isUInt<5>(Imm);
}];
let OperandType = "OPERAND_UIMMLOG2XLEN";
}
def InsnDirectiveOpcode : AsmOperandClass {
let Name = "InsnDirectiveOpcode";
let ParserMethod = "parseInsnDirectiveOpcode";
let RenderMethod = "addImmOperands";
let PredicateMethod = "isImm";
}
def uimm1 : RISCVUImmLeafOp<1>;
def uimm2 : RISCVUImmLeafOp<2> {
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isUInt<2>(Imm);
}];
}
def uimm3 : RISCVUImmOp<3>;
def uimm4 : RISCVUImmOp<4>;
def uimm5 : RISCVUImmLeafOp<5>;
def uimm6 : RISCVUImmLeafOp<6>;
def uimm7_opcode : RISCVUImmOp<7> {
let ParserMatchClass = InsnDirectiveOpcode;
}
def uimm7 : RISCVUImmOp<7>;
def uimm8 : RISCVUImmOp<8>;
def uimm16 : RISCVUImmOp<16>;
def uimm32 : RISCVUImmOp<32>;
def simm12 : RISCVSImmLeafOp<12> {
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isInt<12>(Imm);
return MCOp.isBareSymbolRef();
}];
}
// A 12-bit signed immediate which cannot fit in 6-bit signed immediate,
// but even negative value fit in 12-bit.
def simm12_no6 : ImmLeaf<XLenVT, [{
return isInt<12>(Imm) && !isInt<6>(Imm) && isInt<12>(-Imm);}]>;
// A 13-bit signed immediate where the least significant bit is zero.
def simm13_lsb0 : Operand<OtherVT> {
let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
let PrintMethod = "printBranchOperand";
let EncoderMethod = "getImmOpValueAsr1";
let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isShiftedInt<12, 1>(Imm);
return MCOp.isBareSymbolRef();
}];
let OperandType = "OPERAND_PCREL";
}
class UImm20Operand : RISCVOp {
let EncoderMethod = "getImmOpValue";
let DecoderMethod = "decodeUImmOperand<20>";
let OperandType = "OPERAND_UIMM20";
}
class UImm20OperandMaybeSym : UImm20Operand {
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isUInt<20>(Imm);
return MCOp.isBareSymbolRef();
}];
}
def uimm20_lui : UImm20OperandMaybeSym {
let ParserMatchClass = UImmAsmOperand<20, "LUI">;
}
def uimm20_auipc : UImm20OperandMaybeSym {
let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
}
def uimm20 : UImm20Operand {
let ParserMatchClass = UImmAsmOperand<20>;
let MCOperandPredicate = [{
int64_t Imm;
if (!MCOp.evaluateAsConstantImm(Imm))
return false;
return isUInt<20>(Imm);
}];
}
def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
let ParserMethod = "parseJALOffset";
}
// A 21-bit signed immediate where the least significant bit is zero.
def simm21_lsb0_jal : Operand<OtherVT> {
let ParserMatchClass = Simm21Lsb0JALAsmOperand;
let PrintMethod = "printBranchOperand";
let EncoderMethod = "getImmOpValueAsr1";
let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
let MCOperandPredicate = [{
int64_t Imm;
if (MCOp.evaluateAsConstantImm(Imm))
return isShiftedInt<20, 1>(Imm);
return MCOp.isBareSymbolRef();
}];
let OperandType = "OPERAND_PCREL";
}
def BareSymbol : AsmOperandClass {
let Name = "BareSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidBareSymbol";
let ParserMethod = "parseBareSymbol";
}
// A bare symbol.
def bare_symbol : Operand<XLenVT> {
let ParserMatchClass = BareSymbol;
}
def CallSymbol : AsmOperandClass {
let Name = "CallSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidCallSymbol";
let ParserMethod = "parseCallSymbol";
}
// A bare symbol used in call/tail only.
def call_symbol : Operand<XLenVT> {
let ParserMatchClass = CallSymbol;
}
def PseudoJumpSymbol : AsmOperandClass {
let Name = "PseudoJumpSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidPseudoJumpSymbol";
let ParserMethod = "parsePseudoJumpSymbol";
}
// A bare symbol used for pseudo jumps only.
def pseudo_jump_symbol : Operand<XLenVT> {
let ParserMatchClass = PseudoJumpSymbol;
}
def TPRelAddSymbol : AsmOperandClass {
let Name = "TPRelAddSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidTPRelAddSymbol";
let ParserMethod = "parseOperandWithModifier";
}
// A bare symbol with the %tprel_add variant.
def tprel_add_symbol : Operand<XLenVT> {
let ParserMatchClass = TPRelAddSymbol;
}
def CSRSystemRegister : AsmOperandClass {
let Name = "CSRSystemRegister";
let ParserMethod = "parseCSRSystemRegister";
let DiagnosticType = "InvalidCSRSystemRegister";
}
def csr_sysreg : RISCVOp, TImmLeaf<XLenVT, "return isUInt<12>(Imm);"> {
let ParserMatchClass = CSRSystemRegister;
let PrintMethod = "printCSRSystemRegister";
let DecoderMethod = "decodeUImmOperand<12>";
let OperandType = "OPERAND_UIMM12";
}
// A parameterized register class alternative to i32imm/i64imm from Target.td.
def ixlenimm : Operand<XLenVT>;
def ixlenimm_li : Operand<XLenVT> {
let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
}
// Accepts subset of LI operands, used by LAImm and LLAImm
def ixlenimm_li_restricted : Operand<XLenVT> {
let ParserMatchClass = ImmXLenAsmOperand<"", "LI_Restricted">;
}
// Standalone (codegen-only) immleaf patterns.
// A 6-bit constant greater than 32.
def uimm6gt32 : ImmLeaf<XLenVT, [{
return isUInt<6>(Imm) && Imm > 32;
}]>;
// Addressing modes.
// Necessary because a frameindex can't be matched directly in a pattern.
def FrameAddrRegImm : ComplexPattern<iPTR, 2, "SelectFrameAddrRegImm",
[frameindex, or, add]>;
def AddrRegImm : ComplexPattern<iPTR, 2, "SelectAddrRegImm">;
// Return the negation of an immediate value.
def NegImm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N),
N->getValueType(0));
}]>;
// Return an immediate value minus 32.
def ImmSub32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() - 32, SDLoc(N),
N->getValueType(0));
}]>;
// Return an immediate subtracted from XLen.
def ImmSubFromXLen : SDNodeXForm<imm, [{
uint64_t XLen = Subtarget->getXLen();
return CurDAG->getTargetConstant(XLen - N->getZExtValue(), SDLoc(N),
N->getValueType(0));
}]>;
// Return an immediate subtracted from 32.
def ImmSubFrom32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N),
N->getValueType(0));
}]>;
// Check if (add r, imm) can be optimized to (ADDI (ADDI r, imm0), imm1),
// in which imm = imm0 + imm1 and both imm0 and imm1 are simm12. We make imm0
// as large as possible and imm1 as small as possible so that we might be able
// to use c.addi for the small immediate.
def AddiPair : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
// The immediate operand must be in range [-4096,-2049] or [2048,4094].
int64_t Imm = N->getSExtValue();
return (-4096 <= Imm && Imm <= -2049) || (2048 <= Imm && Imm <= 4094);
}]>;
// Return imm - (imm < 0 ? -2048 : 2047).
def AddiPairImmSmall : SDNodeXForm<imm, [{
int64_t Imm = N->getSExtValue();
int64_t Adj = N->getSExtValue() < 0 ? -2048 : 2047;
return CurDAG->getTargetConstant(Imm - Adj, SDLoc(N),
N->getValueType(0));
}]>;
// Return -2048 if immediate is negative or 2047 if positive. These are the
// largest simm12 values.
def AddiPairImmLarge : SDNodeXForm<imm, [{
int64_t Imm = N->getSExtValue() < 0 ? -2048 : 2047;
return CurDAG->getTargetConstant(Imm, SDLoc(N),
N->getValueType(0));
}]>;
def TrailingZeros : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(llvm::countr_zero(N->getZExtValue()),
SDLoc(N), N->getValueType(0));
}]>;
def XLenSubTrailingOnes : SDNodeXForm<imm, [{
uint64_t XLen = Subtarget->getXLen();
uint64_t TrailingOnes = llvm::countr_one(N->getZExtValue());
return CurDAG->getTargetConstant(XLen - TrailingOnes, SDLoc(N),
N->getValueType(0));
}]>;
// Checks if this mask is a non-empty sequence of ones starting at the
// most/least significant bit with the remainder zero and exceeds simm32/simm12.
def LeadingOnesMask : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
return !isInt<32>(N->getSExtValue()) && isMask_64(~N->getSExtValue());
}], TrailingZeros>;
def TrailingOnesMask : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
return !isInt<12>(N->getSExtValue()) && isMask_64(N->getZExtValue());
}], XLenSubTrailingOnes>;
// Similar to LeadingOnesMask, but only consider leading ones in the lower 32
// bits.
