1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
|
//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'F',
// Single-Precision Floating-Point instruction set extension.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_RISCVFMV_W_X_RV64
: SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
def SDT_RISCVFMV_X_ANYEXTW_RV64
: SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
def SDT_RISCVFCVT_W_RV64
: SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisFP<1>,
SDTCisVT<2, i64>]>;
def SDT_RISCVFCVT_X
: SDTypeProfile<1, 2, [SDTCisVT<0, XLenVT>, SDTCisFP<1>,
SDTCisVT<2, XLenVT>]>;
def SDT_RISCVFROUND
: SDTypeProfile<1, 3, [SDTCisFP<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisVT<3, XLenVT>]>;
def SDT_RISCVFCLASS
: SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>;
def riscv_fclass
: SDNode<"RISCVISD::FCLASS", SDT_RISCVFCLASS>;
def riscv_fround
: SDNode<"RISCVISD::FROUND", SDT_RISCVFROUND>;
def riscv_fmv_w_x_rv64
: SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
def riscv_fmv_x_anyextw_rv64
: SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;
def riscv_fcvt_w_rv64
: SDNode<"RISCVISD::FCVT_W_RV64", SDT_RISCVFCVT_W_RV64>;
def riscv_fcvt_wu_rv64
: SDNode<"RISCVISD::FCVT_WU_RV64", SDT_RISCVFCVT_W_RV64>;
def riscv_fcvt_x
: SDNode<"RISCVISD::FCVT_X", SDT_RISCVFCVT_X>;
def riscv_fcvt_xu
: SDNode<"RISCVISD::FCVT_XU", SDT_RISCVFCVT_X>;
def riscv_fmin : SDNode<"RISCVISD::FMIN", SDTFPBinOp>;
def riscv_fmax : SDNode<"RISCVISD::FMAX", SDTFPBinOp>;
def riscv_strict_fcvt_w_rv64
: SDNode<"RISCVISD::STRICT_FCVT_W_RV64", SDT_RISCVFCVT_W_RV64,
[SDNPHasChain]>;
def riscv_strict_fcvt_wu_rv64
: SDNode<"RISCVISD::STRICT_FCVT_WU_RV64", SDT_RISCVFCVT_W_RV64,
[SDNPHasChain]>;
def riscv_any_fcvt_w_rv64 : PatFrags<(ops node:$src, node:$frm),
[(riscv_strict_fcvt_w_rv64 node:$src, node:$frm),
(riscv_fcvt_w_rv64 node:$src, node:$frm)]>;
def riscv_any_fcvt_wu_rv64 : PatFrags<(ops node:$src, node:$frm),
[(riscv_strict_fcvt_wu_rv64 node:$src, node:$frm),
(riscv_fcvt_wu_rv64 node:$src, node:$frm)]>;
def any_fma_nsz : PatFrag<(ops node:$rs1, node:$rs2, node:$rs3),
(any_fma node:$rs1, node:$rs2, node:$rs3), [{
return N->getFlags().hasNoSignedZeros();
}]>;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
// Zfinx
def GPRAsFPR : AsmOperandClass {
let Name = "GPRAsFPR";
let ParserMethod = "parseGPRAsFPR";
let RenderMethod = "addRegOperands";
}
def FPR32INX : RegisterOperand<GPRF32> {
let ParserMatchClass = GPRAsFPR;
let DecoderMethod = "DecodeGPRRegisterClass";
}
// Describes a combination of predicates from F/D/Zfh/Zfhmin or
// Zfinx/Zdinx/Zhinx/Zhinxmin that are applied to scalar FP instruction.
// Contains the DAGOperand for the primary type for the predicates. The primary
// type may be unset for combinations of predicates like Zfh+D.
// Also contains the DAGOperand for f16/f32/f64, instruction suffix, and
// decoder namespace that go with an instruction given those predicates.