def LeadingOnesWMask : PatLeaf<(imm), [{
if (!N->hasOneUse())
return false;
// If the value is a uint32 but not an int32, it must have bit 31 set and
// bits 63:32 cleared. After that we're looking for a shifted mask but not
// an all ones mask.
int64_t Imm = N->getSExtValue();
return !isInt<32>(Imm) && isUInt<32>(Imm) && isShiftedMask_64(Imm) &&
Imm != UINT64_C(0xffffffff);
}], TrailingZeros>;
//===----------------------------------------------------------------------===//
// Instruction Formats
//===----------------------------------------------------------------------===//
include "RISCVInstrFormats.td"
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class BranchCC_rri<bits<3> funct3, string opcodestr>
: RVInstB<funct3, OPC_BRANCH, (outs),
(ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
opcodestr, "$rs1, $rs2, $imm12">,
Sched<[WriteJmp, ReadJmp, ReadJmp]> {
let isBranch = 1;
let isTerminator = 1;
}
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
class Load_ri<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPRMem:$rs1, simm12:$imm12),
opcodestr, "$rd, ${imm12}(${rs1})">;
class HLoad_r<bits<7> funct7, bits<5> funct5, string opcodestr>
: RVInstR<funct7, 0b100, OPC_SYSTEM, (outs GPR:$rd),
(ins GPRMemZeroOffset:$rs1), opcodestr, "$rd, $rs1"> {
let rs2 = funct5;
}
}
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
class Store_rri<bits<3> funct3, string opcodestr>
: RVInstS<funct3, OPC_STORE, (outs),
(ins GPR:$rs2, GPRMem:$rs1, simm12:$imm12),
opcodestr, "$rs2, ${imm12}(${rs1})">;
class HStore_rr<bits<7> funct7, string opcodestr>
: RVInstR<funct7, 0b100, OPC_SYSTEM, (outs),
(ins GPR:$rs2, GPRMemZeroOffset:$rs1),
opcodestr, "$rs2, $rs1"> {
let rd = 0;
}
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_ri<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
opcodestr, "$rd, $rs1, $imm12">,
Sched<[WriteIALU, ReadIALU]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class Shift_ri<bits<5> imm11_7, bits<3> funct3, string opcodestr>
: RVInstIShift<imm11_7, funct3, OPC_OP_IMM, (outs GPR:$rd),
(ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
"$rd, $rs1, $shamt">,
Sched<[WriteShiftImm, ReadShiftImm]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
bit Commutable = 0>
: RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
opcodestr, "$rd, $rs1, $rs2"> {
let isCommutable = Commutable;
}
let hasNoSchedulingInfo = 1,
hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ir<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>;
let hasNoSchedulingInfo = 1,
hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ii<bits<3> funct3, string opcodestr>
: RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
(ins csr_sysreg:$imm12, uimm5:$rs1),
opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ShiftW_ri<bits<7> imm11_5, bits<3> funct3, string opcodestr>
: RVInstIShiftW<imm11_5, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
(ins GPR:$rs1, uimm5:$shamt), opcodestr,
"$rd, $rs1, $shamt">,
Sched<[WriteShiftImm32, ReadShiftImm32]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
bit Commutable = 0>
: RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
(ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2"> {
let isCommutable = Commutable;
}
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class Priv<string opcodestr, bits<7> funct7>
: RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
opcodestr, "">;
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class Priv_rr<string opcodestr, bits<7> funct7>
: RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
opcodestr, "$rs1, $rs2"> {
let rd = 0;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
let isReMaterializable = 1, isAsCheapAsAMove = 1,
IsSignExtendingOpW = 1 in
def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
"lui", "$rd, $imm20">, Sched<[WriteIALU]>;
def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
"auipc", "$rd, $imm20">, Sched<[WriteIALU]>;
def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
"jal", "$rd, $imm20">, Sched<[WriteJal]>;
def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
(ins GPR:$rs1, simm12:$imm12),
"jalr", "$rd, ${imm12}(${rs1})">,
Sched<[WriteJalr, ReadJalr]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
def BEQ : BranchCC_rri<0b000, "beq">;
def BNE : BranchCC_rri<0b001, "bne">;
def BLT : BranchCC_rri<0b100, "blt">;
def BGE : BranchCC_rri<0b101, "bge">;
def BLTU : BranchCC_rri<0b110, "bltu">;
def BGEU : BranchCC_rri<0b111, "bgeu">;
let IsSignExtendingOpW = 1 in {
def LB : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>;
def LH : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>;
def LW : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>;
def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>;
def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>;
}
def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>;
def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>;
// ADDI isn't always rematerializable, but isReMaterializable will be used as
// a hint which is verified in isReallyTriviallyReMaterializable.
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def ADDI : ALU_ri<0b000, "addi">;
let IsSignExtendingOpW = 1 in {
def SLTI : ALU_ri<0b010, "slti">;
def SLTIU : ALU_ri<0b011, "sltiu">;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def XORI : ALU_ri<0b100, "xori">;
def ORI : ALU_ri<0b110, "ori">;
}
def ANDI : ALU_ri<0b111, "andi">;
def SLLI : Shift_ri<0b00000, 0b001, "slli">;
def SRLI : Shift_ri<0b00000, 0b101, "srli">;
def SRAI : Shift_ri<0b01000, 0b101, "srai">;
def ADD : ALU_rr<0b0000000, 0b000, "add", Commutable=1>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SUB : ALU_rr<0b0100000, 0b000, "sub">,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLL : ALU_rr<0b0000000, 0b001, "sll">,
Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
let IsSignExtendingOpW = 1 in {
def SLT : ALU_rr<0b0000000, 0b010, "slt">,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLTU : ALU_rr<0b0000000, 0b011, "sltu">,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
}
def XOR : ALU_rr<0b0000000, 0b100, "xor", Commutable=1>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SRL : ALU_rr<0b0000000, 0b101, "srl">,
Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
def SRA : ALU_rr<0b0100000, 0b101, "sra">,
Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
def OR : ALU_rr<0b0000000, 0b110, "or", Commutable=1>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def AND : ALU_rr<0b0000000, 0b111, "and", Commutable=1>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
(ins fencearg:$pred, fencearg:$succ),
"fence", "$pred, $succ">, Sched<[]> {
bits<4> pred;
bits<4> succ;
let rs1 = 0;
let rd = 0;
let imm12 = {0b0000,pred,succ};
}
def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = {0b1000,0b0011,0b0011};
}
def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = 0;
}
def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> {
let rs1 = 0;
let rd = 0;
let imm12 = 0;
}
def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">,
Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = 1;
}
// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
// instruction (i.e., it should always trap, if your implementation has invalid
// instruction traps).