//
// The DAGOperand can be unset if the predicates are not enough to define it.
class ExtInfo<string suffix, string space, list<Predicate> predicates,
ValueType primaryvt, DAGOperand primaryty, DAGOperand f32ty,
DAGOperand f64ty, DAGOperand f16ty> {
list<Predicate> Predicates = predicates;
string Suffix = suffix;
string Space = space;
DAGOperand PrimaryTy = primaryty;
DAGOperand F16Ty = f16ty;
DAGOperand F32Ty = f32ty;
DAGOperand F64Ty = f64ty;
ValueType PrimaryVT = primaryvt;
}
def FExt : ExtInfo<"", "", [HasStdExtF], f32, FPR32, FPR32, ?, ?>;
def ZfinxExt : ExtInfo<"_INX", "RVZfinx", [HasStdExtZfinx], f32, FPR32INX, FPR32INX, ?, ?>;
defvar FExts = [FExt, ZfinxExt];
// Floating-point rounding mode
def FRMArg : AsmOperandClass {
let Name = "FRMArg";
let RenderMethod = "addFRMArgOperands";
let ParserMethod = "parseFRMArg";
let IsOptional = 1;
let DefaultMethod = "defaultFRMArgOp";
}
def frmarg : Operand<XLenVT> {
let ParserMatchClass = FRMArg;
let PrintMethod = "printFRMArg";
let DecoderMethod = "decodeFRMArg";
}
// Variants of the rounding mode operand that default to 'rne'. This is used
// for historical/legacy reasons. fcvt functions where the rounding mode
// doesn't affect the output originally always set it to 0b000 ('rne'). As old
// versions of LLVM and GCC will fail to decode versions of these instructions
// with the rounding mode set to something other than 'rne', we retain this
// default.
def FRMArgLegacy : AsmOperandClass {
let Name = "FRMArgLegacy";
let RenderMethod = "addFRMArgOperands";
let ParserMethod = "parseFRMArg";
let IsOptional = 1;
let DefaultMethod = "defaultFRMArgLegacyOp";
}
def frmarglegacy : Operand<XLenVT> {
let ParserMatchClass = FRMArgLegacy;
let PrintMethod = "printFRMArgLegacy";
let DecoderMethod = "decodeFRMArg";
}
//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
class FPLoad_r<bits<3> funct3, string opcodestr, DAGOperand rty,
SchedWrite sw>
: RVInstI<funct3, OPC_LOAD_FP, (outs rty:$rd),
(ins GPRMem:$rs1, simm12:$imm12),
opcodestr, "$rd, ${imm12}(${rs1})">,
Sched<[sw, ReadFMemBase]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
class FPStore_r<bits<3> funct3, string opcodestr, DAGOperand rty,
SchedWrite sw>
: RVInstS<funct3, OPC_STORE_FP, (outs),
(ins rty:$rs2, GPRMem:$rs1, simm12:$imm12),
opcodestr, "$rs2, ${imm12}(${rs1})">,
Sched<[sw, ReadFStoreData, ReadFMemBase]>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1,
UseNamedOperandTable = 1, hasPostISelHook = 1, isCommutable = 1 in
class FPFMA_rrr_frm<RISCVOpcode opcode, bits<2> funct2, string opcodestr,
DAGOperand rty>
: RVInstR4Frm<funct2, opcode, (outs rty:$rd),
(ins rty:$rs1, rty:$rs2, rty:$rs3, frmarg:$frm),
opcodestr, "$rd, $rs1, $rs2, $rs3$frm">;
multiclass FPFMA_rrr_frm_m<RISCVOpcode opcode, bits<2> funct2,
string opcodestr, ExtInfo Ext> {
let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in
def Ext.Suffix : FPFMA_rrr_frm<opcode, funct2, opcodestr, Ext.PrimaryTy>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1 in
class FPALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
DAGOperand rty, bit Commutable>
: RVInstR<funct7, funct3, OPC_OP_FP, (outs rty:$rd),
(ins rty:$rs1, rty:$rs2), opcodestr, "$rd, $rs1, $rs2"> {
let isCommutable = Commutable;
}