def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">,
Sched<[]> {
let rs1 = 0;
let rd = 0;
let imm12 = 0b110000000000;
}
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
def CSRRW : CSR_ir<0b001, "csrrw">;
def CSRRS : CSR_ir<0b010, "csrrs">;
def CSRRC : CSR_ir<0b011, "csrrc">;
def CSRRWI : CSR_ii<0b101, "csrrwi">;
def CSRRSI : CSR_ii<0b110, "csrrsi">;
def CSRRCI : CSR_ii<0b111, "csrrci">;
/// RV64I instructions
let Predicates = [IsRV64] in {
def LWU : Load_ri<0b110, "lwu">, Sched<[WriteLDW, ReadMemBase]>;
def LD : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>;
def SD : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>;
let IsSignExtendingOpW = 1 in {
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
(ins GPR:$rs1, simm12:$imm12),
"addiw", "$rd, $rs1, $imm12">,
Sched<[WriteIALU32, ReadIALU32]>;
def SLLIW : ShiftW_ri<0b0000000, 0b001, "slliw">;
def SRLIW : ShiftW_ri<0b0000000, 0b101, "srliw">;
def SRAIW : ShiftW_ri<0b0100000, 0b101, "sraiw">;
def ADDW : ALUW_rr<0b0000000, 0b000, "addw", Commutable=1>,
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SUBW : ALUW_rr<0b0100000, 0b000, "subw">,
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">,
Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">,
Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">,
Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
} // IsSignExtendingOpW = 1
} // Predicates = [IsRV64]
//===----------------------------------------------------------------------===//
// Privileged instructions
//===----------------------------------------------------------------------===//
let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def SRET : Priv<"sret", 0b0001000>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00010;
}
def MRET : Priv<"mret", 0b0011000>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1
def WFI : Priv<"wfi", 0b0001000>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00101;
}
let Predicates = [HasStdExtSvinval] in {
def SFENCE_W_INVAL : Priv<"sfence.w.inval", 0b0001100>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0;
}
def SFENCE_INVAL_IR : Priv<"sfence.inval.ir", 0b0001100>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b00001;
}
def SINVAL_VMA : Priv_rr<"sinval.vma", 0b0001011>, Sched<[]>;
def HINVAL_VVMA : Priv_rr<"hinval.vvma", 0b0010011>, Sched<[]>;
def HINVAL_GVMA : Priv_rr<"hinval.gvma", 0b0110011>, Sched<[]>;
} // Predicates = [HasStdExtSvinval]
def SFENCE_VMA : Priv_rr<"sfence.vma", 0b0001001>, Sched<[]>;
let Predicates = [HasStdExtH] in {
def HFENCE_VVMA : Priv_rr<"hfence.vvma", 0b0010001>, Sched<[]>;
def HFENCE_GVMA : Priv_rr<"hfence.gvma", 0b0110001>, Sched<[]>;
def HLV_B : HLoad_r<0b0110000, 0b00000, "hlv.b">, Sched<[]>;
def HLV_BU : HLoad_r<0b0110000, 0b00001, "hlv.bu">, Sched<[]>;
def HLV_H : HLoad_r<0b0110010, 0b00000, "hlv.h">, Sched<[]>;
def HLV_HU : HLoad_r<0b0110010, 0b00001, "hlv.hu">, Sched<[]>;
def HLVX_HU : HLoad_r<0b0110010, 0b00011, "hlvx.hu">, Sched<[]>;
def HLV_W : HLoad_r<0b0110100, 0b00000, "hlv.w">, Sched<[]>;
def HLVX_WU : HLoad_r<0b0110100, 0b00011, "hlvx.wu">, Sched<[]>;
def HSV_B : HStore_rr<0b0110001, "hsv.b">, Sched<[]>;
def HSV_H : HStore_rr<0b0110011, "hsv.h">, Sched<[]>;
def HSV_W : HStore_rr<0b0110101, "hsv.w">, Sched<[]>;
}
let Predicates = [IsRV64, HasStdExtH] in {
def HLV_WU : HLoad_r<0b0110100, 0b00001, "hlv.wu">, Sched<[]>;
def HLV_D : HLoad_r<0b0110110, 0b00000, "hlv.d">, Sched<[]>;
def HSV_D : HStore_rr<0b0110111, "hsv.d">, Sched<[]>;
}
//===----------------------------------------------------------------------===//
// Debug instructions
//===----------------------------------------------------------------------===//
let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def DRET : Priv<"dret", 0b0111101>, Sched<[]> {
let rd = 0;
let rs1 = 0;
let rs2 = 0b10010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
def : InstAlias<"nop", (ADDI X0, X0, 0)>;
// Note that the size is 32 because up to 8 32-bit instructions are needed to
// generate an arbitrary 64-bit immediate. However, the size does not really
// matter since PseudoLI is currently only used in the AsmParser where it gets
// expanded to real instructions immediately.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
isCodeGenOnly = 0, isAsmParserOnly = 1 in
def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
"li", "$rd, $imm">;
def PseudoLB : PseudoLoad<"lb">;
def PseudoLBU : PseudoLoad<"lbu">;
def PseudoLH : PseudoLoad<"lh">;
def PseudoLHU : PseudoLoad<"lhu">;
def PseudoLW : PseudoLoad<"lw">;
def PseudoSB : PseudoStore<"sb">;
def PseudoSH : PseudoStore<"sh">;
def PseudoSW : PseudoStore<"sw">;
let Predicates = [IsRV64] in {
def PseudoLWU : PseudoLoad<"lwu">;
def PseudoLD : PseudoLoad<"ld">;
def PseudoSD : PseudoStore<"sd">;
} // Predicates = [IsRV64]
def : InstAlias<"li $rd, $imm", (ADDI GPR:$rd, X0, simm12:$imm)>;
def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>;
def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>;
def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>;
let Predicates = [IsRV64] in {
def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>;
def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>;
} // Predicates = [IsRV64]
def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>;
def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>;
def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>;
def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>;
// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
// form will always be printed. Therefore, set a zero weight.
def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;
def : InstAlias<"beqz $rs, $offset",
(BEQ GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"bnez $rs, $offset",
(BNE GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"blez $rs, $offset",
(BGE X0, GPR:$rs, simm13_lsb0:$offset)>;
def : InstAlias<"bgez $rs, $offset",
(BGE GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"bltz $rs, $offset",
(BLT GPR:$rs, X0, simm13_lsb0:$offset)>;
def : InstAlias<"bgtz $rs, $offset",
(BLT X0, GPR:$rs, simm13_lsb0:$offset)>;
// Always output the canonical mnemonic for the pseudo branch instructions.
// The GNU tools emit the canonical mnemonic for the branch pseudo instructions
// as well (e.g. "bgt" will be recognised by the assembler but never printed by
// objdump). Match this behaviour by setting a zero weight.
def : InstAlias<"bgt $rs, $rt, $offset",
(BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"ble $rs, $rt, $offset",
(BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bgtu $rs, $rt, $offset",
(BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bleu $rs, $rt, $offset",
(BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>;
def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;
// Non-zero offset aliases of "jalr" are the lowest weight, followed by the
// two-register form, then the one-register forms and finally "ret".
def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0), 3>;
def : InstAlias<"jr ${offset}(${rs})", (JALR X0, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0), 3>;
def : InstAlias<"jalr ${offset}(${rs})", (JALR X1, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rd, $rs", (JALR GPR:$rd, GPR:$rs, 0), 2>;
def : InstAlias<"ret", (JALR X0, X1, 0), 4>;
// Non-canonical forms for jump targets also accepted by the assembler.
def : InstAlias<"jr $rs, $offset", (JALR X0, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rs, $offset", (JALR X1, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jr (${rs})", (JALR X0, GPR:$rs, 0), 0>;
def : InstAlias<"jalr (${rs})", (JALR X1, GPR:$rs, 0), 0>;
def : InstAlias<"jalr $rd, (${rs})", (JALR GPR:$rd, GPR:$rs, 0), 0>;
def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw
let Predicates = [HasStdExtZihintpause] in
def : InstAlias<"pause", (FENCE 0x1, 0x0)>; // 0x1 == w
def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>;
let Predicates = [IsRV32] in {
def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
} // Predicates = [IsRV32]
def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>;
def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
let EmitPriority = 0 in {
def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
}
def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>;
def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;
def : InstAlias<"hfence.gvma", (HFENCE_GVMA X0, X0)>;
def : InstAlias<"hfence.gvma $rs", (HFENCE_GVMA GPR:$rs, X0)>;
def : InstAlias<"hfence.vvma", (HFENCE_VVMA X0, X0)>;
def : InstAlias<"hfence.vvma $rs", (HFENCE_VVMA GPR:$rs, X0)>;
let Predicates = [HasStdExtZihintntl] in {
def : InstAlias<"ntl.p1", (ADD X0, X0, X2)>;
def : InstAlias<"ntl.pall", (ADD X0, X0, X3)>;
def : InstAlias<"ntl.s1", (ADD X0, X0, X4)>;
def : InstAlias<"ntl.all", (ADD X0, X0, X5)>;
} // Predicates = [HasStdExtZihintntl]
let EmitPriority = 0 in {
def : InstAlias<"lb $rd, (${rs1})",
(LB GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lh $rd, (${rs1})",
(LH GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lw $rd, (${rs1})",
(LW GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lbu $rd, (${rs1})",
(LBU GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lhu $rd, (${rs1})",
(LHU GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"sb $rs2, (${rs1})",
(SB GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sh $rs2, (${rs1})",
(SH GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sw $rs2, (${rs1})",
(SW GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"add $rd, $rs1, $imm12",
(ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"and $rd, $rs1, $imm12",
(ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"xor $rd, $rs1, $imm12",
(XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"or $rd, $rs1, $imm12",
(ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sll $rd, $rs1, $shamt",
(SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"srl $rd, $rs1, $shamt",
(SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"sra $rd, $rs1, $shamt",
(SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
let Predicates = [IsRV64] in {
def : InstAlias<"lwu $rd, (${rs1})",
(LWU GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"ld $rd, (${rs1})",
(LD GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"sd $rs2, (${rs1})",
(SD GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"addw $rd, $rs1, $imm12",
(ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sllw $rd, $rs1, $shamt",
(SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"srlw $rd, $rs1, $shamt",
(SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"sraw $rd, $rs1, $shamt",
(SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
} // Predicates = [IsRV64]
def : InstAlias<"slt $rd, $rs1, $imm12",
(SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sltu $rd, $rs1, $imm12",
(SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>;
}
def : MnemonicAlias<"move", "mv">;
// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
// the old name for backwards compatibility.
def : MnemonicAlias<"scall", "ecall">;
def : MnemonicAlias<"sbreak", "ebreak">;
// This alias was added to the spec in December 2020. Don't print it by default
// to allow assembly we print to be compatible with versions of GNU assembler
// that don't support this alias.
def : InstAlias<"zext.b $rd, $rs", (ANDI GPR:$rd, GPR:$rs, 0xFF), 0>;
let Predicates = [HasStdExtZicfilp] in {
def : InstAlias<"lpad $imm20", (AUIPC X0, uimm20:$imm20)>;
}
//===----------------------------------------------------------------------===//
// .insn directive instructions
//===----------------------------------------------------------------------===//
def AnyRegOperand : AsmOperandClass {
let Name = "AnyRegOperand";
let RenderMethod = "addRegOperands";
let PredicateMethod = "isAnyReg";
}
def AnyReg : Operand<XLenVT> {
let OperandType = "OPERAND_REGISTER";
let ParserMatchClass = AnyRegOperand;
}
// isCodeGenOnly = 1 to hide them from the tablegened assembly parser.
let isCodeGenOnly = 1, hasSideEffects = 1, mayLoad = 1, mayStore = 1,
hasNoSchedulingInfo = 1 in {
def InsnR : DirectiveInsnR<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3,
uimm7:$funct7, AnyReg:$rs1,
AnyReg:$rs2),
"$opcode, $funct3, $funct7, $rd, $rs1, $rs2">;
def InsnR4 : DirectiveInsnR4<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
uimm3:$funct3,
uimm2:$funct2,
AnyReg:$rs1, AnyReg:$rs2,
AnyReg:$rs3),
"$opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3">;
def InsnI : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3,
AnyReg:$rs1, simm12:$imm12),
"$opcode, $funct3, $rd, $rs1, $imm12">;
def InsnI_Mem : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
uimm3:$funct3,
AnyReg:$rs1,
simm12:$imm12),
"$opcode, $funct3, $rd, ${imm12}(${rs1})">;
def InsnB : DirectiveInsnB<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3,
AnyReg:$rs1, AnyReg:$rs2,
simm13_lsb0:$imm12),
"$opcode, $funct3, $rs1, $rs2, $imm12">;
def InsnU : DirectiveInsnU<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
uimm20_lui:$imm20),
"$opcode, $rd, $imm20">;
def InsnJ : DirectiveInsnJ<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
simm21_lsb0_jal:$imm20),
"$opcode, $rd, $imm20">;
def InsnS : DirectiveInsnS<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3,
AnyReg:$rs2, AnyReg:$rs1,
simm12:$imm12),
"$opcode, $funct3, $rs2, ${imm12}(${rs1})">;
def Insn32 : RVInst<(outs), (ins uimm32:$value), "", "", [], InstFormatOther> {
bits<32> value;
let Inst{31-0} = value;
let AsmString = ".insn 0x4, $value";
}
}
// Use InstAliases to match these so that we can combine the insn and format
// into a mnemonic to use as the key for the tablegened asm matcher table. The
// parser will take care of creating these fake mnemonics and will only do it
// for known formats.
let EmitPriority = 0 in {
def : InstAlias<".insn_r $opcode, $funct3, $funct7, $rd, $rs1, $rs2",
(InsnR AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm7:$funct7,
AnyReg:$rs1, AnyReg:$rs2)>;
// Accept 4 register form of ".insn r" as alias for ".insn r4".
def : InstAlias<".insn_r $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3",
(InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2,
AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>;
def : InstAlias<".insn_r4 $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3",
(InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2,
AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>;
def : InstAlias<".insn_i $opcode, $funct3, $rd, $rs1, $imm12",
(InsnI AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
simm12:$imm12)>;
def : InstAlias<".insn_i $opcode, $funct3, $rd, ${imm12}(${rs1})",
(InsnI_Mem AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3,
AnyReg:$rs1, simm12:$imm12)>;
def : InstAlias<".insn_i $opcode, $funct3, $rd, (${rs1})",
(InsnI_Mem AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3,
AnyReg:$rs1, 0)>;
def : InstAlias<".insn_b $opcode, $funct3, $rs1, $rs2, $imm12",
(InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
AnyReg:$rs2, simm13_lsb0:$imm12)>;
// Accept sb as an alias for b.
def : InstAlias<".insn_sb $opcode, $funct3, $rs1, $rs2, $imm12",
(InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
AnyReg:$rs2, simm13_lsb0:$imm12)>;
def : InstAlias<".insn_u $opcode, $rd, $imm20",
(InsnU AnyReg:$rd, uimm7_opcode:$opcode, uimm20_lui:$imm20)>;
def : InstAlias<".insn_j $opcode, $rd, $imm20",
(InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>;
// Accept uj as an alias for j.
def : InstAlias<".insn_uj $opcode, $rd, $imm20",
(InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>;
def : InstAlias<".insn_s $opcode, $funct3, $rs2, ${imm12}(${rs1})",
(InsnS uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs2,
AnyReg:$rs1, simm12:$imm12)>;
def : InstAlias<".insn_s $opcode, $funct3, $rs2, (${rs1})",
(InsnS uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs2,
AnyReg:$rs1, 0)>;
}
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//
// Naming convention: For 'generic' pattern classes, we use the naming
// convention PatTy1Ty2. For pattern classes which offer a more complex
// expansion, prefix the class name, e.g. BccPat.
//===----------------------------------------------------------------------===//
/// Generic pattern classes
class PatGpr<SDPatternOperator OpNode, RVInst Inst, ValueType vt = XLenVT>
: Pat<(vt (OpNode (vt GPR:$rs1))), (Inst GPR:$rs1)>;
class PatGprGpr<SDPatternOperator OpNode, RVInst Inst, ValueType vt1 = XLenVT,
ValueType vt2 = XLenVT>
: Pat<(vt1 (OpNode (vt1 GPR:$rs1), (vt2 GPR:$rs2))), (Inst GPR:$rs1, GPR:$rs2)>;
class PatGprImm<SDPatternOperator OpNode, RVInst Inst, ImmLeaf ImmType,
ValueType vt = XLenVT>
: Pat<(vt (OpNode (vt GPR:$rs1), ImmType:$imm)),
(Inst GPR:$rs1, ImmType:$imm)>;
class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
: PatGprImm<OpNode, Inst, simm12>;
class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
: PatGprImm<OpNode, Inst, uimmlog2xlen>;
/// Predicates
def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
}]>;
def sexti16 : ComplexPattern<XLenVT, 1, "selectSExtBits<16>">;
def sexti16i32 : ComplexPattern<i32, 1, "selectSExtBits<16>">;
def sexti32 : ComplexPattern<i64, 1, "selectSExtBits<32>">;
def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
}]>;
def zexti32 : ComplexPattern<i64, 1, "selectZExtBits<32>">;
def zexti16 : ComplexPattern<XLenVT, 1, "selectZExtBits<16>">;
def zexti16i32 : ComplexPattern<i32, 1, "selectZExtBits<16>">;
def zexti8 : ComplexPattern<XLenVT, 1, "selectZExtBits<8>">;
def zexti8i32 : ComplexPattern<i32, 1, "selectZExtBits<8>">;
def ext : PatFrags<(ops node:$A), [(sext node:$A), (zext node:$A)]>;
class binop_oneuse<SDPatternOperator operator>
: PatFrag<(ops node:$A, node:$B),
(operator node:$A, node:$B), [{
return N->hasOneUse();
}]>;
def and_oneuse : binop_oneuse<and>;
def mul_oneuse : binop_oneuse<mul>;
def mul_const_oneuse : PatFrag<(ops node:$A, node:$B),
(mul node:$A, node:$B), [{
if (auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return N1C->hasOneUse();
return false;
}]>;
class unop_oneuse<SDPatternOperator operator>
: PatFrag<(ops node:$A),
(operator node:$A), [{
return N->hasOneUse();
}]>;
def sext_oneuse : unop_oneuse<sext>;
def zext_oneuse : unop_oneuse<zext>;
def anyext_oneuse : unop_oneuse<anyext>;
def ext_oneuse : unop_oneuse<ext>;
def fpext_oneuse : unop_oneuse<any_fpextend>;
def 33signbits_node : PatLeaf<(i64 GPR:$src), [{
return CurDAG->ComputeNumSignBits(SDValue(N, 0)) > 32;
}]>;
/// Simple arithmetic operations
def : PatGprGpr<add, ADD>;
def : PatGprSimm12<add, ADDI>;
def : PatGprGpr<sub, SUB>;
def : PatGprGpr<or, OR>;
def : PatGprSimm12<or, ORI>;
def : PatGprGpr<and, AND>;
def : PatGprSimm12<and, ANDI>;
def : PatGprGpr<xor, XOR>;
def : PatGprSimm12<xor, XORI>;
def : PatGprUimmLog2XLen<shl, SLLI>;
def : PatGprUimmLog2XLen<srl, SRLI>;
def : PatGprUimmLog2XLen<sra, SRAI>;
// Select 'or' as ADDI if the immediate bits are known to be 0 in $rs1. This
// can improve compressibility.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
if (N->getFlags().hasDisjoint())
return true;
KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
return KnownBits::haveNoCommonBitsSet(Known0, Known1);
}]>;
def : PatGprSimm12<or_is_add, ADDI>;
def add_like : PatFrags<(ops node:$lhs, node:$rhs),
[(or_is_add node:$lhs, node:$rhs),
(add node:$lhs, node:$rhs)]>;
// negate of low bit can be done via two (compressible) shifts. The negate
// is never compressible since rs1 and rd can't be the same register.