multiclass FPALU_rr_m<bits<7> funct7, bits<3> funct3, string opcodestr,
ExtInfo Ext, bit Commutable = 0> {
let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in
def Ext.Suffix : FPALU_rr<funct7, funct3, opcodestr, Ext.PrimaryTy, Commutable>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1,
UseNamedOperandTable = 1, hasPostISelHook = 1 in
class FPALU_rr_frm<bits<7> funct7, string opcodestr, DAGOperand rty,
bit Commutable>
: RVInstRFrm<funct7, OPC_OP_FP, (outs rty:$rd),
(ins rty:$rs1, rty:$rs2, frmarg:$frm), opcodestr,
"$rd, $rs1, $rs2$frm"> {
let isCommutable = Commutable;
}
multiclass FPALU_rr_frm_m<bits<7> funct7, string opcodestr,
ExtInfo Ext, bit Commutable = 0> {
let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in
def Ext.Suffix : FPALU_rr_frm<funct7, opcodestr, Ext.PrimaryTy, Commutable>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1 in
class FPUnaryOp_r<bits<7> funct7, bits<5> rs2val, bits<3> funct3,
DAGOperand rdty, DAGOperand rs1ty, string opcodestr>
: RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
opcodestr, "$rd, $rs1"> {
let rs2 = rs2val;
}
multiclass FPUnaryOp_r_m<bits<7> funct7, bits<5> rs2val, bits<3> funct3,
ExtInfo Ext, DAGOperand rdty, DAGOperand rs1ty,
string opcodestr> {
let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in
def Ext.Suffix : FPUnaryOp_r<funct7, rs2val, funct3, rdty, rs1ty, opcodestr>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1,
UseNamedOperandTable = 1, hasPostISelHook = 1 in
class FPUnaryOp_r_frm<bits<7> funct7, bits<5> rs2val, DAGOperand rdty,
DAGOperand rs1ty, string opcodestr>
: RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
(ins rs1ty:$rs1, frmarg:$frm), opcodestr,
"$rd, $rs1$frm"> {
let rs2 = rs2val;
}
multiclass FPUnaryOp_r_frm_m<bits<7> funct7, bits<5> rs2val,
ExtInfo Ext, DAGOperand rdty, DAGOperand rs1ty,
string opcodestr, list<Predicate> ExtraPreds = []> {
let Predicates = !listconcat(Ext.Predicates, ExtraPreds),
DecoderNamespace = Ext.Space in
def Ext.Suffix : FPUnaryOp_r_frm<funct7, rs2val, rdty, rs1ty,
opcodestr>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1,
UseNamedOperandTable = 1, hasPostISelHook = 1 in
class FPUnaryOp_r_frmlegacy<bits<7> funct7, bits<5> rs2val, DAGOperand rdty,
DAGOperand rs1ty, string opcodestr>
: RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
(ins rs1ty:$rs1, frmarglegacy:$frm), opcodestr,
"$rd, $rs1$frm"> {
let rs2 = rs2val;
}
multiclass FPUnaryOp_r_frmlegacy_m<bits<7> funct7, bits<5> rs2val,
ExtInfo Ext, DAGOperand rdty, DAGOperand rs1ty,
string opcodestr, list<Predicate> ExtraPreds = []> {
let Predicates = !listconcat(Ext.Predicates, ExtraPreds),
DecoderNamespace = Ext.Space in
def Ext.Suffix : FPUnaryOp_r_frmlegacy<funct7, rs2val, rdty, rs1ty,
opcodestr>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, mayRaiseFPException = 1,
IsSignExtendingOpW = 1 in
class FPCmp_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
DAGOperand rty, bit Commutable = 0>
: RVInstR<funct7, funct3, OPC_OP_FP, (outs GPR:$rd),
(ins rty:$rs1, rty:$rs2), opcodestr, "$rd, $rs1, $rs2"> {
let isCommutable = Commutable;
}
multiclass FPCmp_rr_m<bits<7> funct7, bits<3> funct3, string opcodestr,
ExtInfo Ext, bit Commutable = 0> {
let Predicates = Ext.Predicates, DecoderNamespace = Ext.Space in