def : Pat<(XLenVT (sub 0, (and_oneuse GPR:$rs, 1))),
(SRAI (XLenVT (SLLI $rs, (ImmSubFromXLen (XLenVT 1)))),
(ImmSubFromXLen (XLenVT 1)))>;
// AND with leading/trailing ones mask exceeding simm32/simm12.
def : Pat<(i64 (and GPR:$rs, LeadingOnesMask:$mask)),
(SLLI (i64 (SRLI $rs, LeadingOnesMask:$mask)), LeadingOnesMask:$mask)>;
def : Pat<(XLenVT (and GPR:$rs, TrailingOnesMask:$mask)),
(SRLI (XLenVT (SLLI $rs, TrailingOnesMask:$mask)), TrailingOnesMask:$mask)>;
// Match both a plain shift and one where the shift amount is masked (this is
// typically introduced when the legalizer promotes the shift amount and
// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
def shiftMaskXLen : ComplexPattern<XLenVT, 1, "selectShiftMaskXLen", [], [], 0>;
def shiftMask32 : ComplexPattern<i64, 1, "selectShiftMask32", [], [], 0>;
class shiftop<SDPatternOperator operator>
: PatFrag<(ops node:$val, node:$count),
(operator node:$val, (XLenVT (shiftMaskXLen node:$count)))>;
class shiftopw<SDPatternOperator operator>
: PatFrag<(ops node:$val, node:$count),
(operator node:$val, (i64 (shiftMask32 node:$count)))>;
def : PatGprGpr<shiftop<shl>, SLL>;
def : PatGprGpr<shiftop<srl>, SRL>;
def : PatGprGpr<shiftop<sra>, SRA>;
// This is a special case of the ADD instruction used to facilitate the use of a
// fourth operand to emit a relocation on a symbol relating to this instruction.
// The relocation does not affect any bits of the instruction itself but is used
// as a hint to the linker.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
(ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
"add", "$rd, $rs1, $rs2, $src">;
/// FrameIndex calculations
def : Pat<(FrameAddrRegImm (iPTR GPR:$rs1), simm12:$imm12),
(ADDI GPR:$rs1, simm12:$imm12)>;
/// HI and ADD_LO address nodes.
// Pseudo for a rematerializable LUI+ADDI sequence for loading an address.
// It will be expanded after register allocation.
// FIXME: The scheduling information does not reflect the multiple instructions.
let Size = 8, isReMaterializable = 1 in
def PseudoMovAddr : Pseudo<(outs GPR:$dst), (ins uimm20_lui:$hi, simm12:$lo), []>,
Sched<[WriteIALU]>;
def riscv_hi_oneuse : unop_oneuse<riscv_hi>;
def addr_hi_lo : PatFrag<(ops node:$hi, node:$lo),
(riscv_add_lo (riscv_hi_oneuse node:$hi), node:$lo)>;
def : Pat<(addr_hi_lo tglobaladdr:$hi, tglobaladdr:$lo),
(PseudoMovAddr tglobaladdr:$hi, tglobaladdr:$lo)>;
def : Pat<(addr_hi_lo tblockaddress:$hi, tblockaddress:$lo),
(PseudoMovAddr tblockaddress:$hi, tblockaddress:$lo)>;
def : Pat<(addr_hi_lo tjumptable:$hi, tjumptable:$lo),
(PseudoMovAddr tjumptable:$hi, tjumptable:$lo)>;
def : Pat<(addr_hi_lo tconstpool:$hi, tconstpool:$lo),
(PseudoMovAddr tconstpool:$hi, tconstpool:$lo)>;
def : Pat<(riscv_hi tglobaladdr:$in), (LUI tglobaladdr:$in)>;
def : Pat<(riscv_hi tblockaddress:$in), (LUI tblockaddress:$in)>;
def : Pat<(riscv_hi tjumptable:$in), (LUI tjumptable:$in)>;
def : Pat<(riscv_hi tconstpool:$in), (LUI tconstpool:$in)>;
def : Pat<(riscv_add_lo GPR:$hi, tglobaladdr:$lo),
(ADDI GPR:$hi, tglobaladdr:$lo)>;
def : Pat<(riscv_add_lo GPR:$hi, tblockaddress:$lo),
(ADDI GPR:$hi, tblockaddress:$lo)>;
def : Pat<(riscv_add_lo GPR:$hi, tjumptable:$lo),
(ADDI GPR:$hi, tjumptable:$lo)>;
def : Pat<(riscv_add_lo GPR:$hi, tconstpool:$lo),
(ADDI GPR:$hi, tconstpool:$lo)>;
/// TLS address nodes.
def : Pat<(riscv_hi tglobaltlsaddr:$in), (LUI tglobaltlsaddr:$in)>;
def : Pat<(riscv_add_tprel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src),
(PseudoAddTPRel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src)>;
def : Pat<(riscv_add_lo GPR:$src, tglobaltlsaddr:$lo),
(ADDI GPR:$src, tglobaltlsaddr:$lo)>;
/// Setcc
def : PatGprGpr<setlt, SLT>;
def : PatGprSimm12<setlt, SLTI>;
def : PatGprGpr<setult, SLTU>;
def : PatGprSimm12<setult, SLTIU>;
// RISC-V doesn't have general instructions for integer setne/seteq, but we can
// check for equality with 0. These ComplexPatterns rewrite the setne/seteq into
// something that can be compared with 0.
// These ComplexPatterns must be used in pairs.
def riscv_setne : ComplexPattern<XLenVT, 1, "selectSETNE", [setcc]>;
def riscv_seteq : ComplexPattern<XLenVT, 1, "selectSETEQ", [setcc]>;
// Define pattern expansions for setcc operations that aren't directly
// handled by a RISC-V instruction.
def : Pat<(riscv_seteq (XLenVT GPR:$rs1)), (SLTIU GPR:$rs1, 1)>;
def : Pat<(riscv_setne (XLenVT GPR:$rs1)), (SLTU (XLenVT X0), GPR:$rs1)>;
def : Pat<(XLenVT (setne (XLenVT GPR:$rs1), -1)), (SLTIU GPR:$rs1, -1)>;
def IntCCtoRISCVCC : SDNodeXForm<riscv_selectcc, [{
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
RISCVCC::CondCode BrCC = getRISCVCCForIntCC(CC);
return CurDAG->getTargetConstant(BrCC, SDLoc(N), Subtarget->getXLenVT());
}]>;
def riscv_selectcc_frag : PatFrag<(ops node:$lhs, node:$rhs, node:$cc,
node:$truev, node:$falsev),
(riscv_selectcc node:$lhs, node:$rhs,
node:$cc, node:$truev,
node:$falsev), [{}],
IntCCtoRISCVCC>;
multiclass SelectCC_GPR_rrirr<DAGOperand valty, ValueType vt> {
let usesCustomInserter = 1 in
def _Using_CC_GPR : Pseudo<(outs valty:$dst),
(ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
valty:$truev, valty:$falsev),
[(set valty:$dst,
(riscv_selectcc_frag:$cc (XLenVT GPR:$lhs), GPR:$rhs, cond,
(vt valty:$truev), valty:$falsev))]>;
// Explicitly select 0 in the condition to X0. The register coalescer doesn't
// always do it.
def : Pat<(riscv_selectcc_frag:$cc (XLenVT GPR:$lhs), 0, cond, (vt valty:$truev),
valty:$falsev),
(!cast<Instruction>(NAME#"_Using_CC_GPR") GPR:$lhs, (XLenVT X0),
(IntCCtoRISCVCC $cc), valty:$truev, valty:$falsev)>;
}
let Predicates = [NoConditionalMoveFusion] in
defm Select_GPR : SelectCC_GPR_rrirr<GPR, XLenVT>;
class SelectCompressOpt<CondCode Cond>
: Pat<(riscv_selectcc_frag:$select (XLenVT GPR:$lhs), simm12_no6:$Constant, Cond,
(XLenVT GPR:$truev), GPR:$falsev),
(Select_GPR_Using_CC_GPR (XLenVT (ADDI GPR:$lhs, (NegImm simm12:$Constant))), (XLenVT X0),
(IntCCtoRISCVCC $select), GPR:$truev, GPR:$falsev)>;
def OptForMinSize : Predicate<"MF ? MF->getFunction().hasMinSize() : false">;
let Predicates = [HasStdExtC, OptForMinSize] in {
def : SelectCompressOpt<SETEQ>;
def : SelectCompressOpt<SETNE>;
}
/// Branches and jumps
// Match `riscv_brcc` and lower to the appropriate RISC-V branch instruction.
multiclass BccPat<CondCode Cond, RVInstB Inst> {
def : Pat<(riscv_brcc (XLenVT GPR:$rs1), GPR:$rs2, Cond, bb:$imm12),
(Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;
// Explicitly select 0 to X0. The register coalescer doesn't always do it.