def Ext.Suffix : FPCmp_rr<funct7, funct3, opcodestr, Ext.PrimaryTy, Commutable>;
}
class PseudoFROUND<DAGOperand Ty, ValueType vt>
: Pseudo<(outs Ty:$rd), (ins Ty:$rs1, Ty:$rs2, ixlenimm:$rm),
[(set Ty:$rd, (vt (riscv_fround Ty:$rs1, Ty:$rs2, timm:$rm)))]> {
let hasSideEffects = 0;
let mayLoad = 0;
let mayStore = 0;
let usesCustomInserter = 1;
let mayRaiseFPException = 1;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtF] in {
def FLW : FPLoad_r<0b010, "flw", FPR32, WriteFLD32>;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
def FSW : FPStore_r<0b010, "fsw", FPR32, WriteFST32>;
} // Predicates = [HasStdExtF]
foreach Ext = FExts in {
let SchedRW = [WriteFMA32, ReadFMA32, ReadFMA32, ReadFMA32Addend] in {
defm FMADD_S : FPFMA_rrr_frm_m<OPC_MADD, 0b00, "fmadd.s", Ext>;
defm FMSUB_S : FPFMA_rrr_frm_m<OPC_MSUB, 0b00, "fmsub.s", Ext>;
defm FNMSUB_S : FPFMA_rrr_frm_m<OPC_NMSUB, 0b00, "fnmsub.s", Ext>;
defm FNMADD_S : FPFMA_rrr_frm_m<OPC_NMADD, 0b00, "fnmadd.s", Ext>;
}
let SchedRW = [WriteFAdd32, ReadFAdd32, ReadFAdd32] in {
defm FADD_S : FPALU_rr_frm_m<0b0000000, "fadd.s", Ext, Commutable=1>;
defm FSUB_S : FPALU_rr_frm_m<0b0000100, "fsub.s", Ext>;
}
let SchedRW = [WriteFMul32, ReadFMul32, ReadFMul32] in
defm FMUL_S : FPALU_rr_frm_m<0b0001000, "fmul.s", Ext, Commutable=1>;
let SchedRW = [WriteFDiv32, ReadFDiv32, ReadFDiv32] in
defm FDIV_S : FPALU_rr_frm_m<0b0001100, "fdiv.s", Ext>;
defm FSQRT_S : FPUnaryOp_r_frm_m<0b0101100, 0b00000, Ext, Ext.PrimaryTy,
Ext.PrimaryTy, "fsqrt.s">,
Sched<[WriteFSqrt32, ReadFSqrt32]>;
let SchedRW = [WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32],
mayRaiseFPException = 0 in {
defm FSGNJ_S : FPALU_rr_m<0b0010000, 0b000, "fsgnj.s", Ext>;
defm FSGNJN_S : FPALU_rr_m<0b0010000, 0b001, "fsgnjn.s", Ext>;
defm FSGNJX_S : FPALU_rr_m<0b0010000, 0b010, "fsgnjx.s", Ext>;
}
let SchedRW = [WriteFMinMax32, ReadFMinMax32, ReadFMinMax32] in {
defm FMIN_S : FPALU_rr_m<0b0010100, 0b000, "fmin.s", Ext, Commutable=1>;
defm FMAX_S : FPALU_rr_m<0b0010100, 0b001, "fmax.s", Ext, Commutable=1>;
}
let IsSignExtendingOpW = 1 in
defm FCVT_W_S : FPUnaryOp_r_frm_m<0b1100000, 0b00000, Ext, GPR, Ext.PrimaryTy,
"fcvt.w.s">,
Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]>;
let IsSignExtendingOpW = 1 in
defm FCVT_WU_S : FPUnaryOp_r_frm_m<0b1100000, 0b00001, Ext, GPR, Ext.PrimaryTy,
"fcvt.wu.s">,
Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]>;
let SchedRW = [WriteFCmp32, ReadFCmp32, ReadFCmp32] in {
defm FEQ_S : FPCmp_rr_m<0b1010000, 0b010, "feq.s", Ext, Commutable=1>;
defm FLT_S : FPCmp_rr_m<0b1010000, 0b001, "flt.s", Ext>;
defm FLE_S : FPCmp_rr_m<0b1010000, 0b000, "fle.s", Ext>;
}
let mayRaiseFPException = 0 in
defm FCLASS_S : FPUnaryOp_r_m<0b1110000, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
"fclass.s">,
Sched<[WriteFClass32, ReadFClass32]>;
defm FCVT_S_W : FPUnaryOp_r_frm_m<0b1101000, 0b00000, Ext, Ext.PrimaryTy, GPR,
"fcvt.s.w">,
Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]>;
defm FCVT_S_WU : FPUnaryOp_r_frm_m<0b1101000, 0b00001, Ext, Ext.PrimaryTy, GPR,
"fcvt.s.wu">,
Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]>;
defm FCVT_L_S : FPUnaryOp_r_frm_m<0b1100000, 0b00010, Ext, GPR, Ext.PrimaryTy,
"fcvt.l.s", [IsRV64]>,
Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]>;
defm FCVT_LU_S : FPUnaryOp_r_frm_m<0b1100000, 0b00011, Ext, GPR, Ext.PrimaryTy,
"fcvt.lu.s", [IsRV64]>,
Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]>;
defm FCVT_S_L : FPUnaryOp_r_frm_m<0b1101000, 0b00010, Ext, Ext.PrimaryTy, GPR,
"fcvt.s.l", [IsRV64]>,
Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]>;
defm FCVT_S_LU : FPUnaryOp_r_frm_m<0b1101000, 0b00011, Ext, Ext.PrimaryTy, GPR,
"fcvt.s.lu", [IsRV64]>,
Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]>;
} // foreach Ext = FExts
let Predicates = [HasStdExtF], mayRaiseFPException = 0,
IsSignExtendingOpW = 1 in
def FMV_X_W : FPUnaryOp_r<0b1110000, 0b00000, 0b000, GPR, FPR32, "fmv.x.w">,
Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]>;
let Predicates = [HasStdExtF], mayRaiseFPException = 0 in
def FMV_W_X : FPUnaryOp_r<0b1111000, 0b00000, 0b000, FPR32, GPR, "fmv.w.x">,
Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]>;
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtF] in {
def : InstAlias<"flw $rd, (${rs1})", (FLW FPR32:$rd, GPR:$rs1, 0), 0>;
def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;
def : InstAlias<"fmv.s $rd, $rs", (FSGNJ_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
// fgt.s/fge.s are recognised by the GNU assembler but the canonical
// flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.s $rd, $rs, $rt",
(FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
def : InstAlias<"fge.s $rd, $rs, $rt",
(FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
// The following csr instructions actually alias instructions from the base ISA.
// However, it only makes sense to support them when the F extension is enabled.
// NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
def : InstAlias<"frcsr $rd", (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 2>;
def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs)>;
def : InstAlias<"fscsr $rs", (CSRRW X0, SysRegFCSR.Encoding, GPR:$rs), 2>;
// frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
// zero weight.
def : InstAlias<"frsr $rd", (CSRRS GPR:$rd, SysRegFCSR.Encoding, X0), 0>;
def : InstAlias<"fssr $rd, $rs", (CSRRW GPR:$rd, SysRegFCSR.Encoding, GPR:$rs), 0>;
def : InstAlias<"fssr $rs", (CSRRW X0, SysRegFCSR.Encoding, GPR:$rs), 0>;
def : InstAlias<"frrm $rd", (CSRRS GPR:$rd, SysRegFRM.Encoding, X0), 2>;
def : InstAlias<"fsrm $rd, $rs", (CSRRW GPR:$rd, SysRegFRM.Encoding, GPR:$rs)>;
def : InstAlias<"fsrm $rs", (CSRRW X0, SysRegFRM.Encoding, GPR:$rs), 2>;
def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, SysRegFRM.Encoding, uimm5:$imm)>;
def : InstAlias<"fsrmi $imm", (CSRRWI X0, SysRegFRM.Encoding, uimm5:$imm), 2>;
def : InstAlias<"frflags $rd", (CSRRS GPR:$rd, SysRegFFLAGS.Encoding, X0), 2>;
def : InstAlias<"fsflags $rd, $rs", (CSRRW GPR:$rd, SysRegFFLAGS.Encoding, GPR:$rs)>;
def : InstAlias<"fsflags $rs", (CSRRW X0, SysRegFFLAGS.Encoding, GPR:$rs), 2>;
def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, SysRegFFLAGS.Encoding, uimm5:$imm)>;
def : InstAlias<"fsflagsi $imm", (CSRRWI X0, SysRegFFLAGS.Encoding, uimm5:$imm), 2>;
// fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
// spellings should be supported by standard tools.