def : Pat<(riscv_brcc (XLenVT GPR:$rs1), 0, Cond, bb:$imm12),
(Inst GPR:$rs1, (XLenVT X0), simm13_lsb0:$imm12)>;
}
class BrccCompressOpt<CondCode Cond, RVInstB Inst>
: Pat<(riscv_brcc GPR:$lhs, simm12_no6:$Constant, Cond, bb:$place),
(Inst (XLenVT (ADDI GPR:$lhs, (NegImm simm12:$Constant))),
(XLenVT X0), bb:$place)>;
defm : BccPat<SETEQ, BEQ>;
defm : BccPat<SETNE, BNE>;
defm : BccPat<SETLT, BLT>;
defm : BccPat<SETGE, BGE>;
defm : BccPat<SETULT, BLTU>;
defm : BccPat<SETUGE, BGEU>;
let Predicates = [HasStdExtCOrZca, OptForMinSize] in {
def : BrccCompressOpt<SETEQ, BEQ>;
def : BrccCompressOpt<SETNE, BNE>;
}
class LongBccPseudo : Pseudo<(outs),
(ins GPR:$rs1, GPR:$rs2, simm21_lsb0_jal:$imm20),
[]> {
let Size = 8;
let isBarrier = 1;
let isBranch = 1;
let hasSideEffects = 0;
let mayStore = 0;
let mayLoad = 0;
let isAsmParserOnly = 1;
let hasNoSchedulingInfo = 1;
}
def PseudoLongBEQ : LongBccPseudo;
def PseudoLongBNE : LongBccPseudo;
def PseudoLongBLT : LongBccPseudo;
def PseudoLongBGE : LongBccPseudo;
def PseudoLongBLTU : LongBccPseudo;
def PseudoLongBGEU : LongBccPseudo;
let isBarrier = 1, isBranch = 1, isTerminator = 1 in
def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;
let Predicates = [NoStdExtZicfilp],
isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
def PseudoBRIND : Pseudo<(outs), (ins GPRJALR:$rs1, simm12:$imm12), []>,
PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
let Predicates = [HasStdExtZicfilp],
isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in {
def PseudoBRINDNonX7 : Pseudo<(outs), (ins GPRJALRNonX7:$rs1, simm12:$imm12), []>,
PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
def PseudoBRINDX7 : Pseudo<(outs), (ins GPRX7:$rs1, simm12:$imm12), []>,
PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
}
// For Zicfilp, need to avoid using X7/T2 for indirect branches which need
// landing pad.
let Predicates = [HasStdExtZicfilp] in {
def : Pat<(brind GPRJALRNonX7:$rs1), (PseudoBRINDNonX7 GPRJALRNonX7:$rs1, 0)>;
def : Pat<(brind (add GPRJALRNonX7:$rs1, simm12:$imm12)),
(PseudoBRINDNonX7 GPRJALRNonX7:$rs1, simm12:$imm12)>;
def : Pat<(riscv_sw_guarded_brind GPRX7:$rs1), (PseudoBRINDX7 GPRX7:$rs1, 0)>;
def : Pat<(riscv_sw_guarded_brind (add GPRX7:$rs1, simm12:$imm12)),
(PseudoBRINDX7 GPRX7:$rs1, simm12:$imm12)>;
}
let Predicates = [NoStdExtZicfilp] in {
def : Pat<(brind GPRJALR:$rs1), (PseudoBRIND GPRJALR:$rs1, 0)>;
def : Pat<(brind (add GPRJALR:$rs1, simm12:$imm12)),
(PseudoBRIND GPRJALR:$rs1, simm12:$imm12)>;
}
// PseudoCALLReg is a generic pseudo instruction for calls which will eventually
// expand to auipc and jalr while encoding, with any given register used as the
// destination.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, Size = 8, hasSideEffects = 0,
mayStore = 0, mayLoad = 0 in
def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), [],
"call", "$rd, $func">,
Sched<[WriteIALU, WriteJalr, ReadJalr]>;
// PseudoCALL is a pseudo instruction which will eventually expand to auipc
// and jalr while encoding. This is desirable, as an auipc+jalr pair with
// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
// if the offset fits in a signed 21-bit immediate.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, Defs = [X1], isCodeGenOnly = 0, Size = 8 in
def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), [],
"call", "$func">,
Sched<[WriteIALU, WriteJalr, ReadJalr]>;
def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;
def : Pat<(riscv_sret_glue), (SRET (XLenVT X0), (XLenVT X0))>;
def : Pat<(riscv_mret_glue), (MRET (XLenVT X0), (XLenVT X0))>;
let isCall = 1, Defs = [X1] in {
let Predicates = [NoStdExtZicfilp] in
def PseudoCALLIndirect : Pseudo<(outs), (ins GPRJALR:$rs1),
[(riscv_call GPRJALR:$rs1)]>,
PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;
let Predicates = [HasStdExtZicfilp] in
def PseudoCALLIndirectNonX7 : Pseudo<(outs), (ins GPRJALRNonX7:$rs1),
[(riscv_call GPRJALRNonX7:$rs1)]>,
PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;
}
let isBarrier = 1, isReturn = 1, isTerminator = 1 in
def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_glue)]>,
PseudoInstExpansion<(JALR X0, X1, 0)>;
// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
// expand to auipc and jalr while encoding.
// Define AsmString to print "tail" when compile with -S flag.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
Size = 8, isCodeGenOnly = 0 in
def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), [],
"tail", "$dst">,
Sched<[WriteIALU, WriteJalr, ReadJalr]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in {
let Predicates = [NoStdExtZicfilp] in
def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
[(riscv_tail GPRTC:$rs1)]>,
PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;
let Predicates = [HasStdExtZicfilp] in
def PseudoTAILIndirectNonX7 : Pseudo<(outs), (ins GPRTCNonX7:$rs1),
[(riscv_tail GPRTCNonX7:$rs1)]>,
PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;
}
def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
(PseudoTAIL tglobaladdr:$dst)>;
def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
(PseudoTAIL texternalsym:$dst)>;
let isCall = 0, isBarrier = 1, isBranch = 1, isTerminator = 1, Size = 8,
isCodeGenOnly = 0, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in
def PseudoJump : Pseudo<(outs GPR:$rd), (ins pseudo_jump_symbol:$target), [],
"jump", "$target, $rd">,
Sched<[WriteIALU, WriteJalr, ReadJalr]>;
// Pseudo for a rematerializable constant materialization sequence.
// This is an experimental feature enabled by
// -riscv-use-rematerializable-movimm in RISCVISelDAGToDAG.cpp
// It will be expanded after register allocation.
// FIXME: The scheduling information does not reflect the multiple instructions.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8,
isReMaterializable = 1 in
def PseudoMovImm : Pseudo<(outs GPR:$dst), (ins i32imm:$imm), []>,
Sched<[WriteIALU]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"lla", "$dst, $src">;
// Refer to comment on PseudoLI for explanation of Size=32
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLLAImm : Pseudo<(outs GPR:$dst), (ins ixlenimm_li_restricted:$imm), [],
"lla", "$dst, $imm">;
def : Pat<(riscv_lla tglobaladdr:$in), (PseudoLLA tglobaladdr:$in)>;
def : Pat<(riscv_lla tblockaddress:$in), (PseudoLLA tblockaddress:$in)>;
def : Pat<(riscv_lla tjumptable:$in), (PseudoLLA tjumptable:$in)>;
def : Pat<(riscv_lla tconstpool:$in), (PseudoLLA tconstpool:$in)>;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLGA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"lga", "$dst, $src">;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"la", "$dst, $src">;
// Refer to comment on PseudoLI for explanation of Size=32
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
isCodeGenOnly = 0, isAsmParserOnly = 1 in
def PseudoLAImm : Pseudo<(outs GPR:$rd), (ins ixlenimm_li_restricted:$imm), [],
"la", "$rd, $imm">;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"la.tls.ie", "$dst, $src">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
isAsmParserOnly = 1 in
def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"la.tls.gd", "$dst, $src">;
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 32, isCodeGenOnly = 0 in
def PseudoLA_TLSDESC : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
"la.tlsdesc", "$dst, $src">;
def TLSDESCCallSymbol : AsmOperandClass {
let Name = "TLSDESCCallSymbol";
let RenderMethod = "addImmOperands";
let DiagnosticType = "InvalidTLSDESCCallSymbol";
let ParserMethod = "parseOperandWithModifier";
}
// A bare symbol with the %tlsdesc_call variant.
def tlsdesc_call_symbol : Operand<XLenVT> {
let ParserMatchClass = TLSDESCCallSymbol;
}
// This is a special case of the JALR instruction used to facilitate the use of a
// fourth operand to emit a relocation on a symbol relating to this instruction.