def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;
def PseudoFLW : PseudoFloatLoad<"flw", FPR32>;
def PseudoFSW : PseudoStore<"fsw", FPR32>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_S : PseudoQuietFCMP<FPR32>;
def PseudoQuietFLT_S : PseudoQuietFCMP<FPR32>;
}
} // Predicates = [HasStdExtF]
let Predicates = [HasStdExtZfinx] in {
def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S_INX FPR32INX:$rd, FPR32INX:$rs, FPR32INX:$rs)>;
def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S_INX FPR32INX:$rd, FPR32INX:$rs, FPR32INX:$rs)>;
def : InstAlias<"fgt.s $rd, $rs, $rt",
(FLT_S_INX GPR:$rd, FPR32INX:$rt, FPR32INX:$rs), 0>;
def : InstAlias<"fge.s $rd, $rs, $rt",
(FLE_S_INX GPR:$rd, FPR32INX:$rt, FPR32INX:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_S_INX : PseudoQuietFCMP<FPR32INX>;
def PseudoQuietFLT_S_INX : PseudoQuietFCMP<FPR32INX>;
}
} // Predicates = [HasStdExtZfinx]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
defvar FRM_RNE = 0b000;
defvar FRM_RTZ = 0b001;
defvar FRM_RDN = 0b010;
defvar FRM_RUP = 0b011;
defvar FRM_RMM = 0b100;
defvar FRM_DYN = 0b111;
/// Floating point constants
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
/// Generic pattern classes
class PatSetCC<DAGOperand Ty, SDPatternOperator OpNode, CondCode Cond,
RVInst Inst, ValueType vt>
: Pat<(XLenVT (OpNode (vt Ty:$rs1), Ty:$rs2, Cond)), (Inst $rs1, $rs2)>;
multiclass PatSetCC_m<SDPatternOperator OpNode, CondCode Cond,
RVInst Inst, ExtInfo Ext> {
let Predicates = Ext.Predicates in
def Ext.Suffix : PatSetCC<Ext.PrimaryTy, OpNode, Cond,
!cast<RVInst>(Inst#Ext.Suffix), Ext.PrimaryVT>;
}
class PatFprFpr<SDPatternOperator OpNode, RVInstR Inst,
DAGOperand RegTy, ValueType vt>
: Pat<(OpNode (vt RegTy:$rs1), (vt RegTy:$rs2)), (Inst $rs1, $rs2)>;
multiclass PatFprFpr_m<SDPatternOperator OpNode, RVInstR Inst,
ExtInfo Ext> {
let Predicates = Ext.Predicates in
def Ext.Suffix : PatFprFpr<OpNode, !cast<RVInstR>(Inst#Ext.Suffix),
Ext.PrimaryTy, Ext.PrimaryVT>;
}
class PatFprFprDynFrm<SDPatternOperator OpNode, RVInstRFrm Inst,
DAGOperand RegTy, ValueType vt>
: Pat<(OpNode (vt RegTy:$rs1), (vt RegTy:$rs2)), (Inst $rs1, $rs2, FRM_DYN)>;
multiclass PatFprFprDynFrm_m<SDPatternOperator OpNode, RVInstRFrm Inst,
ExtInfo Ext> {
let Predicates = Ext.Predicates in
def Ext.Suffix : PatFprFprDynFrm<OpNode,
!cast<RVInstRFrm>(Inst#Ext.Suffix),
Ext.PrimaryTy, Ext.PrimaryVT>;
}
/// Float conversion operations
// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
foreach Ext = FExts in {
defm : PatFprFprDynFrm_m<any_fadd, FADD_S, Ext>;
defm : PatFprFprDynFrm_m<any_fsub, FSUB_S, Ext>;
defm : PatFprFprDynFrm_m<any_fmul, FMUL_S, Ext>;
defm : PatFprFprDynFrm_m<any_fdiv, FDIV_S, Ext>;
}
let Predicates = [HasStdExtF] in {
def : Pat<(any_fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, FRM_DYN)>;
def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;
def : Pat<(riscv_fclass FPR32:$rs1), (FCLASS_S $rs1)>;
} // Predicates = [HasStdExtF]
let Predicates = [HasStdExtZfinx] in {
def : Pat<(any_fsqrt FPR32INX:$rs1), (FSQRT_S_INX FPR32INX:$rs1, FRM_DYN)>;
def : Pat<(fneg FPR32INX:$rs1), (FSGNJN_S_INX $rs1, $rs1)>;
def : Pat<(fabs FPR32INX:$rs1), (FSGNJX_S_INX $rs1, $rs1)>;
def : Pat<(riscv_fclass FPR32INX:$rs1), (FCLASS_S_INX $rs1)>;
} // Predicates = [HasStdExtZfinx]
foreach Ext = FExts in
defm : PatFprFpr_m<fcopysign, FSGNJ_S, Ext>;
let Predicates = [HasStdExtF] in {
def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
(FMADD_S $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
(FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
(FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
(FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR32:$rs1, FPR32:$rs2, FPR32:$rs3)),
(FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtF]
let Predicates = [HasStdExtZfinx] in {
def : Pat<(fcopysign FPR32INX:$rs1, (fneg FPR32INX:$rs2)), (FSGNJN_S_INX $rs1, $rs2)>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3),
(FMADD_S_INX $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR32INX:$rs1, FPR32INX:$rs2, (fneg FPR32INX:$rs3)),
(FMSUB_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR32INX:$rs1), FPR32INX:$rs2, FPR32INX:$rs3),
(FNMSUB_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR32INX:$rs1), FPR32INX:$rs2, (fneg FPR32INX:$rs3)),
(FNMADD_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3)),
(FNMADD_S_INX FPR32INX:$rs1, FPR32INX:$rs2, FPR32INX:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZfinx]
// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
foreach Ext = FExts in {
defm : PatFprFpr_m<fminnum, FMIN_S, Ext>;
defm : PatFprFpr_m<fmaxnum, FMAX_S, Ext>;
defm : PatFprFpr_m<riscv_fmin, FMIN_S, Ext>;
defm : PatFprFpr_m<riscv_fmax, FMAX_S, Ext>;
}
/// Setcc
// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
// strict versions of those.
// Match non-signaling FEQ_S
foreach Ext = FExts in {
defm : PatSetCC_m<any_fsetcc, SETEQ, FEQ_S, Ext>;
defm : PatSetCC_m<any_fsetcc, SETOEQ, FEQ_S, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETLT, PseudoQuietFLT_S, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_S, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETLE, PseudoQuietFLE_S, Ext>;
defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_S, Ext>;
}
let Predicates = [HasStdExtF] in {
// Match signaling FEQ_S
def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs2, SETEQ)),
(AND (XLenVT (FLE_S $rs1, $rs2)),
(XLenVT (FLE_S $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs2, SETOEQ)),
(AND (XLenVT (FLE_S $rs1, $rs2)),
(XLenVT (FLE_S $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs1, SETEQ)),
(FLE_S $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR32:$rs1, FPR32:$rs1, SETOEQ)),
(FLE_S $rs1, $rs1)>;
} // Predicates = [HasStdExtF]
let Predicates = [HasStdExtZfinx] in {
// Match signaling FEQ_S
def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs2, SETEQ)),
(AND (XLenVT (FLE_S_INX $rs1, $rs2)),
(XLenVT (FLE_S_INX $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs2, SETOEQ)),
(AND (XLenVT (FLE_S_INX $rs1, $rs2)),
(XLenVT (FLE_S_INX $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs1, SETEQ)),
(FLE_S_INX $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR32INX:$rs1, FPR32INX:$rs1, SETOEQ)),
(FLE_S_INX $rs1, $rs1)>;
} // Predicates = [HasStdExtZfinx]
foreach Ext = FExts in {
defm : PatSetCC_m<any_fsetccs, SETLT, FLT_S, Ext>;
defm : PatSetCC_m<any_fsetccs, SETOLT, FLT_S, Ext>;
defm : PatSetCC_m<any_fsetccs, SETLE, FLE_S, Ext>;
defm : PatSetCC_m<any_fsetccs, SETOLE, FLE_S, Ext>;
}
let Predicates = [HasStdExtF] in {
defm Select_FPR32 : SelectCC_GPR_rrirr<FPR32, f32>;
def PseudoFROUND_S : PseudoFROUND<FPR32, f32>;
/// Loads
def : LdPat<load, FLW, f32>;
/// Stores
def : StPat<store, FSW, FPR32, f32>;
} // Predicates = [HasStdExtF]
let Predicates = [HasStdExtZfinx] in {
defm Select_FPR32INX : SelectCC_GPR_rrirr<FPR32INX, f32>;
def PseudoFROUND_S_INX : PseudoFROUND<FPR32INX, f32>;
/// Loads
def : Pat<(f32 (load (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12))),
(COPY_TO_REGCLASS (LW GPR:$rs1, simm12:$imm12), GPRF32)>;
/// Stores
def : Pat<(store (f32 FPR32INX:$rs2), (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12)),
(SW (COPY_TO_REGCLASS FPR32INX:$rs2, GPR), GPR:$rs1, simm12:$imm12)>;
} // Predicates = [HasStdExtZfinx]
let Predicates = [HasStdExtF] in {
// Moves (no conversion)
def : Pat<(bitconvert (i32 GPR:$rs1)), (FMV_W_X GPR:$rs1)>;
def : Pat<(i32 (bitconvert FPR32:$rs1)), (FMV_X_W FPR32:$rs1)>;
} // Predicates = [HasStdExtF]
let Predicates = [HasStdExtZfinx] in {
// Moves (no conversion)
def : Pat<(f32 (bitconvert (i32 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPRF32)>;
def : Pat<(i32 (bitconvert FPR32INX:$rs1)), (COPY_TO_REGCLASS FPR32INX:$rs1, GPR)>;
} // Predicates = [HasStdExtZfinx]
let Predicates = [HasStdExtF] in {
// float->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR32:$rs1)), (FCVT_W_S $rs1, FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint FPR32:$rs1)), (FCVT_WU_S $rs1, FRM_RTZ)>;
// Saturating float->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR32:$rs1, timm:$frm)), (FCVT_W_S $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR32:$rs1, timm:$frm)), (FCVT_WU_S $rs1, timm:$frm)>;
// float->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR32:$rs1)), (FCVT_W_S $rs1, FRM_DYN)>;
// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR32:$rs1)), (FCVT_W_S $rs1, FRM_RMM)>;