// The relocation does not affect any bits of the instruction itself but is used
// as a hint to the linker.
let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, Size = 8, hasSideEffects = 0,
mayStore = 0, mayLoad = 0 in
def PseudoTLSDESCCall : Pseudo<(outs GPR:$rd),
(ins GPR:$rs1, simm12:$imm12, tlsdesc_call_symbol:$src), [],
"jalr", "$rd, ${imm12}(${rs1}), $src">,
Sched<[WriteJalr, ReadJalr]> {
let Defs = [X10];
let Uses = [X10];
}
/// Sign/Zero Extends
// There are single-instruction versions of these in Zbb, so disable these
// Pseudos if that extension is present.
let hasSideEffects = 0, mayLoad = 0,
mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in {
def PseudoSEXT_B : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.b", "$rd, $rs">;
def PseudoSEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.h", "$rd, $rs">;
// rv64's sext.w is defined above, using InstAlias<"sext.w ...
// zext.b is defined above, using InstAlias<"zext.b ...
def PseudoZEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.h", "$rd, $rs">;
} // hasSideEffects = 0, ...
let Predicates = [IsRV64], hasSideEffects = 0, mayLoad = 0, mayStore = 0,
isCodeGenOnly = 0, isAsmParserOnly = 1 in {
def PseudoZEXT_W : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.w", "$rd, $rs">;
} // Predicates = [IsRV64], ...
/// Loads
class LdPat<PatFrag LoadOp, RVInst Inst, ValueType vt = XLenVT>
: Pat<(vt (LoadOp (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12))),
(Inst GPR:$rs1, simm12:$imm12)>;
def : LdPat<sextloadi8, LB>;
def : LdPat<extloadi8, LBU>; // Prefer unsigned due to no c.lb in Zcb.
def : LdPat<sextloadi16, LH>;
def : LdPat<extloadi16, LH>;
def : LdPat<load, LW, i32>;
def : LdPat<zextloadi8, LBU>;
def : LdPat<zextloadi16, LHU>;
/// Stores
class StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy,
ValueType vt>
: Pat<(StoreOp (vt StTy:$rs2), (AddrRegImm (XLenVT GPR:$rs1),
simm12:$imm12)),
(Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;
def : StPat<truncstorei8, SB, GPR, XLenVT>;
def : StPat<truncstorei16, SH, GPR, XLenVT>;
def : StPat<store, SW, GPR, i32>;
/// Fences
// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
// Manual: Volume I.
// fence acquire -> fence r, rw
def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>;
// fence release -> fence rw, w
def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>;
// fence acq_rel -> fence.tso
def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>;
// fence seq_cst -> fence rw, rw
def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>;
// Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
// Although these are lowered to fence+load/store instructions defined in the
// base RV32I/RV64I ISA, this lowering is only used when the A extension is
// present. This is necessary as it isn't valid to mix __atomic_* libcalls
// with inline atomic operations for the same object.
/// Access to system registers
// Helpers for defining specific operations. They are defined for each system
// register separately. Side effect is not used because dependencies are
// expressed via use-def properties.
class ReadSysReg<SysReg SR, list<Register> Regs>
: Pseudo<(outs GPR:$rd), (ins),
[(set GPR:$rd, (XLenVT (riscv_read_csr (XLenVT SR.Encoding))))]>,
PseudoInstExpansion<(CSRRS GPR:$rd, SR.Encoding, X0)> {
let hasSideEffects = 0;
let Uses = Regs;
}
class WriteSysReg<SysReg SR, list<Register> Regs>
: Pseudo<(outs), (ins GPR:$val),
[(riscv_write_csr (XLenVT SR.Encoding), (XLenVT GPR:$val))]>,
PseudoInstExpansion<(CSRRW X0, SR.Encoding, GPR:$val)> {
let hasSideEffects = 0;
let Defs = Regs;
}
class WriteSysRegImm<SysReg SR, list<Register> Regs>
: Pseudo<(outs), (ins uimm5:$val),
[(riscv_write_csr (XLenVT SR.Encoding), uimm5:$val)]>,
PseudoInstExpansion<(CSRRWI X0, SR.Encoding, uimm5:$val)> {
let hasSideEffects = 0;
let Defs = Regs;
}
class SwapSysReg<SysReg SR, list<Register> Regs>
: Pseudo<(outs GPR:$rd), (ins GPR:$val),
[(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), (XLenVT GPR:$val)))]>,
PseudoInstExpansion<(CSRRW GPR:$rd, SR.Encoding, GPR:$val)> {
let hasSideEffects = 0;
let Uses = Regs;
let Defs = Regs;
}
class SwapSysRegImm<SysReg SR, list<Register> Regs>
: Pseudo<(outs GPR:$rd), (ins uimm5:$val),
[(set GPR:$rd, (XLenVT (riscv_swap_csr (XLenVT SR.Encoding), uimm5:$val)))]>,
PseudoInstExpansion<(CSRRWI GPR:$rd, SR.Encoding, uimm5:$val)> {
let hasSideEffects = 0;
let Uses = Regs;
let Defs = Regs;
}
def ReadFRM : ReadSysReg<SysRegFRM, [FRM]>;
def WriteFRM : WriteSysReg<SysRegFRM, [FRM]>;
def WriteFRMImm : WriteSysRegImm<SysRegFRM, [FRM]>;
def SwapFRMImm : SwapSysRegImm<SysRegFRM, [FRM]>;
def WriteVXRMImm : WriteSysRegImm<SysRegVXRM, [VXRM]>;
let hasSideEffects = true in {
def ReadFFLAGS : ReadSysReg<SysRegFFLAGS, [FFLAGS]>;
def WriteFFLAGS : WriteSysReg<SysRegFFLAGS, [FFLAGS]>;
}
/// Other pseudo-instructions
// Pessimistically assume the stack pointer will be clobbered
let Defs = [X2], Uses = [X2] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
} // Defs = [X2], Uses = [X2]
/// RV64 patterns
let Predicates = [IsRV64, NotHasStdExtZba] in {
def : Pat<(i64 (and GPR:$rs1, 0xffffffff)), (SRLI (i64 (SLLI GPR:$rs1, 32)), 32)>;
// If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2
// shifts instead of 3. This can occur when unsigned is used to index an array.
def : Pat<(i64 (shl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
(SRLI (i64 (SLLI GPR:$rs1, 32)), (ImmSubFrom32 uimm5:$shamt))>;
}
class binop_allhusers<SDPatternOperator operator>
: PatFrag<(ops node:$lhs, node:$rhs),
(XLenVT (operator node:$lhs, node:$rhs)), [{
return hasAllHUsers(Node);
}]>;
// PatFrag to allow ADDW/SUBW/MULW/SLLW to be selected from i64 add/sub/mul/shl
// if only the lower 32 bits of their result is used.
class binop_allwusers<SDPatternOperator operator>
: PatFrag<(ops node:$lhs, node:$rhs),
(i64 (operator node:$lhs, node:$rhs)), [{
return hasAllWUsers(Node);
}]>;
def sexti32_allwusers : PatFrag<(ops node:$src),
(sext_inreg node:$src, i32), [{
return hasAllWUsers(Node);
}]>;
def ImmSExt32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(SignExtend64<32>(N->getSExtValue()),
SDLoc(N), N->getValueType(0));
}]>;
// Look for constants where the upper 32 bits are 0, but sign extending bit 31
// would be an simm12.
def u32simm12 : ImmLeaf<XLenVT, [{
return isUInt<32>(Imm) && isInt<12>(SignExtend64<32>(Imm));
}], ImmSExt32>;
let Predicates = [IsRV64] in {
def : Pat<(i64 (and GPR:$rs, LeadingOnesWMask:$mask)),
(SLLI (i64 (SRLIW $rs, LeadingOnesWMask:$mask)), LeadingOnesWMask:$mask)>;
/// sext and zext
// Sign extend is not needed if all users are W instructions.
def : Pat<(sexti32_allwusers GPR:$rs1), (XLenVT GPR:$rs1)>;
def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
/// ALU operations
def : Pat<(i64 (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (srl (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
(SRLIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
(SRAIW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (sra (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
(SRAIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
def : PatGprGpr<shiftopw<riscv_sllw>, SLLW>;
def : PatGprGpr<shiftopw<riscv_srlw>, SRLW>;
def : PatGprGpr<shiftopw<riscv_sraw>, SRAW>;
// Select W instructions if only the lower 32 bits of the result are used.
def : PatGprGpr<binop_allwusers<add>, ADDW>;
def : PatGprSimm12<binop_allwusers<add>, ADDIW>;
def : PatGprGpr<binop_allwusers<sub>, SUBW>;
def : PatGprImm<binop_allwusers<shl>, SLLIW, uimm5>;
// If this is a shr of a value sign extended from i32, and all the users only
// use the lower 32 bits, we can use an sraiw to remove the sext_inreg. This
// occurs because SimplifyDemandedBits prefers srl over sra.
def : Pat<(binop_allwusers<srl> (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
(SRAIW GPR:$rs1, uimm5:$shamt)>;
// Use binop_allwusers to recover immediates that may have been broken by
// SimplifyDemandedBits.
def : Pat<(binop_allwusers<and> GPR:$rs1, 0xffffffff),
(COPY GPR:$rs1)>;
def : Pat<(binop_allwusers<and> GPR:$rs1, u32simm12:$imm),
(ANDI GPR:$rs1, u32simm12:$imm)>;
def : Pat<(binop_allwusers<or> GPR:$rs1, u32simm12:$imm),
(ORI GPR:$rs1, u32simm12:$imm)>;
def : Pat<(binop_allwusers<xor> GPR:$rs1, u32simm12:$imm),
(XORI GPR:$rs1, u32simm12:$imm)>;
/// Loads
def : LdPat<sextloadi32, LW, i64>;
def : LdPat<extloadi32, LW, i64>;
def : LdPat<zextloadi32, LWU, i64>;
def : LdPat<load, LD, i64>;
/// Stores
def : StPat<truncstorei32, SW, GPR, i64>;
def : StPat<store, SD, GPR, i64>;
} // Predicates = [IsRV64]
// On RV64, we can directly read these 64-bit counter CSRs.
let Predicates = [IsRV64] in {
/// readcyclecounter
def : Pat<(i64 (readcyclecounter)), (CSRRS CYCLE.Encoding, (XLenVT X0))>;
/// readsteadycounter
def : Pat<(i64 (readsteadycounter)), (CSRRS TIME.Encoding, (XLenVT X0))>;
}
// On RV32, ReadCounterWide will be expanded to the suggested loop reading both
// halves of 64-bit counter CSRs.
let Predicates = [IsRV32], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
def ReadCounterWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins i32imm:$csr_lo, i32imm:$csr_hi),
[(set GPR:$lo, GPR:$hi,
(riscv_read_counter_wide csr_sysreg:$csr_lo, csr_sysreg:$csr_hi))],
"", "">;
/// traps
// We lower `trap` to `unimp`, as this causes a hard exception on nearly all
// systems.
def : Pat<(trap), (UNIMP)>;
// We lower `debugtrap` to `ebreak`, as this will get the attention of the
// debugger if possible.
def : Pat<(debugtrap), (EBREAK)>;
let Predicates = [IsRV64], Uses = [X5],
Defs = [X1, X6, X7, X28, X29, X30, X31], Size = 8 in
def HWASAN_CHECK_MEMACCESS_SHORTGRANULES
: Pseudo<(outs), (ins GPRJALR:$ptr, i32imm:$accessinfo),
[(int_hwasan_check_memaccess_shortgranules (i64 X5), GPRJALR:$ptr,
(i32 timm:$accessinfo))]>;
// This gets lowered into a 20-byte instruction sequence (at most)
let hasSideEffects = 0, mayLoad = 1, mayStore = 0,
Defs = [ X6, X7, X28, X29, X30, X31 ], Size = 20 in {
def KCFI_CHECK
: Pseudo<(outs), (ins GPRJALR:$ptr, i32imm:$type), []>, Sched<[]>;
}
/// Simple optimization
def : Pat<(XLenVT (add GPR:$rs1, (AddiPair:$rs2))),
(ADDI (XLenVT (ADDI GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2))),
(AddiPairImmSmall GPR:$rs2))>;
let Predicates = [IsRV64] in {
// Select W instructions if only the lower 32-bits of the result are used.
def : Pat<(binop_allwusers<add> GPR:$rs1, (AddiPair:$rs2)),
(ADDIW (i64 (ADDIW GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2))),
(AddiPairImmSmall AddiPair:$rs2))>;
}
//===----------------------------------------------------------------------===//
// Experimental RV64 i32 legalization patterns.
//===----------------------------------------------------------------------===//
def simm12i32 : ImmLeaf<i32, [{return isInt<12>(Imm);}]>;
// Convert from i32 immediate to i64 target immediate to make SelectionDAG type
// checking happy so we can use ADDIW which expects an XLen immediate.
def as_i64imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i64);
}]>;
def zext_is_sext : PatFrag<(ops node:$src), (zext node:$src), [{
KnownBits Known = CurDAG->computeKnownBits(N->getOperand(0), 0);
return Known.isNonNegative();
}]>;
let Predicates = [IsRV64] in {
def : LdPat<sextloadi8, LB, i32>;
def : LdPat<extloadi8, LBU, i32>; // Prefer unsigned due to no c.lb in Zcb.
def : LdPat<sextloadi16, LH, i32>;
def : LdPat<extloadi16, LH, i32>;
def : LdPat<zextloadi8, LBU, i32>;
def : LdPat<zextloadi16, LHU, i32>;
def : StPat<truncstorei8, SB, GPR, i32>;
def : StPat<truncstorei16, SH, GPR, i32>;
def : Pat<(anyext GPR:$src), (COPY GPR:$src)>;
def : Pat<(sext GPR:$src), (ADDIW GPR:$src, 0)>;
def : Pat<(trunc GPR:$src), (COPY GPR:$src)>;
def : PatGprGpr<add, ADDW, i32, i32>;
def : PatGprGpr<sub, SUBW, i32, i32>;
def : PatGprGpr<and, AND, i32, i32>;
def : PatGprGpr<or, OR, i32, i32>;
def : PatGprGpr<xor, XOR, i32, i32>;
def : PatGprGpr<shiftopw<shl>, SLLW, i32, i64>;
def : PatGprGpr<shiftopw<srl>, SRLW, i32, i64>;
def : PatGprGpr<shiftopw<sra>, SRAW, i32, i64>;
def : Pat<(i32 (add GPR:$rs1, simm12i32:$imm)),
(ADDIW GPR:$rs1, (i64 (as_i64imm $imm)))>;
def : Pat<(i32 (and GPR:$rs1, simm12i32:$imm)),
(ANDI GPR:$rs1, (i64 (as_i64imm $imm)))>;
def : Pat<(i32 (or GPR:$rs1, simm12i32:$imm)),
(ORI GPR:$rs1, (i64 (as_i64imm $imm)))>;
def : Pat<(i32 (xor GPR:$rs1, simm12i32:$imm)),
(XORI GPR:$rs1, (i64 (as_i64imm $imm)))>;
def : PatGprImm<shl, SLLIW, uimm5, i32>;
def : PatGprImm<srl, SRLIW, uimm5, i32>;
def : PatGprImm<sra, SRAIW, uimm5, i32>;
def : Pat<(i32 (and GPR:$rs, TrailingOnesMask:$mask)),
(SRLI (i32 (SLLI $rs, (i64 (XLenSubTrailingOnes $mask)))),
(i64 (XLenSubTrailingOnes $mask)))>;
// Use sext if the sign bit of the input is 0.
def : Pat<(zext_is_sext GPR:$src), (ADDIW GPR:$src, 0)>;
}
let Predicates = [IsRV64, NotHasStdExtZba] in {
def : Pat<(zext GPR:$src), (SRLI (i64 (SLLI GPR:$src, 32)), 32)>;
// If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2
// shifts instead of 3. This can occur when unsigned is used to index an array.
def : Pat<(shl (zext GPR:$rs), uimm5:$shamt),
(SRLI (i64 (SLLI GPR:$rs, 32)), (ImmSubFrom32 uimm5:$shamt))>;
}
//===----------------------------------------------------------------------===//
// Standard extensions
//===----------------------------------------------------------------------===//
// Multiply and Division
include "RISCVInstrInfoM.td"
// Atomic
include "RISCVInstrInfoA.td"
include "RISCVInstrInfoZa.td"
include "RISCVInstrInfoZalasr.td"
// Scalar FP
include "RISCVInstrInfoF.td"
include "RISCVInstrInfoD.td"
include "RISCVInstrInfoZfh.td"
include "RISCVInstrInfoZfbfmin.td"
include "RISCVInstrInfoZfa.td"
// Scalar bitmanip and cryptography
include "RISCVInstrInfoZb.td"
include "RISCVInstrInfoZk.td"
// Vector
include "RISCVInstrInfoV.td"
include "RISCVInstrInfoZvk.td"
// Compressed
include "RISCVInstrInfoC.td"
include "RISCVInstrInfoZc.td"
include "RISCVInstrInfoZcmop.td"
// Integer
include "RISCVInstrInfoZimop.td"
include "RISCVInstrInfoZicbo.td"
include "RISCVInstrInfoZicond.td"
include "RISCVInstrInfoZicfiss.td"
//===----------------------------------------------------------------------===//
// Vendor extensions
//===----------------------------------------------------------------------===//
include "RISCVInstrInfoXVentana.td"
include "RISCVInstrInfoXTHead.td"
include "RISCVInstrInfoXSf.td"
include "RISCVInstrInfoSFB.td"
include "RISCVInstrInfoXCV.td"
include "RISCVInstrInfoXwch.td"
//===----------------------------------------------------------------------===//
// Global ISel
//===----------------------------------------------------------------------===//
include "RISCVInstrGISel.td"
|