// [u]int->float. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_S_W $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_S_WU $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtF]
let Predicates = [HasStdExtZfinx] in {
// float->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR32INX:$rs1)), (FCVT_W_S_INX $rs1, FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint FPR32INX:$rs1)), (FCVT_WU_S_INX $rs1, FRM_RTZ)>;
// Saturating float->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR32INX:$rs1, timm:$frm)), (FCVT_W_S_INX $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR32INX:$rs1, timm:$frm)), (FCVT_WU_S_INX $rs1, timm:$frm)>;
// float->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR32INX:$rs1)), (FCVT_W_S_INX $rs1, FRM_DYN)>;
// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR32INX:$rs1)), (FCVT_W_S_INX $rs1, FRM_RMM)>;
// [u]int->float. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_S_W_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_S_WU_INX $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZfinx]
let Predicates = [HasStdExtF, IsRV64] in {
// Moves (no conversion)
def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR32:$rs1, timm:$frm), (FCVT_W_S $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR32:$rs1, timm:$frm), (FCVT_WU_S $rs1, timm:$frm)>;
// float->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR32:$rs1)), (FCVT_L_S $rs1, FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint FPR32:$rs1)), (FCVT_LU_S $rs1, FRM_RTZ)>;
// Saturating float->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR32:$rs1, timm:$frm)), (FCVT_L_S $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR32:$rs1, timm:$frm)), (FCVT_LU_S $rs1, timm:$frm)>;
// float->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR32:$rs1)), (FCVT_L_S $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR32:$rs1)), (FCVT_L_S $rs1, FRM_DYN)>;
// float->int64 rounded to neartest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR32:$rs1)), (FCVT_L_S $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround FPR32:$rs1)), (FCVT_L_S $rs1, FRM_RMM)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_S_W $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_S_WU $rs1, FRM_DYN)>;
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_S_L $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_S_LU $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtF, IsRV64]
let Predicates = [HasStdExtZfinx, IsRV64] in {
// Moves (no conversion)
def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (COPY_TO_REGCLASS GPR:$src, GPRF32)>;
def : Pat<(riscv_fmv_x_anyextw_rv64 GPRF32:$src), (COPY_TO_REGCLASS GPRF32:$src, GPR)>;
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR32INX:$rs1, timm:$frm), (FCVT_W_S_INX $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR32INX:$rs1, timm:$frm), (FCVT_WU_S_INX $rs1, timm:$frm)>;
// float->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint FPR32INX:$rs1)), (FCVT_LU_S_INX $rs1, FRM_RTZ)>;
// Saturating float->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR32INX:$rs1, timm:$frm)), (FCVT_L_S_INX $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR32INX:$rs1, timm:$frm)), (FCVT_LU_S_INX $rs1, timm:$frm)>;
// float->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>;
// float->int64 rounded to neartest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llround FPR32INX:$rs1)), (FCVT_L_S_INX $rs1, FRM_DYN)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_S_W_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_S_WU_INX $rs1, FRM_DYN)>;
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_S_L_INX $rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_S_LU_INX $rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZfinx, IsRV64]
|